polygons, polyhedra, patterns & beyond

259
POLYGONS, POLYHEDRA, PATTERNS & BEYOND Ethan D. Bloch Spring 2015

Upload: others

Post on 29-Oct-2021

20 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

POLYGONS,POLYHEDRA,PATTERNS&BEYOND

EthanD.Bloch

Spring2015

Page 2: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

i

Page 3: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

ii

Page 4: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

Contents

TotheStudent v

Part I POLYGONS &POLYHEDRA 1

1 GeometryBasics 31.1 EuclidandNon-Euclid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.2 LinesandAngles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121.3 Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Polygons 252.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252.2 Triangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282.3 GeneralPolygons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392.4 Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492.5 ThePythagoreanTheorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3 Polyhedra 733.1 Polyhedra–TheBasics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 733.2 RegularPolyhedra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 783.3 Semi-RegularPolyhedra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 813.4 OtherCategoriesofPolyhedra . . . . . . . . . . . . . . . . . . . . . . . . . . 843.5 EnumerationinPolyhedra . . . . . . . . . . . . . . . . . . . . . . . . . . . . 873.6 CurvatureofPolyhedra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Page 5: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

iv Contents

Part II SYMMETRY &PATTERNS 105

4 Isometries 1074.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1074.2 Isometries–TheBasics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1104.3 RecognizingIsometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1194.4 CombiningIsometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1254.5 GlideReflections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1304.6 Isometries—TheWholeStory . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5 SymmetryofPlanarObjectsandOrnamentalPatterns 1475.1 BasicIdeas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1475.2 SymmetryofRegularPolygonsI . . . . . . . . . . . . . . . . . . . . . . . . . 1545.3 SymmetryofRegularPolygonsII . . . . . . . . . . . . . . . . . . . . . . . . 1605.4 RosettePatterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1705.5 FriezePatterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1785.6 WallpaperPatterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1875.7 ThreeDimensionalSymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . 204

6 Groups 2156.1 Thebasicidea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2156.2 Clockarithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2186.3 TheIntegersMod n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2236.4 Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2286.5 Subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2376.6 SymmetryandGroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

SuggestionsforFurtherReading 245

Bibliography 251

Page 6: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

TotheStudent

I havewrittentheselecturenotesbecauseI havenotfoundanyexistingtextforMath107thatwasadequateintermsofthechoiceofmaterial, levelofdifficulty, organizationandexposition.MuchoftheapproachinPartII ofthesenotesisinspiredbythetextI previouslyusedforMath107(Farmer, David, “GroupsandSymmetry,” AMS,1996). I hopethatthesenoteswillfittheneedsofthiscourse, andwillhelpyoulearnthismaterial.Ifthereareanyerrorsinthetext, oranythingthatisnotclearlywritten, pleaseacceptmyapolo-

gies. I wouldverymuchappreciateyourfeedbackonthistext, bothintermsoferrorsthatyoufindandsuggestionsforchangesoradditionsthatyoumighthave. Commentscanbeforwardedtomeinperson(afterclass, orinmyoffice, Albee317), orbyemailat [email protected].

Prerequisites

ItisassumedthatanyoneusingthistexthaspassedPartI oftheMathematicsDiagnosticExam.Noparticularbackgroundinmathematicsbeyondthatisrequired. Onsomeoccasionswewillmakeuseofhighschoolalgebra(forexample, thequadraticformula)andhighschoolgeometry(forexample, thePythagoreanTheorem). Forthemostpart, however, wewilltreatmaterialthat,whiletouchinguponsomeverysubstantialideas, doesnotrequiremuchinthewayofalgebraorgeometrybackground. Precalculus(includingtrigonometry, logarithms, andthelike)isnotrequired. Onafewoccasionswewillmentiontrigonometry, butthosebriefreferencescaneasilybeskipped.Whatisneededtoreadthistextisawillingnesstolearnnewideas, tothinkthroughsubtleties,

toworkhard, andtouseyourimagination. Muchofthematerialinthetextisveryvisual, andmakingdrawings, andmentallyimagininggeometricobjects, iscrucial. Someofthearguments

Page 7: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

vi TotheStudent

inthetext, thoughnotrequiringmuchinthewayoftechnicalbackground, arenonethelessquitetricky, andrequirecarefulattentiontothedetails.

Exercises

Likemusicandart, mathematicsislearnedbydoing, notjustbyreadingtextsandlisteningtolectures. Inmathematicscoursesweassignexercisesnotbecausewewanttoputthestudentsthroughsomesortofmathematicalbootcamp, butbecausedoingexercisesisthebestwaytoworkwiththematerial, andtoseewhatisunderstoodandwhatneedsfurtherstudy. Doingtheexercisesisthereforeacrucialpartoflearningthematerialinthistext. Exercisesrangefromtheroutinetothedifficult. Whenansweringanexercise, youmayuseanyfactsinthetextuptillthen(includingpreviousexercises).Onefeatureoftheexercisesinthistextisworthmentioning. Inmanyhighschoolmathematics

courses, thetexthasavarietyofworked-outexamples, andthenthehomeworkexercisesareoftenvirtuallyidenticaltotheworked-outexamples, butwithdifferentnumbers. Thestudentsthendotheexercisesbysimplymimickingtheexamplesinthetext. Studentsareoftensatisfiedwiththesetypesofexercises, butfromthepointofviewofintellectualgrowth, suchexercisesaresorelylacking. Thepointoflearningmathematicsisnottolearntoimitatewhattheteacherorthebookdoes, butrathertounderstandnewconceptsandbeabletoapplythem. Hence, inthistext, manyoftheexercisesdonotaskthestudentstomimicwhatisdoneinthetext, butrathertothinkforthemselves. Many(thoughnotall)oftheexercisesinthistextare, purposely,notidenticaltoworkedoutexamplesinthetext, butratheraretobesolvedbythinkingaboutthematerial. Someoftheexercisesinthistextrequirecreativityandimagination, andothersareopenended.

Page 8: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

Part IPOLYGONS &POLYHEDRA

1

Page 9: POLYGONS, POLYHEDRA, PATTERNS & BEYOND
Page 10: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

1GeometryBasics

1.1 EuclidandNon-Euclid

Ancient Greekmathematics was put into its ultimate deductive form by Euclid, who livedroughlyaround300BCE.Inhiswork“TheElements,” Euclidtookanalreadydevelopedlargebodyofgeometry, andgaveitlogicalorderbyisolatingafewbasicdefinitionsandaxioms, andthendeducingeverythingelsefromthesedefinitionsandaxioms. Thestatements thatEucliddeducesfromhisaxiomsanddefinitionsarecalledpropositions(inmoderntextbookstheyareoftenreferredtoastheorems, whichmeansthesamething). WewilllookverybrieflyatsomeaspectsofEuclid’sElements. Thismassiveworkisdividedupinto13“Books;” ourconcernisprimarilywithBookI.Following[Har00](thoughothersemphasizethispointaswell), westressthatEuclid, andthe

ancientGreeksgenerally, viewedgeometryratherdifferentlythanwecurrentlydo. Theonlyquantities thatwereof interestweregeometricones, andof those, geometricquantities thatcouldbeconstructedwithstraightedgeandcompasswereofparticularinterest. Numbersfortheirownsakeseemedlessofinterest(perhapsbecausetheydidnothaveadevelopedunder-standingofnumbers, orperhapsthatiswhytheydidnotdevelopsuchanunderstanding); asolidunderstandingofnumberscamelaterinhistory. Forexample, considerthefamousPythagoreanTheorem, whichisdemonstratedinSection 2.2. Incontemporarylanguage, thistheoremstatesthatifarighttrianglehassidesoflength a and b, andhypotenuseoflength c, then a2+b2 = c2.Sostated, thistheoremtellsussomethingaboutthreenumbers a, b and c: ifthesethreenum-berssatisfyacertaincondition(namelybeingthelengthsofthesidesandhypotenuseofarighttriangle), then theymustalsosatisfy thealgebraicequation a2 + b2 = c2. ToEuclid, suchastatementaboutnumberswouldnothavemadesense. HisversionofthePythagoreanThe-oremis: “Inright-angledtriangles thesquareonthesidesubtendingtherightangleisequaltothesquaresonthesidescontainingtherightangle.” (AllquotesfromEuclidaretakenfrom

Page 11: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

4 1. GeometryBasics

[Euc56], whichisthestandardEnglishtranslation.) Euclid’sversionofthetheoremisastatementaboutthreesquares, namelythatonesquare(theoneonthehypotenuse)“isequal”totwoothersquares(thoseonthesides)puttogether. Euclidisinterestedintherelationbetweenthesethreesquares, whicharegeometricobjects, andnotnumbers.ItmightseemfromamodernperspectivethatEuclid’sversionofthePythagoreanisaboutarea,

andthusreallydoesinvolvenumbers, becausetheareaofaplanarfigure(thatis, afigureintheplane)isanumber. Infact, EucliddoesnotmentiontheconceptofareaatallinhisversionofthePythagoreanTheorem. WhenEuclidsaysthattwoplanarfigures(suchassquares)areequal,heisnotmakingastatementaboutthenumericalvaluesoftheirareas(forexampleinsquareinches), butratherissayingthatonefigurecanbecutupintotriangles, andreassembledintotheotherfigure. Thus, Euclid’sversionofthePythagoreanTheoremisstrictlyaboutgeometricobjects. Today, wehavetheconceptofassigningtoeachplanarfigureitsarea(whichisanum-ber), andwerestatevariousgeometricpropertiesintermsofnumericalproperties, butthatisnotthewayEuclid(andtheotherancientGreeks)viewedthings. See[Har00]forathoroughdiscussionofthisissue, andmoregenerallyonwhatEuclidsaid, andhowheunderstoodge-ometry. (Wehighlyrecommend[Har00]asacompaniontoreadingEuclid; thoughmuchofthebookisaimedatamathematicallysophisticatedaudience, somepartsareveryaccessible, andextremelyinsightful.)Without question, “The Elements” is oneof themost important, and influential, works of

mathematicseverwritten—itisarguablyoneofthemostinfluentialintellectualachievementsofhumancivilizationasawhole, notjustofmathematics. Euclid’streatmentofgeometrybe-cametheuniversallyacceptedmethodofdoinggeometryforalmosttwomillenia, uptillthe19thcentury. Moreover, notonlywasEuclideangeometryacceptedasunquestionablytrue, butEuclid’smethodofdeductivereasoningwasconsideredamodeloflogicalargumentation, andanexampleofreasoningthatproducedtheoremsthatwereunquestionablytrue. Itturnsout,however, thatneitheroftheseattributesof“TheElements”istrue. WithoutdiscountingfromtheenormousintellectualandhistoricalimportanceofEuclid’swork, fromamodernvantagepointwecanidentifythreefundamentalflawsinEuclid, theresolutionsofwhichdidnottakeplaceuntilroughlytwomilleniaafterEuclid’stime.Euclidtriedtogiveprecisedefinitionsforgeometricconcepts; hetriedtogiveasetofaxioms

thatdescribeplanar(andspatial)geometry; andhetriedtoproveallotherresultsingeometryinarigorousfashionbasedonlyonhisdefinitionsandaxioms. ItisnowunderstoodthatthereareflawsinEuclid’sdefinitions; hisaxiomsareneithercompletenornecessarilytrue; andsomeofhisproofshavegaps. Fromamodernpointofview, Eucliddidnotreallyachievethelevelof rigor thathas traditionallybeenascribed tohim. Noneof this is todeny thegreatnessofEuclid’sachievement—itisindeedmagnificent—butunderstandingtheproblemsin“TheEle-ments”helpsgiveanaccurateassessmentofEuclid, anditpointsthewaytolaterdevelopmentsingeometry.LetusturntothefirstfourofthedefinitionsfromBookI of“TheElements.” Euclidhasmore

definitionsthanthefourwequote, buttheyaresufficienttoillustratewhatEuclidwasattemptingtoaccomplish.

Page 12: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

1.1EuclidandNon-Euclid 5

Definitions

1. A pointisthatwhichhasnopart.

2. A lineisbreadthlesslength.

3. Theextremitiesofalinearepoints.

4. A straightlineisalinethatliesevenlywiththepointsonitself.

Euclidwantstodosomethingverynicewithhisdefinitions, namelydefineallthemathemati-caltermsthatheuses, suchaspointandline. Unfortunately, hedoesnotadequatelyaccomplishhistask. Whenhesaysthat“apointisthatwhichhasnopart,” heneveractuallysayswhatapoint is, onlywhat itdoesnothave, andeven that isunclear. Whenhe says that “a line isbreadthlesslength,” whereheusestheword“line”tomeanwhatwewouldcallacurve, hedoesnottelluswhat“breadth”is, andsowedonotreallyknowwhatalineis. Similarly, hesay“astraightlineisalinethatliesevenlywiththepointsonitself,” butwhatdoesitmeanforsomethingto“lieevenly”withthepointsonitself—otherthantobestraight, butnowwearegoingincircles.Thebottomline is that, bymodernstandards, Euclid’sdefinitionsaremeaningless. In fact,

wenowunderstandthatjustasitisnecessarytostartwithsomeunprovedaxiomsasabasisforalltheothertheoremstobeproved, sotoodoweneedtostartwithsomeundefinedtermsasabasisforallotherdefinitions. Euclid’sdefinitionsaredoomedtofail, becausehetriestodefineeverything. Inthemodernaxiomaticapproachtogeometry, westartwithsomeundefinedterms(forexample, “point”and“line”), thoughwehypothesizevariousaxiomaticpropertiesfortheseundefinedterms(forexample, weassumethateverytwodistinctpointsarecontainedinauniqueline). Whatcountsisnotwhatpointsandlinesare, buthowtheybehave. Iftheybehaveaspointsandlinesoughtto, thenwearesatisfied. AlthoughEuclid’sdefinitionsdonotworkasstated, therearemodernaxiomschemes(suchastheonesbyHilbert in1899andBirkhoffin1932)inwhichthedefinitionsareworkedoutproperly—andtheydojustwhatEuclidwasattemptingtodo. Inotherwords, itispossiblepatchupEuclid’sdefinitions, withthecaveatthatsometermsareleftundefined.WenowturntoEuclid’saxioms. Theaxiomsarebrokenupinto“commonnotions”and“pos-

tulates.” Thecompletelistofcommonnotionsandpostulatesisasfollows.

TheCommonNotions

1. Thingsthatareequaltothesamethingsareequaltooneanother.

2. Ifequalsbeaddedtoequals, thewholesareequal.

3. Ifequalsbesubtractedfromequals, theremaindersareequal.

4. Thingsthatcoincidewithoneanotherareequaltooneanother.

5. Thewholeisgreaterthanthepart.

Page 13: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

6 1. GeometryBasics

ThePostulates

1. Todrawastraightlinefromanypointtoanypoint.

2. Toproduceafinitestraightlinecontinuouslyinastraightline.

3. Todescribeacirclewithanycenterandradius.

4. Thatallrightanglesareequaltooneanother.

5. That, ifastraightlinefallingontwostraightlinesmakestheinterioranglesonthesameside less than tworightangles, thestraight lines, ifproduced indefinitely,meetonthatsideonwhicharetheangleslessthanthetworightangles.

Thecommonnotions, whicharenotaboutgeometryperse(thoughEuclidmighthavethoughtofthemgeometrically), seemreasonableenoughasstated. Thepostulates, bycontrast, needsomeexplanationinmodernterminology; Euclid’swordingisdifferentfromwhatwewouldusetoday. Euclid, andingeneraltheancientGreeks, wereveryconcernedwithgeometricconstruc-tionsusingstraightedgeandcompass(wepurposelysay“straightedge”andnot“ruler,” becausetheydidnotallowtheuseofarulertomeasurethings, onlyastraightedgetodrawstraightlinesbetweengivenpoints).Thefirstthreepostulatesinvolvestraightedgeandcompassconstructions. TheFirstPostulate

statesthat, giventwodifferentpoints, wecanconstruct(usingastraightedge)alinesegmentfromonepointtotheother. Inmodernterminology, wherewefocusonpropertiesoflinesandpointsandnotonconstructions, theFirstPostulateisoftenrephrasedas“anytwodistinctpointsarecontainedinone, andonlyone, line.” TheSecondPostulatestatesthatifwearegivenalinesegment(whichisfiniteinlength), wecanextendthelinesegment. TheThirdPostulatestatesthatgivenapoint, andgivenaradius, wecandrawthecirclethathasthegivenpointasitscenter, andhasthegivenradius.TheFourthandFifthPostulatesarenotconcernedwithstraightedgeandcompassconstruc-

tions. TheFourthPostulatesaysthatanytworightangles, nomatterwheretheyarelocatedintheplane, areequaltooneanother. Thisstatementmayseemratherobvious, butthereisinfactsomethingtobehypothesizedhere; wewilldiscussthispostulateinmoredetailinSection 1.2,wherewediscussangles.TheFifthPostulate, bycontrast, requiressomeexplanation. Tounderstandwhatthepostulate

says, supposewearegivena line, say k, and two lines that intersect k, say m and n. SeeFigure 1.1.1. Let α and β betheanglesshowninthefigure. TheFifthPostulatestatesthatifα + β < 180◦, thenthelines m and n willeventuallyintersectonthesamesideof k as αand β. (Notethat 180◦ equals“tworightangles.”) Statedthisway, Euclid’sFifthPostulatedoesmakesenseintuitively. Itwillturnout, asdiscussedlaterinthissection, thattheFifthPostulatehasgreathistoricalsignificance, muchmorethantheotherfourpostulates.

Havingstatedhisdefinitions, commonnotionsandpostulates, Euclidgoesontoprovemanypropositions. Tomakeeverythingcompletelyrigorous, EuclidprovesProposition 1usingonlyhisdefinitions, commonnotionsandpostulates. Proposition 2isprovedusingProposition 1,

Page 14: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

1.1EuclidandNon-Euclid 7

k

m

n

α

β

Figure1.1.1

togetherwiththedefinitions, commonnotionsandpostulates. Andsoon. Someofthepropo-sitionsin“TheElements”areveryfamiliartoustoday, forexamplethePythagoreanTheorem,whichisProposition 47inBookI of“theElements,” beingthepenultimatetheoreminthatbook;thelastpropositionisaconversetothePythagoreanTheorem(whichwestateanddemonstrateinourProposition 2.5.2). ThefirsttwopropositionsinBookI areasfollows.

Propositions

1. Onagivenfinitestraightline, toconstructanequilateraltriangle.

2. Toplaceatagivenpoint(asanextremity)astraightlineequaltoagivenstraightline.

Aswithsomeofthepostulates, thesefirsttwopropositionsinvolveconstructionswithstraight-edgeandcompass(thoughnotallthepropositionsinvolveconstructions). Proposition 1ofEu-clidsaysthat, givenalinesegment, wecanconstructanequilateraltrianglethathasthelinesegmentasoneofitsedges. Proposition 2saysthat, givenalinesegment, andapointsome-whereintheplane, wecanconstructanewlinesegmentthatisequalinlengthtothegivenone, andhasthegivenpointasoneofitsendpoints.Inmodernterminology, theproofofEuclid’sProposition 1hastwostages. Wearegivena

linesegmentintheplane. First, Euclidtellsushowtoconstructacertaintrianglethathasthelinesegmentasoneofitsedges; second, heprovesthatthetrianglesoconstructedisindeedequilateral. Whatconcernsusisthefirststageofthisproof. Theideaissimple. Supposewehavealinesegmentwithendpoints A and B, asshowninFigure 1.1.2 (i). First, drawanarc(whichissimplypartofacircle)usingacompasswithcenterat A, andwithradiusthelengthfrom A

to B; thendrawanarcwithcenter B, andthesameradius. SeeFigure 1.1.2 (ii). Let C denotethepointwherethetwoarcsintersect. Usingastraightedge, drawthelinesegmentsfrom A toC, andfrom B to C. SeeFigure 1.1.2 (iii). Wenowhaveatrianglewithvertices A, B and C. Inthesecondstageofhisproof, Euclidshowsthatthistriangleisindeedequilateral.

Page 15: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

8 1. GeometryBasics

(i) (ii)

(iii)

A B A B

C

A B

Figure1.1.2

BEFORE YOU READ FURTHER:

Euclid’sproofofProposition 1isintuitivelycompletelycorrect, butfromarigorouspointofview, thereisaflaw. Trytoseeifyoucanfigureoutwhattheproblemwiththisproofis.

TheproblemwithEuclid’sproofofProposition 1ultimatelygoesbacktothefactthathewantshisprooftorelyonlyonhisdefinitions, postulatesandcommonnotions. ThatwecandrawthetwoarcsshowninFigure 1.1.2 (ii) indeedfollowsfromtheThirdPostulate, andthatwecandrawthelinesegmentsfrom A to C andfrom B to C followsfromtheFirstPostulate. WhatisnotexplicitlyguaranteedbyanyofEuclid’spostulatesorcommonnotionsisthatthetwoarcsweconstructedactuallyintersect. Wesimplyassumedthatthetwoarcintersect, andlabeledthepointofintersection C. Howdoweknowthatthetwoarcsreallydointersect? ItcertainlylooksasiftheydoinFigure 1.1.2 (ii), butthatisnotaconvincingargument, becausewemight

Page 16: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

1.1EuclidandNon-Euclid 9

havedrawnthefigureincorrectly. Moreover, ifaproofisgenuinelyrigorous, itoughtnottorelyonapicture—thepictureissimplymeanttohelpourintuition.Itiscertainlynottruethatanytwocirclesintheplaneintersect, forexampletwocircleswith

radius 1 incheach, andwithcenters 10 inchesapart. Hence, toguaranteethattwoarcs(whicharepartsofcircles)intersect, wewouldneedtoknowsomethingspecificaboutthemthatinsuresintersection. Forexample, ifweknewsomethingabouttherelationbetweenthecentersofthecirclescontainingthearcsandtheradiiofthecircles, thenwemightbeabletodemonstratethatthearcsintersect; ifthedistancebetweenthecentersofthecirclesistoolargeinrelationtotheradii, thenthearcsmightnotintersect. Itis, infact, possibletogivecriteriaontheradiiandcentersoftwocirclesthatinsurethattwocirclesintersect. Thereis, however, amoresubtleproblemwiththisaspectofEuclid’sproof. Notonlydoweneedtoinsurethattheradiianddistancebetweenthecentersoftwocirclesareappropriateinordertoinsurethatthecirclesintersect, butwealsoneed toknowthatcirclesare“continuous,” that is, that theyhaveno“gaps”inthemrightwheretheintersectionissupposedtotakeplace. Thisissueofgapsisverysubtle, andwedonothavethespacetodiscussithere. Inhispostulatesandcommonnotions,Euclidaddressesneither theissueofappropriateradiiandcenters, nor theissueofnogaps,andthereforehehasnotrigorouslyprovedhisProposition 1. ModernaxiomatictreatmentsofEuclideangeometrysuccessfullyavoidEuclid’sinsufficientaxiomsbygivingmoreaxiomsthanEuclidgave. ItisnotthatwhatEuclidsaidwaswrong; itissimplyinsufficient.The twoproblemswithEuclidmentionedso far, namely thedefinitions thatdonotdefine

anything, andtheinsufficientaxioms, canbothberemedied. TwothousandyearsafterEuclid,mathematicianshaveshowedthatwithregardtothesetwoissues, Euclidwascorrect, justmiss-ingsomedetails. Thereis, however, another, moretricky, problemwithEuclid. TheproblemconcernsEuclid’sFifthPostulate. A lookatthefivepostulatesquicklyrevealsthatthefifthissomehowdifferentfromthefirstfour. Thefirstfouraresimpletostate, andimmediatelybeliev-able. Thefifth, bycontrast, ismuchlongertostate, and, whilecertainlybelievable, doesnotseemasimmediatelyobviousasthefirstfour. MathematiciansthroughoutthecenturiesafterEuclidnoticedthisproblem. Thereisnothinginherentlywrongwithapostulatethatiscompli-cated, asisEuclid’sFifthPostulate, butitisbothersome. OneofthereasonspeoplelikedEuclid’sgeometryisthat(ignoringtheflawsmentionedabove, whichseemtohavebeennoticedonlylateron), itseemedtobeamodelforprovingthatcertainfactsareindisputablytrue. Euclidwastheultimateexampleofhowhumanbeingscouldobtaincertainknowledge. Ifonestartswithindisputablytrueaxioms, andproceedsinanairtightlogicalfashiontodeducethingsfromtheaxioms, thenwhateveronededucesmustalsobeindisputablytrue. However, ifEuclidistobeviewedinthisway, thenitiscrucialthathisaxiomsareindisputablytrue. Thecommonnotionsandthefirstfourpostulatesseemquiteconvincing. TheFifthPostulate, bycontrast, doesnotseemquiteasindisputable, givenitsmorecomplicatednature.WhatcanbedoneabouttheFifthPostulate? Itcannotsimplybedropped—itismostdefinitely

usedinsomeofEuclid’sproofs. WhatanumberofpeopleafterEuclidtriedtodowastodeducetheFifthPostulatefromtheotherfour. IftheFifthPostulatecouldbededucedfromtheotherfour, thenanythingprovableusingallfivepostulatescouldbeprovedusingthefirstfour, which

Page 17: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

10 1. GeometryBasics

wouldaddtotheindisputabilityofwhateverwasprovedbyEuclid. Overtheyears, anumberofpeopleclaimedtohavededucedEuclid’sFifthPostulatefromtheotherfour. Wenowknow,however, that theywereallmistaken. Asdiscovered independentlybyKarl FriedrichGauss(1777-1855), JanosBolyai (1802-1860)andNikolai IvanovitchLobatchevsky (1793-1856) intheearly19thcentury, itispossibletoconceiveofperfectlygoodgeometriesthatinvolvethefirst fourpostulates, but somethingother than theFifthPostulate (wewillmentionhow thiscouldhappenverybrieflybelow). Thisdiscoverywasextremelyrevolutionary. Infact, Gauss,arguablythegreatestmathematicianofalltimes, butsomeonewhoseemstohavebeenquiteconcernedabouthisreputation, didnotinitiallypublishhisdiscoveryofwhatisnowcallednon-Euclideangeometry, for fearof thepublic reaction. For the twothousandyearsprior toGauss, “TheElements”hadbeentakenassomethingapproachingasacred, non-challengeable,text. TochallengeEuclid, asGaussdidprivately, andsubsequentlyBolyaiandLobatchevskydidpublicly(andindependently)in1831and1829respectively, wasseenasalmostashereticalasDarwinwaslaterinthe19thcentury.Wecannotgiveherethedetailsofthenon-Euclideanrevolution, excepttosaythatitusheredin

acompletelyneweraofgeometry. Newapproachestogeometry, suchastheuseofisometries(acrucialtoolinourinourtreatmentofsymmetryinChapters 4 and5), andRiemanniangeometry(thatwaslaterusedbyEinsteininhisgeneraltheoryofrelativity)flourishedinthe19thcentury,oncethestrangle-holdofEuclid’sapproachwaslifted. (Ofcourse, haditnotbeenforEuclid,geometrymightnothave reached the19thcentury inasdevelopeda formas itdid, soweshouldnotbelittleEuclid’sfundamentalimportancetogeometry, andallofmathematics; therearesimplyotherapproachestogeometryaswell.) Thediscoveryofnon-Euclideangeometryhadphilosophicalimportancebeyondjustgeometry, orevenmathematics. IfEuclidwasonceheldupasamodelforabsolutetruth, andifwenowknowthatothertypesofgeometryarepossible, thenweneedtorethinkwhat, ifanything, wecanknowwithabsolutecertainty. See[Tru87]or[Gre93]formoredetailsaboutthenon-Euclideanrevolution.TogetabitmoreofafeelforwhatmakesEuclideangeometrydistinctfromnon-Euclidean

geometry, wementionanimportantresultinEuclideangeometryknownasPlayfair’sAxiom. AdemonstrationofPlayfair’sAxiomwillbegiveninSection 1.2.

Proposition 1.1.1 (Playfair’sAxiom). Supposem isaline, andA isapointnotonm. Thenthereisoneandonlyonelinethrough A thatisparallelto m.

Fromourpointofview“Playfair’sAxiom”innotanaxiomatall, butatheoreminEuclideangeometry; however, thenameistraditional, andweuseitwhetherornotitmakesliteralsense.Actually, Playfair’sAxiomisnotonlyatheoreminEuclideangeometry, but, morestrongly, itisequivalenttoEuclid’sFifthPostulate. BythatwemeanthatEuclid’sfivepostulatesimplyPlay-fair’sAxiom, andEuclid’sfirstfourpostulatestogetherwithPlayfair’sAxiomimplyEuclid’sFifthPostulate. (Infact, insomemoderngeometrytexts, thestatementofPlayfair’sAxiomisincor-rectlyreferredtoasEuclid’sFifthPostulate. AlthoughlogicallyitiscorrecttosubstitutePlayfair’sAxiomforEuclid’sFifthPostulate, becausethetwostatementsimplyeachother, historicallyitiscompletelyinaccuratetoreplacetheonestatementwiththeother.)

Page 18: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

1.1EuclidandNon-Euclid 11

Non-Euclideangeometryresults fromtakingEuclid’sfirst fourpostulates, butreplacingtheFifthPostulateby somethingelse. It is easier tounderstandwhathappens innon-Euclideangeometry ifweconsideralternatives toPlayfair’sAxiom. Supposethat m isa line, and A isapointnoton m. IfPlayfair’sAxiomwerenottrue, thentherearetwopossiblecases: eitherthereismorethanonelinethrough A thatisparallelto m, orthereisnolinethrough A thatisparallelto m. IftheformerpossibilityistakenasanaxiominsteadofPlayfair’sAxiom, theresultinggeometryiscalledhyperbolicgeometry; ifthelatterpossibilityistakenasanaxiominsteadofPlayfair’sAxiom, theresultinggeometryiscalledsphericalgeometry. InSection 2.2,wewillseethatPlayfair’sAxiomimpliesthatthesumoftheanglesinatriangleis 180◦. Hence,inEuclideangeometrythesumoftheanglesinatriangleis 180◦. Bycontrast, itcanbeprovedthatinhyperbolicgeometry, thesumoftheanglesinatriangleisalwayslessthan 180◦ (theprecisesumcanvaryfromtriangletotriangle); insphericalgeometry, thesumoftheanglesinatriangleisalwaysgreaterthan 180◦ (again, theprecisesumcanvaryfromtriangletotriangle).Itishardtoimaginehowhyperbolicorsphericalgeometrywouldworkifweusethefamiliar

sortofstraightlinesfoundintheplane, butthereisnoneedtorestrictourselvesonlytothemostfamiliarsituation. Forexample, thinkofthesurfaceofasphereasauniverse, andthinkofgreatcirclesas“straightlines”inthisuniverse(greatcirclesarestraightfromthepointofviewofabuglivingonthesphere). Thegeometrythatusesgreatcirclesonthesphereturnsouttobewhatwenowcallsphericalgeometry. Modelsforhyperbolicgeometrycanalsobefound. A detaileddiscussionofnon-Euclideangeometrywould takeus too far afield; see [Mar75]or [Gre93]forfurtherdetails. Onepointworthmentioningisthatitcanbeproved, thoughthisisfarfromobvious, thatEuclideangeometryisnomoreorlessvalidthanhyperbolicorsphericalgeometry.Thatis, ifweacceptEuclideangeometry, weneedtoacceptnon-Euclideangeometryaswell; ifwedonotacceptnon-Euclideangeometry, thenwecannotacceptEuclideangeometryeither.Mathematicallyspeaking, thereismorethanonepossiblevalidgeometry. Whichgeometryourphysicaluniversesatisfiesisanothermatter, onewhichphysicists, notmathematicians, needtodecidebyuseofexperiments. Onadailybasis, ouruniverseiseitherEuclideanorcloseenoughtoitthatitisEuclideanforallpracticalpurposes.InthistextwewillbeworkingwithinwithintheframeworkofEuclideangeometry, though

wewillnotbeapproachingthingsaxiomatically(akasynthetically). However, wewantedtohaveabriefoverviewofwhat theaxiomaticpropertiesof Euclideangeometryare, becausethesefeaturesultimatelyunderlieeverythingthatwedo, evenwhentheyarenotmentionedexplicitly. Forexample, wewillseewhereEuclid’sFifthPostulatecomesintoplayinthestudyofparallellinesinSection 1.2. Ourstudyofsymmetry, inPartII ofthisbook, usesanapproachtogeometrythatonlycameintobeingafterthediscoveryofnon-Euclideangeometry. However,eventhoughourstudyofsymmetrymayseemdifferentfromtheapproachfoundinEuclid, ittooisultimatelyEuclidean.Finally, weend this sectionwith thehope thatour remarksabout theflaws inEuclidwill

notdiscouragethereaderfromtakinganinterestin“TheElements.” Euclidcontainsawealthofsubstantialmathematicalideas, thoughthedryandsometimestediousstyledonotalwaysmaketheseideasapparentuponfirstencounter. Anyonewishingtoread“TheElements”would

Page 19: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

12 1. GeometryBasics

dowelltoreadboththeactualtextfoundin[Euc56], togetherwithacompaniontoEuclid, suchastheexcellent[Har00].

1.2 LinesandAngles

The twomost fundamentalnotions in thegeometryof theplaneare point and line. By theword“line”wealwaysmeanastraightline(asisstandardusagetoday, thoughdifferentfromEuclid’susage). Asdiscussed inSection 1.1, Euclidattempted todefine theseconcepts, butdidnotsucceedindoingsoinameaningfulway. Wetakethemodernapproach, andsimplyassumethattherearesuchthingsaslinesandpointsintheplane, andthatthereisarelationbetweenpointsand lines, namely thatgivenapointandgivena line, either thepoint isonthelineoritisnot. Further, werequiretherelationbetweenpointsandlinestosatisfycertainfamiliarproperties, suchasthefactthatanytwodistinctpointsarecontainedinoneandonlyoneline(thisisessentiallyEuclid’sFirstPostulate). Wedonotcaresomuchwhatpointsandlinesare, buthowtheybehave. Formostofthistext(except, forexample, inChapter 3), wewillberestrictingourattentiontopointsandlinesintheplane. Itisalsopossibletodiscusspointsandlines(andothergeometricobjects)inthreedimensionalspace, andhigherdimensionstoo.Whennototherwisenoted, thereadershouldassumewearediscussingtheplane.Westartourdiscussionoflineswithsomenotation. Giventwodistinctpoints A and B inthe

plane, weknowthatthereisauniquelinecontaining A and B. Wedenotethislineby←→AB.

WhenitisnotnecessarytospecifythepointsA and B, wewillalsousesingleletterssuchasmtodenotelines. Intuitively, aline“goesonforever”intwodirections. Giventwodistinctpoints

A and B, wecanalsohavethatpartoftheline←→AB thatstartsat A, and“goesonforever”in

thedirectionof B. Suchanobjectiscalledthe ray from A through B, andisdenotedby−→AB.

Wecall A the startingpoint oftheray−→AB. Wecanalsolookatthatpartoftheline

←→AB that

startsat A andendsat B (orvice-versa). Suchanobjectiscalledthe linesegment from A to B,andisdenotedby AB. SeeFigure 1.2.1 forallthreetypesofobjects. Wecallthepoints A andB the endpoints ofthelinesegment AB.

Oneofthemostbasicquestionaboutlinesintheplaneiswhetherornottwolinesintersect,whichmeansthatthetwolineshaveapointincommon. Ourfirstresultisthefollowingratherobviousfact; evenobviousresultsneedtobeproved, however, becauseourintuitionaboutwhatis“obvious”issometimeswrong(forexample, peopleusedtothinkthattheearthwasflat).

Proposition 1.2.1. Twodistinctlinesintersectinatmostonepoint.

Demonstration. Supposem and n aredistinctlines. Supposefurtherthattheyintersectinmorethanonepoint. Hence, thereareatleasttwodifferentpoints, sayA and B, thatarecontainedinboth m and n. Itfollowsthateachof m and n isalinecontainingthepoints A and B, whichcontradictsthefactstatedabovethatanytwodistinctpointsarecontainedinoneandonlyoneline. Henceitmustbethecasethat m and n donotintersectinmorethanonepoint.

Page 20: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

1.2LinesandAngles 13

A B

AB

A B

AB

A B

AB

Figure1.2.1

Becauseoftheaboveproposition, ifwearegiventwodistinctlines, eithertheydonotintersect,ortheyintersectinpreciselyonepoint. Wesaythattwolinesare parallellines iftheydonotintersect; iftwolinesarenotparallel, wesaythattheyare intersectinglines. SeeFigure 1.2.2.Noticethatthedefinitionofparallellinesdoesnotmentionanythingaboutparallellines“goinginthesamedirection,” or“keepingconstantdistancefromeachother.” Bothoftheseideasaretrueaboutparallellinesintheplane, buttheyarenotpartofthedefinition, andneedtobeproved. WewillessentiallyprovethefirstoftheseideasinProposition 1.2.3, andthesecondinProposition 2.2.6. Noticealsothattwoequallinesarenotconsideredparallel, becausetheycertainlydointersect.

parallel lines intersecting lines

Figure1.2.2

Strictlyspeaking, theterm“parallel”appliesonlytolines, andnottolinesegments. However,itmakesintuitivesensetodiscusslinesegmentsbeingparallelornot, andwewillsaythattwolinesegmentsare parallel ifthelinescontainingthelinesegmentsareparallel.Havingbrieflydiscussedlines, wenowturntoanothertypeoffundamentalgeometricobject,

namelyangles. An angle isaregionoftheplanethatisbetweentworaysthatintersectinacommonstartingpoint. Forexample, theshadedregioninFigure 1.2.3 isanangle. Thepointofintersectionofthetworaysiscalledthe vertex oftheangle. Giventworaysthatintersectinacommonstartingpoint, thereareactuallytwoanglesthattheraysdetermine, forexampletheshadedregioninFigure 1.2.3, andtheunshadedregion. Itisthereforenecessarytospecify

Page 21: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

14 1. GeometryBasics

whichoftheregionsisbeingreferredto. Thewaytoavoidthissortofambiguityistospecifyananglenotonlybytworaysthatintersectinacommonstartingpoint, butalsotospecifyadirection, eitherclockwiseorcounterclockwise. InFigure 1.2.4 (i)weseeananglespecifiedbytworaysandtheclockwisedirection(indicatedbythecurvedarrow); inFigure 1.2.4 (ii)weseeadifferentanglespecifiedbythesametworaysasinPart (i)ofthefigure, butwiththeoppositedirection.

Figure1.2.3

(i) (ii)

Figure1.2.4

Anangleisageometricobject. Justaswecanmeasurethelengthsoflinesegments, wecanalsomeasureangles, notinunitsoflength(forexample, feetormeters), butinunitsofangularmeasure. Measuringageometricobjectmeansassigningtotheobjectanumber, whichinsomesensetellsusthe“size”oftheobject. Therearetwostandardunitsofangularmeasure, degreesand radians. Degreesare simpler toexplain, andare thereforeused regularly inelementaryandsecondaryschools; radiansareprefered inadvancedmathematics, forvarious technicalreasonswecannotdiscusshere. Weassumethatthereaderisfamiliarwithdegreemeasureofangles, andwewillusedegreesinthistext. (Weshouldmentionthatthenumber 360 usedinthecontextofdegreemeasureiscompletelyarbitrary, andariseshistorically, ratherthanoutofanyrealreason. Itwouldbeequallyvalidtobreakupthetotalanglegoingaroundapointintoanyothernumberof“degrees,” but 360 isfamiliartoeveryone, andwewillstickwithit.)Theonepointaboutmeasuringangles(bydegreesoranyothermethod)thatweneedtostress

involvesourpreviousobservation that thereare two“directions” inwhichananglecanbespecified, namelyclockwiseandcounterclockwise. Bothdirectionsareequallyvalid, butitis

Page 22: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

1.2LinesandAngles 15

convenienttopickonedirectionashavingpositivemeasure, andonedirectionhavingnegativemeasure. Wewill take theclockwisedirectionaspositive, becausethat is themorefamiliardirectionindailylife. (It iscompletelyarbitrarywhichdirectionis takenaspositive, aslongasweallagreeonthechoice. Inmoreadvancedmathematics texts, it iscustomarytohavecounterclockwisebethepositivedirection.) InFigure 1.2.5 (i)weseeananglethathasmeasure45◦, andinFigure 1.2.5 (ii)weseeananglethathasmeasure −45◦.

-45°45°

(i) (ii)

Figure1.2.5

Degreesareunitsformeasuringangles. Itisimportanttodistinguishbetweenanangleanditsmeasure. Anangleisageometricobject; itsmeasureindegreesisanumberthatweassociatewith theangle. Analogously, theheightofaperson isanumber thatweassociatewith thatperson. Justastwopeoplecanhavethesameheight, butstillbedifferentpeople, similarlytwoanglescanhavethesamemeasure, butstillbedifferentangles. Forexample, inFigure 1.2.6 weseetwodifferentangles, eachofwhichhasmeasure 60◦. Ofcourse, iftwoangleshavedifferentmeasure, theymustbedifferentangles. Iftwoangleshavethesamemeasure, theyneednotbethesameangle, butitisalwaysthecasethattheyarecongruent, whichmeansintuitivelythatoneanglecouldbe“pickedupandplacedpreciselyontopoftheother.” Wewillnotneedamoreformaldefinitionofcongruencehere, andwillsticktotheintuitivenotion. (Theconceptofisometry, whichisdiscussedindetailinChapter 4, providesonewayofdefiningcongruence.)Thebottomlineisthatwhenwesaythat“twoangleareequal”wemeanthattheyarecongruent,andinparticularthattheyhavethesamemeasureindegrees. Forthesakeofbrevity, wewillsometimes“abuse”terminologyandsay, forexample, ofananglethat“is” 90◦, whenweshouldmoreproperlysaythattheangle“hasmeasure” 90◦. Suchabuseofterminologyisverycommon,andshouldcausenoconfusion.

LetusnowreturntoEuclid’sFourthPostulate, whichsays“Thatallrightanglesareequaltooneanother.” Tounderstandthispostulate, weneedtoknowwhatarightangleis. Todaywetendtothinkofarightangleasbeingdefinedtobeanangleof 90◦, butthatisnottheproperwaytounderstandrightangles, becauseitonlytellsusthemeasureofrightangles, notwhattheyaregeometrically. Thegeometricideaofarightangleisbasedonwhathappenswhentwolinesintersectinapoint. AsweseeinFigure 1.2.7 (i), twolinesintersectingdividetheplaneintofourangles. Thefouranglesarenotnecessarilyallequaltoeachother. However, ifitdoeshappenthatallfouranglesareequaltoeachother, thenwecalleachofthefouranglesa rightangle.

Page 23: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

16 1. GeometryBasics

Figure1.2.6

SeeFigure 1.2.7 (ii). WhatEuclid’sFourthPostulatesaysisthatanysuchrightangle, formedbyanytwointersectinglines, isequaltoanyotherrightangleformedbytwootherintersectinglines. Asforthedegreemeasureofarightangle, becausethetotalanglegoingaroundapointis 360◦, andbecausetherearefourrightanglesatapoint, itfollowsthatthemeasureofanyrightangleis 360◦/4 = 90◦. Usingthestandardabuseofterminology, wewillfollowcommoncustomandsimplysaythatanyrightangle“is” 90◦. Similarly, theanglealonganystraightlineis 180◦.

(i) (ii)

Figure1.2.7

Wenowmaketwomoregeometricdefinitionsconcerningangles. First, supposewehavetwoanglesthatare“alongaline;” thatis, twoanglesthatareformedwhenaraystartsatapointonaline. Twosuchanglesarecalled supplementaryangles. Theanglesα andβ inFigure 1.2.8 (i)aresupplementaryangles. Next, supposewehavetwointersectinglines. Ofthefouranglesformed,therearetwopairsof“oppositeangles;” thatis, anglesthatintersectonlyinacommonpoint.Suchanglesarecalled verticalangles. Theangles α and β inFigure 1.2.8 (ii)areverticalangles.

Wenowstateaverysimpleresultaboutangles, usingtheconceptsjustdefined.

Proposition 1.2.2.

1. Supplementaryanglesaddupto 180◦.

2. Verticalanglesareequal.

Page 24: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

1.2LinesandAngles 17

(i) (ii)

αα β β

Figure1.2.8

Demonstration.

(1). Thisisevident, becausetheanglealongastraightlineis 180◦.

(2). InFigure 1.2.9 weseeangles α and β, whichareverticalangles. Noticethattheangleγ isasupplementaryangletoeachof α and β. Hence, byPart (1)ofthisproposition, weknowthat α + γ = 180◦ and γ + β = 180◦. Wededucethat α = 180◦ − γ and β = 180◦ − γ,andtherefore α = β.

α βγ

Figure1.2.9

TheproofofProposition 1.2.2 isverysimple. Moreover, itdoesnotmakeuseofthefullstrengthofEuclid’spostulates, inthattheFifthPostulateisnotused. Ournextresultaboutanglesismoresubstantial, andtheFifthPostulateiscrucialtoitsproof. Weareinterestedinthesituationwheretwolines, saym andn intersectathirdline, say k; seeFigure 1.2.10. Thelinesm and k formfourangles, andthelines n and k formfourmoreangles, allofwhicharelabeledinFigure 1.2.10.Wecallangles x and y interioralternatingangles, andwealsocallangles z and w interioralternatingangles. Similarly, wecallangles α and β exterioralternatingangles, andwealsocallangles δ and ϵ exterioralternatingangles. Finally, wecallangles x and β correspondingangles, andwealsocallangles δ and w, angles z and ϵ, andangles α and y, correspondingangles. Thefollowingpropositionsaysthattheabovesortsofanglesareparticularlynicewhenwestartwithtwoparallellinesthatintersectathirdline.

Proposition 1.2.3. Supposetwoparallellinesintersectathirdline. Thentheinterioralternatinganglesareequal; theexterioralternatinganglesareequal; thecorrespondinganglesareequal.

Page 25: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

18 1. GeometryBasics

α

ε β

δ

y w

z x

m

n

k

Figure1.2.10

Demonstration. InFigure 1.2.10 weseeangles x and y, whichareinterioralternatingangles,angles α and β, whichareexterioralternatingangles, andangles x and β, whicharecorre-spondingangles. Wewilldemonstratethepropositionwithregardtothesethreepairsofangles;theotherappropriatepairsofanglesaresimilar, andwewillskipthedetailsforthem.Westartwiththeobservationthatoneofthefollowingthreecasesmustcertainlyhold: either

x+w < 180◦, or x+w = 180◦, or x+w > 180◦. Supposefirstthat x+w < 180◦. RecallEuclid’sFifthPostulate, whichsays“That, ifastraightlinefailingontwostraightlinesmakestheinterioranglesonthesamesidelessthantworightangles, thestraightlines, ifproducedindefinitely, meeton that sideonwhichare theangles less than the two rightangles.” Thispostulateispreciselysuitedtoourcurrentsituation, anditimpliesthat m and n intersectonthesideof x and w. Wehavethereforereachedalogicalimpossibility, because m and n areassumedtobeparallel, andhencecannotintersect. Weconcludethatitcannotbethecasethatx+w < 180◦.Nowsupposethat x+w > 180◦. Clearly y = 180◦ −w and z = 180◦ − x. Therefore

y+ z = (180◦ −w) + (180◦ − x) = 360◦ − (x+w) < 180◦.

ThenbyEuclid’sFifthPostulate, itwouldfollowthat m and n intersectonthesideof y and z,whichagaincannotbe, becausethetwolinesareparallel. Theonlyremainingoptionisthatx + w = 180◦. Therefore x = 180◦ − w. Becauseweknowthat y = 180◦ − w, itfollowsthat x = y. Hence, interioralternatinganglesareequal. Because β and y areverticalangles,weknowthat β = y. Itissimilarlyseenthat α = x. Wededucethat β = x, whichsaysthatcorrespondinganglesareequal, andthat α = β, whichsaysthatexterioralternatinganglesareequal.

TheproofofProposition 1.2.3 verymuchdependsuponEuclid’sFifthPostulate, andthereforeanyotherpropositionthatisdemonstratedusingProposition 1.2.3 mustalsodependuponEu-clid’sFifthPostulate. Forexample, Proposition 2.2.1, whichdiscussesthesumoftheanglesin

Page 26: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

1.2LinesandAngles 19

atriangle, usesProposition 1.2.3 initsproof. Thus, weseethattheFifthPostulateiscrucialinthestudyofplanargeometry.Amongotherthings, Proposition 1.2.3 showsthatourdefinitionofparallellines, whichwas

simplyintermsofnon-intersection, correspondstoourintuitionthatparallellines“gointhesamedirection.”

Exercise 1.2.1. Findangles x and y asshowninFigure 1.2.11. Thelines m and n areparallel.

y

x

m

n45°

60°

Figure1.2.11

Exercise 1.2.2. Findangles α, β and γ asshowninFigure 1.2.12. Thelines p and q areparallel.

ItturnsoutthattheconversetoProposition 1.2.3 isalsotrue. Thatis, iftwolinesmakeap-propriateangleswithagivenline, thentheyareparallel. Moreprecisely, wehavethefollowingproposition.

Proposition 1.2.4. Supposetwodifferentlinesintersectathirdline. Ifthetwolineshaveequalinterioralternatingangles, orequalexterioralternatingangles, orequalcorrespondingangles,thenthetwolinesareparallel.

Interestingly, eventhoughProposition 1.2.3 reliescruciallyonEuclid’sFifthPostulate, itturnsoutthatProposition 1.2.4 doesnotrelyupontheFifthPostulate(andisthereforetrueinotherge-ometriesforwhichthefirstfourpostulateshold, butthefifthdoesnot). However, aparticularly

Page 27: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

20 1. GeometryBasics

γ

β

α

p

q

80° 115°

Figure1.2.12

easydemonstrationofProposition 1.2.4 canbe foundusing theFifthPostulate; thisdemon-stration is left to the readerasExercise 2.2.1, where ituses the fact, proved inSection 2.2,thatthesumoftheanglesinatriangleaddupto 180◦. (SeeTheorem 3.4.1of[WW98]forademonstrationofProposition 1.2.4 thatdoesnotmakeuseofEuclid’sFifthPostulate.)AnimmediateconsequenceofProposition 1.2.4 is thefollowingresult. First, weneedthe

followingstandardbitofterminology. Giventwolinesintheplane, wesaythattheyare per-pendicular iftheymakerightangleswitheachother.

Proposition 1.2.5. Supposetwodifferentlinesarebothperpendiculartoathirdline. Thenthetwolinesareparallel.

WecannowgiveademonstrationofPlayfair’sAxiom (Proposition 1.1.1). Inthisdemonstra-tion, andinothersubsequentplaces, wewillmakeuseofthefactthatifwearegivenalinemandapoint A (eitheronoroff m), wecanconstructalinethrough A thatisperpendiculartom. Wetakethispropertytobeaxiomatic. Also, wenotethatthisconstructionisveryeasytodousingstraightedgeandcompass, thoughwewillnotneedthedetailshere.

DemonstrationofProposition 1.1.1. Supposethatm isaline, andthatA isapointnotonm.Weneedtoshowtwothings: (1)thereisalinethrough A thatisparallelto m; and(2)thereisonlyonesuchline.ToshowPart (1), westartbyconstructingalinethrough A thatisperpendicularto m. Call

thisnewline n. Next, constructalinethrough A thatisperpendicularto n (thefactthat A ison n causesnoproblem). Callthisnewline p. SeeFigure 1.2.13 (i). Byconstruction, weseethatboth m and p areperpendicularto n. ItfollowsfromProposition 1.2.5 that m and p areparallel. Wehavethereforeconstructedalinethrough A, namely p, thatisparallelto m.

ToshowthePart (2), weneedtoshowthattheline p weconstructedaboveistheonlylinethatcontains A andisparallelto m. Let t beanylinethatpassesthrough A otherthan p. SeeFigure 1.2.13 (ii). Giventhat t isnotthesameas p, then, asseeninthefigure, itcannotbethat tisperpendicularto n, because p isperpendicularton. Itnowfollowsthat t andm donotmake

Page 28: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

1.3Distance 21

m

p

n

A

m

p

tn

A

(i) (ii)

Figure1.2.13

equalcorrespondingangleswith n, because m makesall 90◦ angleswith n, and t doesnotmake 90◦ angleswithn. Wededucethatm and t arenotparallel, becauseiftheywereparallel,thenbyProposition 1.2.3 itwouldfollowthatm and t wouldhaveequalcorrespondingangleswith n, whichtheydonot. Itfollowsthat p istheonlylinethrough A thatisparalleltom.

Exercise 1.2.3. Westatedabove that ifwearegivena line m andapoint A, wecanconstructalinethrough A thatisperpendicularto m. Showthatthereisonlyonesuchline. Thedemonstrationhastwosubcases, dependinguponwhether A ison m ornot.

1.3 Distance

PlanargeometryasformulatedbyEuclidrests, fundamentally, ontheideathattherearethingscalledpointsandthingscalledlines, andthatthesethingshavesomerelationtoeachother(forexample, anytwodistinctpointsarecontainedinauniqueline). Insomeofthemoremodernapproachestogeometryotherfundamentalnotionshavealsocomeintoplay. Oneoftheideasthathasprovedtobeparticularuseful, forexampleinthestudyofsymmetry(aswewillseeinChapters 4 and5), isthenotionofdistancebetweenpoints. Certainly, theideaoflengthsoflinesegmentsisinEuclid, andhencethedistancebetweentheendpointsofalinesegmentisimplicitinEuclid, butmodernmathematicsdealswiththeconceptofdistancemoreexplicitly. Wewillrestrictourattentiontothedistancebetweenpointsintheplane, thoughitisalsopossibletolookatdistanceinothersituations.Thereare, infact, twodifferentapproachestothenotionofdistancebetweenpoints. First,

wecoulduseCartesiancoordinates, accordingtowhichweassigneverypointintheplaneapairofnumbers (x, y). (Weassumethereaderis familiarwithsuchcoordinates.) Wecouldthendefine thedistancebetween twopoints (x1, y1) and (x2, y2) by thestandarddistanceformula

√(x2 − x1)2 + (y2 − y1)2. (ThisformulafollowsdirectlyfromthePythagoreanThe-

orem.) However, giventhatwearenotgoingtobeusingcoordinatesinothersituations, this

Page 29: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

22 1. GeometryBasics

approachtodistancewillnotbetheoneweuse. Alternatively, justasweassumedsomeax-iomaticpropertiesforpointsandlines, wecansimplyhypothesizethatitispossibletoassignauniquedistancebetweenanytwopointsintheplane, andthatthismeasureofdistancesatis-fiescertainproperties. Wewilltakethelatterapproach, thoughwewillnotgiveanaxiomatictreatmentofdistance(whichissurprisinglytricky).SupposeA andB arepointsintheplane.Wethenassigntothesepointsarealnumberdenoted

d(A,B), calledthe distance betweenA and B. Amongthepropertiesthatdistancesatisfiesarethefollowing, where A, B and C arepointsintheplane.

1. d(A,B) ≥ 0;

2. d(A,A) = 0, and d(A,B) = 0 whenever A = B;

3. d(A,B) = d(B,A);

4. d(A,B) ≤ d(A,C) + d(C,B).

Thefirstthreeofthesepropertiesaresimple; thefourth(calledtheTriangleInequality)takesabitmoreofanexplanation. Consideratrianglewithvertices A, B and C, asinFigure 1.3.1.ThenProperty(4)saysthatthelengthoftheside AB ofthetriangleislessthanorequaltothesumofthelengthsoftheothertwosidesofthetriangle(wehaveequalityonlyifthetriangleis“degenerate”). Byrearrangingtheletters, weseethatthesameinequalityholdsfortheothertwosidesofthetriangleaswell. (HadwetakentheapproachofusingCartesiancoordinatestodefinedistancebetweenpoints, itwouldhavebeenpossibletoprovetheabovefourpropertiesusingthedistanceformula.)

A

B

C

Figure1.3.1

Oncewehaveanotionofdistancebetweenpoints, it ispossibletoformulatemanyotherbasicgeometricconceptssuchaslines, raysandlinesegmentsintermsofdistance. Forexample,supposewearegiventwopoints A and B intheplane.Thenthelinesegmentfrom A to B isthecollectionofallpoints X intheplanesuchthatthe

equation d(A,X)+d(X,B) = d(A,B) holds. TherayfromA through B isthecollectionofallpointsX intheplanesuchthatpreciselyoneofthetwoequationsd(A,X)+d(X,B) = d(A,B)or d(A,B)+d(B,X) = d(A,X) holds. ThelinethroughA and B isthecollectionofallpoints

Page 30: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

1.3Distance 23

X intheplanesuchthatpreciselyoneofthethreeequations d(A,X) + d(X,B) = d(A,B),or d(A,B)+d(B,X) = d(A,X), or d(B,A)+d(A,X) = d(B,X) holds. (Ifonewantstobecompletelydetailedaxiomatically—asisimportantinmoreadvancedtreatmentsofgeometry—thereareanumberofpossibleapproacheswhen itcomes to the relationof theconceptofdistancetotheconceptsofpointsandlines: onecandefinepointsandlinesaxiomatically, thenconstructadistancefunctionfromtheaxioms, andthenshowthatourformulationoflinesintermsofdistanceisconsistentwiththelinesasgivenbytheaxioms; alternatively, onecantakedistanceas thebasicaxiomaticallydefinedconcept, thenuse theaboveapproach todefinelines, andthenshowthatlinesdefinedinthiswaybehaveaslinesoughtto; or, onecandefinebothlinesanddistanceintermsofcoordinates, andthenshowthattheaboveformulationoflinesintermsofdistanceisvalid. Wewillnotgointosuchdetailsinthistext.)Circlescanalsobedefinedusingthenotionofdistance. Givenapoint A intheplane, and

anon-negativerealnumber r, thenthecircle withcenter A andradius r isthecollectionofallpoints X in theplane such that theequation d(A,X) = r holds. It is evenpossible tocomputeanglesstrictlyintermsofdistance. Considerthetrianglewithvertices A, B and C,showninFigure 1.3.1. Itisthenpossibletocomputetheanglesateachof A, B and C usingonlythelengths d(A,B), d(A,C) and d(B,C). Themethodforsuchcalculationsuses theLawofCosines, studiedintrigonometry. ThislawisstatedinProposition 2.5.3, anditmayalsobefoundinanytextbookontrigonometry. (Ifyouareunfamiliarwiththislaw, simplyignoretheformulaweareabouttostate; wewillnotbeusingthisformulaagain.) UsingtheLawofCosines, theformulafortheangleat A isseentobe

arccos

([d(B,C)]2 − [d(A,B)]2 − [d(A,C)]2

2d(A,B)d(A,C)

).

Wenowturntoanissuethatisphrasedintermsofdistancebetweenpoints, andthatwillbeofusetousinourstudyofisometriesinChapter 4, whichinturnisusedinourstudyofsymmetryinChapter 5. Supposewearegiventwopoints A and B intheplane. Wewouldliketofindallpointsintheplanethatareequidistantto A and B; thatis, wewanttofindallpoints X intheplanesuchthat d(X,A) = d(X,B). Onesuchpointisveryeasytofind, namelythemidpointofthelinesegment AB. Thereare, however, otherpointsintheplanethatareequidistanttoA and B aswell. Thefollowingpropositiontellsusaneasywaytofindallsuchpoints. Inthispropositionweuse the followingterminology. Givena linesegment AB, the perpendicularbisector ofthelinesegmentisthelinethatcontainsthemidpointofthelinesegment, andisperpendiculartothelinesegment. SeeFigure 1.3.2. Asisstandard, weuseasmallsquaretodenotearightangleinthefigure. Wecannowstateourresult.

Proposition 1.3.1. Supposethat A and B aredistinctpointsintheplane. If X isapoint, thend(X,A) = d(X,B) ifandonlyif X isontheperpendicularbisectorof AB.

ThedemonstrationofthispropositionislefttothereaderinExercise 2.2.9 (whichisputofftillSection 2.2, becausesomefactsaboutcongruenttrianglesareneeded).

Page 31: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

24 1. GeometryBasics

A

B

Figure1.3.2

Page 32: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

2Polygons

2.1 Introduction

A polygon isaregionoftheplanethatisboundedbyafinitenumberoflinesegmentsthataregluedtogether. Wehavethreerequirementsaboutthewayinwhichwegluethelinesegmentstogether.

(1) Linesegmentsaregluedendpoint-to-endpoint.

(2) Everyendpointofalinesegmentisgluedtopreciselyoneotherendpointofalineseg-ment.

(3) Notwolinesegmentsintersectexceptpossiblyattheirendpointswheretheyareglued.

SomepolygonsareshowninFigure 2.1.1. Somenon-polygonsareshowninFigure 2.1.2;theobjectinPart (i)ofthisfigurehasedgesthatarenotgluedendpoint-to-endpoint, theobjectinPart (ii)hasthreeendpointsoflinesegmentsgluedtogether, andtheobjectinPart (iii)haslinesegmentsintersectingnotattheirendpoints. (Itispossibletolookatpolygonswithself-intersections, thatis, inwhichrequirement(3)isdropped, butwewillnotbelookingatsuchpolygonsinthistext.)

Foreachpolygon, the edges ofthepolygonarethelinesegmentsthatboundit; theedgesaresometimescalled“sides,” thoughwewillmostlyavoidthatterm. The vertices (thesingularofwhichis“vertex”) ofapolygonarethepointswhereedgesmeet. Forexample, thepentagonshowninFigure 2.1.1 (i)hasfiveverticesandfiveedges.Itisnothardtofigureoutwhatallpolygonsare. NoticethatallthepolygonsshowninFig-

ure 2.1.1 haveedgesthatforma“circuit.” Thatis, ifyoustartatoneedge, youcanthengoto

Page 33: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

26 2. Polygons

(i) (ii) (iii)

Figure2.1.1

(i) (ii) (iii)

Figure2.1.2

oneoftheedgesitmeets, andfromtheretothenextedge, andthenext, andsoonuntilyoucomeallthewayaroundbacktotheedgethatyoustartedwith. Infact, allpolygonsworkthisway, whichwesummarizeinthefollowingproposition, whichwegivewithoutdemonstration.

Proposition 2.1.1. Supposewearegivenapolygon.

1. Theverticesofthepolygoncanbelabeledas A1, A2, A3, . . . , An, wheretheedgesofthepolygonare A1A2, A2A3, A3A4, . . ., An−1An, An A1.

2. Thepolygonhasthesamenumberofedgesasvertices.

SeeFigure 2.1.3 foranillustrationoftheabovepropositioninthecasewhere n = 5. Thereadermightreasonablyask, inlightofProposition 2.1.1 (1), whywedidnotjustdefinepolygonstobethesortoffiguregivenbytheproposition. Theansweristhatwecouldhavedoneso, butwegavethedefinitionofpolygonsthatwedidinordertogiveadefinitionthatismoresimilartothedefinitionofpolyhedrainSection 3.1. Inanycase, wecannowproceedwithanunderstandingofpolygonsasgivenintheaboveproposition.

Sometypesofpolygonsareveryfamiliar, suchastriangles, whicharediscussedinmorede-tailinSection 2.2. Polygonswithfoursidesarereferredtoas quadrilaterals, ofwhichsomeofthemorefamiliartypesaresquares, rhombuses, rectangles, parallelograms, andtrapezoids. Asquare isaquadrilateralinwhichallfouredgesareequalandallfouranglesareequal; a rhom-bus isaquadrilateralinwhichallfouredgesareequal, butthefouranglesarenotnecessarilyequal; a rectangle isaquadrilateralinwhichallfouranglesareequal, butthefouredgesarenotnecessarilyequal; a parallelogram isaquadrilateralinwhichbothpairsofoppositeedgesareparallel; a trapezoid isaquadrilateralinwhichonepairofoppositeedgesisparallel. AnexampleofeachofthesetypesofquadrilateralisshowninFigure 2.1.4 (i)–(v); anexampleofa

Page 34: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

2.1Introduction 27

A1

A5

A4

A3A2

Figure2.1.3

quadrilateralthatisnoneofthesetypesisshowninPart(vi)ofthefigure. Ingeneral, polygonsarenamedbythenumbersofedgesthattheyhave. A polygonwithfiveedgesiscalleda pen-tagon, apolygonwithsixedgesiscalleda hexagon, apolygonwitheightedgesiscalledanoctagon, etc. ThenamesofpolygonswithfiveormoreedgesarebasedonGreek, ratherthanLatin, roots. A polygonwith n edges, where n isanintegersuchthat n ≥ 3, iscalledan n-gon.

(i) (ii) (iii)

(iv) (v) (vi)

Figure2.1.4

Exercise 2.1.1. [UsedinSections 2.3, 2.4 and4.5] Supposethataparallelogramhasatleastone 90◦ angle. Showthatallfouranglesmustbe 90◦, andhencetheparallelogramisarectangle. (Useonlyresultsfromthissectionandprevioussections.)

Page 35: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

28 2. Polygons

Exercise 2.1.2. Supposethatahexagonhasthepropertythateachpairofoppositeedgesisparallel.

(1) Showthatoppositeanglesinthishexagonareequal.

(2) Mustitbethecasethatoppositeedgeshaveequallengthsinthishexagon? Ifyes,showwhy. Ifnot, giveanexample.

2.2 Triangles

Thestudyoftrianglesgoesbacktotheancientworld. Trianglesplayed, andcontinuetoplay, acentralroleingeometry. Therearemanyimportantresultsabouttriangles, ofwhichwehavethespacetomentiononlyafew. Seemoststandardgeometrytextsformorefactsabouttriangles.A triangle isapolygonwiththreeedges(andhencethreevertices). Ifatrianglehasvertices

A, B and C, wedenotethetriangleby △ABC. Atanyvertexofatriangle, thetwoedgesofthetrianglethatcontainthevertexformananglethatisinsidethetriangle, calledthe interiorangle atthevertex. SeeFigure 2.2.1. Becauseinterioranglesarethemostcommonlyusedtypesofanglesintriangles, ifwesimplyreferto“theangle”atavertex, wewillalwaysmeantheinteriorangle(andsimilarlyforotherpolygons). Ifwemeansomeotherkindofangle, wewillalwayssaysoexplicitly. Observethateachedgeofatriangleislocatedoppositepreciselyoneofthevertices(andhenceoneoftheinteriorangles)ofthetriangle. Weusethenotation |AB|

todenotethelengthoftheedgeAB, andweusethenotation ∡A todenotethemeasureoftheangleat A.

A

B

C

Figure2.2.1

Thereareanumberofspecialtypesoftriangles. An equilateral trianglehasallthreeedgesequal. An isosceles trianglehastwoequaledges. A right trianglehasoneanglearightangle(thatis, a 90◦ angle). A righttrianglecanhaveonlyonerightangle. Itisalsocommontodistinguishbetween acute triangles (thathaveallangleslessthan 90◦), and obtuse triangles (thathaveoneanglegreaterthan 90◦).

Page 36: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

2.2Triangles 29

Inadditiontotheinteriorangleateachvertexofatriangle, wecanalsoformanotherangleateachvertex, asfollows. Ateachvertex, extendbeyondthevertexoneof theedgesof thetrianglecontainingthevertex, andformthesupplementaryangle totheinteriorangle; thisangleiscalledthe exteriorangle atthevertex. InFigure 2.2.2 (i)weseeatriangle △ABC, withtheinteriorangleat A denoted α, andtheexteriorangleat A denoted δ. Notethattheinteriorandexterioranglesatavertexaddupto 180◦. Thecarefulreadermightwellaskwhatwouldhappenifwehadextendedtheotherpossibleedgeateachvertex, resultingindifferentexteriorangles. Thereareindeedtwopossibleexterioranglesateachvertex, buttheyareverticalangles.See Figure 2.2.2 (ii), where the twopossible exterior angles at A aredenoted δ and ϵ. ByProposition 1.2.2 (2)itfollowsthatthetwochoicesofexteriorangleareequal, andhence, itdoesnotmatterwhichexterioranglewechoose.

A

B

C

α

δA

B

C

δ

ε

(i) (ii)

Figure2.2.2

Wearenowreadytostateaveryimportantresultabouttheanglesinatriangle.

Proposition 2.2.1.

1. Thesumoftheinterioranglesofatriangleis 180◦.

2. Thesumoftheexterioranglesofatriangleis 360◦.

Demonstration. Supposewehaveatriangle△ABC. AsshowninFigure 2.2.3 (i), let α, β andγ betheinterioranglesofthetriangle, andlet x, y and z betheexterioranglesofthetriangle.

(1). AsshowninFigure 2.2.3 (ii), letn bethelinecontainingtheverticesB andC. ByPlayfair’sAxiom (Proposition 1.1.1), thereisalinethroughvertexA thatisparallelton. Callthisnewlinem. Labelangles δ and ϵ asshowninFigure 2.2.3 (ii). Weseethatβ and δ areinterioralternatingangles, andthat γ and ϵ areinterioralternatingangles. ByProposition 1.2.3 wededucethatβ = δ and γ = ϵ. Because δ, α and ϵ makeupastraightline, wehave δ+ α+ ϵ = 180◦. Itfollowsthat β+ α+ γ = 180◦, whichiswhatwewantedtoprove.

Page 37: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

30 2. Polygons

A

BC

α

β γ

x

yz

A

B C

α

β γn

mδ ε

(i) (ii)

Figure2.2.3

(2). Weknowthat α + x = 180◦, that β + y = 180◦, andthat γ + z = 180◦. Hencex = 180◦ − α, and y = 180◦ − β, and z = 180◦ − γ. UsingPart (1)ofthisproposition, wethenseethat x+ y+ z = (180◦ −α) + (180◦ −β) + (180◦ − γ) = 540◦ − (α+β+ γ) =540◦ − 180◦ = 360◦.

TheproofoftheabovepropositionusesProposition 1.2.3 andProposition 1.1.1, bothofwhichrelyuponEuclid’sFifthPostulate. Indeed, Proposition 2.2.1 doesnotholdinsphericalorhyper-bolicgeometry, wheretheFifthPostulateisreplacedwithotheraxioms(seeSection 1.1 forabriefmentionofthesealternativegeometries).

Exercise 2.2.1. [UsedinSection 1.2] UseProposition 2.2.1 (1)todemonstrateProposi-tion 1.2.4.

Exercise 2.2.2. WeknowfromProposition 2.2.1 thattheanglesinatrianglearerelatedtoeachother; inparticular, wecouldnottakethreearbitraryangles, andexpecttheretobeatrianglewiththosethreeangles. Thisexerciseconcernsrelationshipsbetweenthelengthsoftheedgesofatriangle.

(1) Isthereatrianglewithedgesoflengths 2, 3 and 4? Explainyouranswer.

(2) Isthereatrianglewithedgesoflengths 2, 3 and 6? Explainyouranswer.

(3) Whatcanyousayabouttherelationshipbetweenthelengthsoftheedgesofatri-angle. Inparticular, trytocomeupwithcriteriaonthreenumbers a, b and c thatwouldguaranteethatthereexistsatrianglewithedgesoflength a, b and c. Explainyouranswer.

Page 38: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

2.2Triangles 31

Whatdoesitmeanfortwotrianglestobe“thesame”? Clearly, if twotriangleshaveedgesofdifferentlengths, oranglesofdifferentmeasures, thenthetwotrianglesarenotthesame.Whatabouttwotriangleswithedgesthathavethesamelengths, andanglesthathavethesamemeasures? Forexample, inFigure 2.2.4 weseetwotrianglesthathavethesamelengthsofedgesandthesamemeasuresofangles(inthiscase 30◦, 60◦ and 90◦). Thesetwotrianglesarenottheexactsame, becausetheyarelocatedindifferentplaces, buttheyare“essentiallythesame.”SimilarlytowhatwesaidaboutanglesinSection 1.2, wesaythattwotrianglesare congruent,if, intuitively, onetrianglecouldbe“pickedupandplacedpreciselyontopoftheother.” Asbefore, wewillnotneedamore formaldefinitionofcongruencehere, andwill stick to theintuitivenotion; theconceptofisometry, whichisdiscussedindetailinChapter 4, providesonerigorouswayofdefiningcongruence, thoughwewillnothavethespacetoprovidethedetails.

A

A’B

CC’

B’

Figure2.2.4

Supposethattriangles△ABC and△A ′B ′C ′ arecongruent, wherevertex A correspondstovertex A ′, wherevertex B correspondstovertex B ′, andwherevertex C correspondstovertexC ′. SeeFigure 2.2.4. Then |AB| = |A ′ B ′|, and |AC| = |A ′ C ′|, and |BC| = |B ′ C ′|, and∡A = ∡A ′, and ∡B = ∡B ′, and ∡C = ∡C ′. Theconverseisalsotrue. Thatis, supposewearegiventwotriangles △ABC and △A ′B ′C ′, andweknowthat |AB| = |A ′ B ′|, that|AC| = |A ′ C ′|, that |BC| = |B ′ C ′|, that ∡A = ∡A ′, that ∡B = ∡B ′, andthat ∡C = ∡C ′.Itwillthenbethecasethatthetwotrianglesarecongruent.Actually, wecandobetter thantheabovestatement. Wejustassertedthat ifweknowsix

thingstobetrueabouttwotriangles(namelytheequalityofthelengthsofthethreeedges, andtheequalityofthemeasuresofthethreeangles), thenthetriangleswillbecongruent. Itturnsout,thoughthisisbynomeansobvious, thatcertainpartialknowledgeaboutthesesixequalitiessufficestoguaranteethattwotrianglesarecongruent. Thefollowingpropositionisonesuchresult.

Proposition 2.2.2 (Side-Side-SideTheorem). Supposethat△ABC and△A ′B ′C ′ aretriangles.Supposethat |AB| = |A ′ B ′|, that |AC| = |A ′ C ′|, andthat |BC| = |B ′C ′|. Then ∡A =∡A ′, and ∡B = ∡B ′, and ∡C = ∡C ′.

Wewillnotdemonstratetheaboveproposition, becauseitwouldtakeustoofarafield. TheSide-Side-SideTheoremsaysthatiftwotriangleshaveedgesthathavethesamelengths, then

Page 39: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

32 2. Polygons

thetwotrianglesarecongruent. Anotherwayofthinkingaboutthistheoremisthatitsaysthattrianglesarerigid, inthefollowingsense. Supposeyoutakethreesticks, andjointhemtogetherintoatriangle. Evenifyouweretojointhestickswithhinges, thetrianglecouldnotbede-formed. Iftriangleswerenotrigid, thenknowingthelengthsoftheedgesofatrianglewouldnotuniquelydeterminetheangles, anditwouldthenbepossibletohavetwotriangleswhoseedgeshavethesamelengths, butwithdifferentangles, andthatwouldcontradicttheSide-Side-SideTheorem. Bycontrast, ifyouweretotakefoursticks, andjointhemtogetherwithhingesintoaquadrilateral, thenthefigurecouldbedeformed. SeeFigure 2.2.5. Thefactthattrianglesarerigid, butotherpolygonsarenot, issomethingthatiswellknowninreallife. Asaresult, weoftenseetriangularformsusedinconstructionoftressesandthelike.

Figure2.2.5

TheSide-Side-SideTheoremisnottheonlyresultthatguaranteesthattrianglesarecongruent.Twootherequallyusefulcongruencetheoremsarethefollowing.

Proposition 2.2.3 (Side-Angle-SideTheorem). Supposethat △ABC and △A ′B ′C ′ aretrian-gles. Suppose that |AB| = |A ′ B ′|, that ∡A = ∡A ′, and that |AC| = |A ′ C ′|. Then∡B = ∡B ′, and |BC| = |B ′ C ′|, and ∡C = ∡C ′.

Proposition 2.2.4 (Angle-Side-AngleTheorem). Suppose that △ABC and △A ′B ′C ′ are tri-angles. Suppose that ∡A = ∡A ′, that |AB| = |A ′ B ′|, and that ∡B = ∡B ′. Then|BC| = |B ′ C ′|, and ∡C = ∡C ′, and |AC| = |A ′ C ′|.

Wewillnotdemonstratetheabovetwocongruencetheorems.

Exercise 2.2.3. Findexamplestoshowthatthereisno“Angle-Side-SideTheorem.” Thatis,findtwotriangles△ABC and△A ′B ′C ′ suchthat ∡A = ∡A ′, that |AB| = |A ′ B ′|, andthat |BC| = |B ′ C ′|, andyetthetwotrianglesarenotcongruent. Exactmeasurementsofsuchtrianglesarenotneeded; asketchofthetriangles, togetherwithadescriptionofwhatyoumean, wouldsuffice.

Exercise 2.2.4. Istherean“Angle-Angle-SideTheorem”? Eitherdemonstratewhysuchatheoremistrue, orgiveanexampletoshowthatitisnottrue.

Page 40: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

2.2Triangles 33

Congruenceoftriangles, andtheabovethreecongruencetheoremsinparticular, areextremelyusefulinprovingmanyresultsingeometry. Westartwiththefollowingverysimpleresults, butwewill usecongruence inproofsofother, more substantial, results lateron. The followingresults, whichmightseemsoobviousthattheydonotneedproof, infactneedproofjustasanyotherfactingeometrythatisnottakenasanaxiom.Ourfirstresultinvolvesparallelograms. Recall, statedinSection 2.1, thataparallelogramisa

quadrilateralinwhichbothpairsofoppositeedgesareparallel.

Proposition 2.2.5.

1. Oppositeedgesinaparallelogramhaveequallengths.

2. Oppositeanglesinaparallelogramareequal.

Demonstration. Supposethatwehaveparallelogram ABCD, asseeninFigure 2.2.6 (i). By

definition, weknowthatthelines←→AB and

←→DC areparallel, andthatthelines

←→AD and

←→BC are

parallel. Drawthelinesegment AC. SeeFigure 2.2.6 (ii). Wethenhavethetriangles △ABC

and △CDA. Letangles α, β, γ and δ beasshowninFigure 2.2.6 (ii). Observethat α and

γ are interioralternatingangles (because lines←→AB and

←→DC areparallel), and thereforeby

Proposition 1.2.3 weknowthat α = γ. Similarly, wededucethat β = δ, usingthefactthat←→AD and

←→BC areparallel.

(i) (ii)

A

D C

B A

D C

B

α

βγ

δ

Figure2.2.6

Wenowclaimthat △ABC and △CDA arecongruent, wherevertex A in △ABC corre-spondstovertex C in△CDA, wherevertex B in△ABC correspondstovertexD in△CDA,andwherevertex C in △ABC correspondstovertex A in △CDA. ThatthesetwotrianglesarecongruentfollowsfromtheAngle-Side-AngleTheorem(Proposition 2.2.4), andthefactthatα = γ, that β = δ, andthat AC isthesameinbothtriangles. Becausethetwotrianglesarecongruent, wededucethatcorrespondingedgeshavethesamelengths. Thatis, weconcludethat |AB| = |DC|, andthat |AD| = |BC|m, whichisPart (1)oftheproposition. Part (2)alsofollowsfromthecongruenceofthetwotriangles; detailsarelefttothereader.

Page 41: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

34 2. Polygons

Exercise 2.2.5. Supposethatinaquadrilateral, bothpairsofoppositeedgeshaveequallengths. Showthatthequadrilateralisaparallelogram. (Becarefulwithnotconfusingathe-oremanditsconverse—thisfactcannotbeprovedbysimplyquotingProposition 2.2.5 (1).)

Exercise 2.2.6. Supposethatinaquadrilateral, apairofoppositeedgesareparallelandhaveequallengths. Showthatthequadrilateralisaparallelogram.

Exercise 2.2.7. Showthatthetwodiagonalsinaparallelogrambisecteachother.

AsaconsequenceofProposition 2.2.5 (1), wecandeducethefollowingresultaboutparallellines. RecallfromSection 1.2 thattwolinesaredefinedtobeparalleliftheydonotintersect.Ourintuitivepictureofparallellines, however, involvesmorethanjustthattwolinesdonotintersect, butalsothatthey“keepconstantdistancefromeachother.” Wecannowshowinthefollowingpropositionthatthisintuitivenotionisinfactcorrectforparallellinesintheplane.WewerenotabletogivethispropositioninSection 1.2, wherewefirstdiscussedparallellines,becauseweneedcongruenttrianglestoproveit. Whenyoureadthefollowingproposition, ithelpstoconsiderFigure 2.2.7.

m

n

A

C

B

D

Figure2.2.7

Proposition 2.2.6. Supposem and n areparallellines. LetA and B bepointsonm. Drawlinesthrough A and B respectivelythatareperpendicularto n; let C and D bethepointswheretheseperpendicularlinesintersect n. Then |AC| = |BD|.

Demonstration. First, observethatbecausethelines←→AC and

←→BD arebothperpendicularto

theline n, thentheyareparalleltoeachother(thisisProposition 1.2.5). Giventhat m and n

Page 42: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

2.2Triangles 35

areparallel, itfollowsthatthequadrilateral ABCD isaparallelogram. WenowapplyProposi-tion 2.2.5 (1)tothisparallelogram, todeducethat |AC| = |BD|.

Ournextsimpleresultinvolvesisoscelestriangles.

Proposition 2.2.7 (PonsAsinorum). Supposethat △ABC isatriangle. If |AB| = |AC|, then∡B = ∡C.

Demonstration. Wearegiventhetriangle △ABC. Wenowclaimthat △ABC iscongruentwithitself, wherevertex B in △ABC correspondstovertex C in △ABC, wherevertex C in△ABC correspondstovertex B in △ABC, andwherevertex A in △ABC correspondstovertex A in △ABC. That these two trianglesarecongruent follows fromtheSide-Side-SideTheorem(Proposition 2.2.2), andthefactthat |AB| = |AC|, andthat |BC| = |BC|. Itfollowsthat △ABC hasequalangleswithitself, wheretheangleat B correspondstotheangleat C,andvice-versa(theangleatA correspondstoitself, thoughthatisnotofanyuse). Wethereforededucethattheanglesopposite AB and AC areequal, whichiswhatwearesupposedtoshow. (ItmayseemstrangethatweareapplyingtheSide-Side-SideTheoremtoatriangleanditself, ratherthantwodistincttriangles, butnothinginthestatementofthistheoremsaysthatthetwotrianglesunderconsiderationhavetobedistinct, thoughtheymostoftenare. However,eventhoughwearecomparingatrianglewithitself, wereallyareprovingsomething, becausewearehavingdifferentverticescorrespondwitheachotherinthecongruence.)

Thename“PonsAsinorum”means“Ass’Bridge” inLatin. Therearevariousexplanationsforthisname, somereferringtotheappearanceofthetriangleunderdiscussion, otherstothestateofmindofthosetryingtounderstandtheresult.AnimmediateconsequenceofPonsAsinorumisthefirstpartofthefollowingproposition,

whichagainisveryfamiliar; thesecondpartofthepropositionfollowsfromthefirstpart, to-getherwithProposition 2.2.1 (1).

Proposition 2.2.8.

1. Allthreeanglesinanequilateraltriangleareequal.

2. Eachangleinanequilateraltriangleis 60◦.

Exercise 2.2.8. Supposewearegivenatriangle △ABC. Showthatif ∡B = ∡C, then|AB| = |AC| (sothatthetriangleisisosceles).

Exercise 2.2.9. [Used inSection 1.3] Usecongruent triangles todemonstrateProposi-tion 1.3.1.

Page 43: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

36 2. Polygons

Exercise 2.2.10. Supposewehaveacircle, andsupposethatA, B and C arepointsonthecirclesuchthatthelinesegmentAB isadiameterofthecircle. Formthetriangle△ABC.SeeFigure 2.2.8. Showthattheangleat C is 90◦.

A B

C

Figure2.2.8

Itisimportantnottogetoverlyconfidentaboutcongruencetheorems. Justknowingthattwotriangleshavethreethings(edgesorangles)equaldoesnotalwaysguaranteethatthetrianglesarecongruent. Forexample, simplyknowingthattwotriangleshavethesameanglesdefinitelydoesnotguaranteethatthetrianglesarecongruent. InFigure 2.2.9 weseetwotriangles, labeled△ABC and △A ′B ′C ′, thathavethesameangles, butdifferentlengthsoftheiredges.

A A’

B

B’

C

C’

Figure2.2.9

Wejustobserved thatknowingonly theangles ina triangledoesnotdeterminewhat thelengthsofitsedgesare. However, eventhoughtwotriangleswiththesameanglesmighthavedifferentsizes, asinFigure 2.2.9, theyhavethesame“shape.” Thefollowingpropositionmakesthisnotionofthesameshapemoreprecise, bylookingatratiosoflengthsofedges. First, wemakethefollowingdefinition. Twotriangles△ABC and△A ′B ′C ′ arecalled similar if ∡A =∡A ′, , and ∡B = ∡B ′, and ∡C = ∡C ′.Thefollowingproposition, whichmakesprecisethenotionthatsimilar triangles“havethe

sameshape,” iswhatmakestheconceptofsimilarityoftrianglessouseful.

Page 44: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

2.2Triangles 37

Proposition 2.2.9. Supposethattriangles △ABC and △A ′B ′C ′ aresimilar. Then

|AB|

|A ′ B ′|=

|AC|

|A ′ C ′|=

|BC|

|B ′ C ′|;

equivalently, wehave

|AB|

|AC|=

|A ′ B ′|

|A ′ C ′|,

|AB|

|BC|=

|A ′ B ′|

|B ′ C ′|,

|AC|

|BC|=

|A ′C ′|

|B ′ C ′|.

ThedemonstrationofProposition 2.2.9 willbedelayeduntilSection 2.4, bywhichpointwewillhavediscussedtheareaoftriangles, whichweuseinthedemonstration.Asanexampleof theuseofProposition 2.2.9, supposethatwehavetwosimilar triangles

△ABC and △A ′B ′C ′. Suppose further thatwe are given that the edges of △ABC havelengths |AB| = 5, and |AC| = 6, and |BC| = 8; in △A ′B ′C ′ wearegivenonlythelength|A ′ C ′| = 20. Canwefindthelengthsoftheothertwoedgesof △A ′B ′C ′? Wecan, usingProposition 2.2.9. Bythatproposition, weknowthat

|AB|

|AC|=

|A ′ B ′|

|A ′ C ′|.

Hence, wededucethat5

6=

|A ′ B ′|

20.

Solvingthisequation, weseethat |A ′ B ′| =50

3. Thereadercanusethesametypeofcalculation

toseethat |B ′ C ′| = 15.

Exercise 2.2.11. A treecastsashadowthatis 20 ft.long. Atthesametimeofday, a 3 ft.stickcastsa 5 ft.shadow. Howtallisthetree?

Havingmentionedsimilartriangles, wecannotavoidmentioningoneofthemostimportantusesofsimilartriangles: trigonometry. Noteveryonewhousestrigonometryrecognizesthefun-damental roleplayedbysimilar triangles in trigonometry, andit is that role thatwewant todiscuss. Thestudyoftrigonometrytreatsthesixstandardtrigonometricfunctions, namelysine,cosine, tangent, secant, cosecant andcotangent.Letuslookatthesinefunction(theotherfivefunctionswouldworkcompletelysimilarly).

Todefinethesinefunction, weneedthefollowingterminology. Recallthatarighttriangle isatriangleinwhichoneoftheanglesisarightangle. Inarighttriangle, thetwoedgesthatformtherightanglearecalledthe sides ofthetriangle, andtheedgethatisoppositetherightangleiscalledthe hypotenuse ofthetriangle. (Thedistinctionbetweensidesandhypotenuseholds

Page 45: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

38 2. Polygons

onlyinrighttriangles, notinothertriangles.) Inintroductorytreatmentsoftrigonometry, itistypicaltodefinethesinefunctionasfollows. Let α beananglebetween 0◦ and 90◦. Wewanttocomputethesineof α, whichisgoingtobeanumberdenoted sinα. Wecompute sinα byplacing α inarighttriangle, asinFigure 2.2.10, andthenletting sinα betheratioofthelengthofthesideopposite α tothelengthofthehypotenuse. Thatis, welet

sinα =|opposite|

|hypotenuse|.

α

opposite

hypotenuse

Figure2.2.10

Forexample, supposewewantedtocompute sin 45◦. Wecanplace 45◦ inanisoscelesrighttriangle. Onesuchrighttrianglehassidesoflength 1. UsingthePythagoreanTheorem(assumingthereaderisfamiliarwiththisresult, anditsstatementcanbefoundinSection 2.5 forthosewhoarenot), wecomputethatthehypotenuseofthetrianglehaslength

√2. SeeFigure 2.2.11.

Itfollowsthat sin 45◦ = 1√2.

1

12

45°

Figure2.2.11

Sofarsogood. Thereis, however, onepotentiallytroublingaspecttotheaboveapproachtodefiningsine. Givenanangle, wedefinedsineoftheanglebyplacingtheangleinarighttriangle,andtakingtheratioofthelengthofthesideoppositetheangletothelengthofthehypotenuse.Thereare, ofcourse, differentpossibletrianglesthatcouldbeused. Whatwouldhappeniftheratioofthelengthofthesideoppositetheangletothelengthofthehypotenuseinonerighttrianglecontainingtheanglewerenotequaltothecorrespondingratioinanotherrighttrianglecontainingtheangle? Ifthatweretohappen, thedefinitionofsineoftheanglewouldbeinvalid,becauseitoughtonlytodependupontheangleitself, andnothingelse(suchasachoiceof

Page 46: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

2.3GeneralPolygons 39

righttriangle). Well, itturnsoutthatthereisnoprobleminthechoiceoftriangle, andhereisthereasonwhy. Supposewehadtworighttrianglescontaininganangleα. Bothtrianglesalsohavea90◦ angle. Giventhatthesumoftheanglesinanytriangleis 180◦ (byProposition 2.2.1 (1)), thenweknowthatthethirdangleineachofthetwotrianglesis 90◦−α. Therefore, thetwotriangleshavethesameangles; hencetheyaresimilartriangles. ItnowfollowsfromProposition 2.2.9thattheratioofthelengthofthesideopposite α tothelengthofthehypotenuseisthesameinbothtriangles, andthatmeansthatthereisnoprobleminourdefinitionofsine. Thesametypeofargumentholdsfortheothertrigonometricfunctions.Wenotethatalthoughthetrigonometricfunctionsaredefinedintermsoftriangles, theyhave

importantusesinmanyareabeyondthestudyoftriangles. Forexample, thetrigonometricfunc-tionsareusedtodescribeoscillatorymotion(forexample, springsandpendulums), andwavephenomena(forexample, soundandlight).

2.3 GeneralPolygons

HavingdiscussedtrianglesinSection 2.2, wenowturntopolygonswithmorethanthreeedges.Somepropertiesoftriangleshaveanalogsforallpolygons, andothersdonot. AswementionedinSection 2.2, onepropertyoftrianglesthatdoesnotholdforallpolygonsisrigidity. Anotherway to state the same fact is to say that theanalogof theSide-Side-SideTheorem (Proposi-tion 2.2.2)doesnotholdforpolygonsotherthantriangles. Forexample, asquarewithedgesoflength 1 andarhombuswithedgesoflength 1 havealledgesofequallength, andyettheydonothaveequalangles. SeeFigure 2.2.5.Ontheotherhand, therearefeaturesofpolygonswithmorethanthreesidesthatdonotappear

inthecaseoftriangles. Wenowturntoonesuchissue. ConsiderthepolygonsinFigure 2.3.1.There isa fundamentaldifferencebetween them: thepolygon inPart (i)has, intuitively, “noindentations,” whereasthepolygoninPart (ii)doeshaveanindentation. Itisnotveryconvenienttechnicallytotrytodefinethenotionof indentationsdirectly, sowecapturetheideaofnothaving indentationsas follows. A polygoniscalled convex ifany twopoints in thepolygonarejoinedbyalinesegmententirelycontainedinthepolygon. WeseeinFigure 2.3.2 howtwopointsinthepolygoninFigure 2.3.1 (ii)arejoinedbyalinesegmentthatisnotentirelycontainedinthepolygon, andthereforethepolygonisnotconvex; thefactthatsomeotherpairsofpointsinthepolygonarejoinedbylinesegmentsentirelycontainedinthepolygondoesnotmakethepolygonsatisfythedefinitionofconvexity. Bycontrast, thepolygoninFigure 2.3.1 (i)isconvex. Wenotethatalltrianglesareconvex, sothedistinctionbetweenconvexvs.non-convexdidnotariseinourdiscussionoftriangles, butitwillbeimportantinourdiscussionofpolygonsandpolyhedra.

Aswasthecasefortriangles, atanyvertexofapolygon, thetwoedgesofthepolygonthatcontainthevertexformananglethatisinsidethepolygon, calledthe interiorangle atthevertex.InFigure 2.3.3 weseeapolygon, withitsinterioranglesdenoted α1, α2, α3, α4 and α5. Wewillshortlydefineexterioranglesforpolygons.

Page 47: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

40 2. Polygons

(i) (ii)

convex not convex

Figure2.3.1

Figure2.3.2

α1

α2α3

α4α5

Figure2.3.3

Oneofthethingsinterioranglesareusefulforisthattheygiveaneasywayofdeterminingwhetherornotapolygonisconvex. IfyoulookattheconvexpolygonpicturedinFigure 2.3.1 (i),youwillnoticethateachinterioranglesislessthan 180◦; bycontrast, inthenon-convexpolygonpicturedinFigure 2.3.1 (ii), oneoftheinterioranglesisgreaterthan 180◦. Moregenerally, wehavethefollowingresult, thedemonstrationofwhichweomit.

Proposition 2.3.1. A polygonisconvexifandonlyifallitsinterioranglesarelessthanorequalto 180◦.

Wenow turn to thequestionof angle sums in polygons. It ismuch simpler to dealwiththisquestion forconvexpolygons, sowestartwith thatcase. Weknowthat thesumof theinterioranglesofatriangleis 180◦, andthesumoftheexterioranglesofatriangleis 360◦ (seeProposition 2.2.1). Isthereananalogoftheseresultsforgeneralconvexpolygons? Toanswerthis

Page 48: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

2.3GeneralPolygons 41

question, wefirstneedtodefineexterioranglesforconvexpolygons. Itturnsoutthatthesamedefinitionthatworkedfortrianglesworksforconvexpolygonsingeneral. Morespecifically, ateachvertexofaconvexpolygon, wecanextendbeyondthevertexoneof theedgesof thepolygoncontainingthevertex, andformthesupplementaryangle totheinteriorangle, whichwewillcallthe exteriorangle atthevertex. InFigure 2.3.4 weseeaconvexpolygon, withoneofitsverticeslabeled A, withtheinteriorangleat A denoted α, andtheexteriorangleat Adenoted β. Aswasthecasefortriangles, theinteriorandexterioranglesatavertexaddupto180◦. (Alsojustasfortriangles, itwouldmakenodifferencehadweextendedtheotherpossibleedgeateachvertex.)

αβ

A

Figure2.3.4

BEFORE YOU READ FURTHER:

TrytofigureoutforyourselfhowtogeneralizeProposition 2.2.1 foranarbitraryconvexn-gon. Thatis, givenaconvex n-gon, whatisthesumofitsinteriorangles, andwhatisthesumofitsexteriorangles? (Theanswersmightinvolvethenumber n.)

ToseehowwemightgeneralizeProposition 2.2.1 tootherconvexpolygons, letuslook, forexample, attheanglesumsfortheoctagonshowninFigure 2.3.5. Itiseasytoseethateachinteriorangleis 135◦, andeachexteriorangleis 45◦. Thesumoftheinterioranglesistherefore8 · 135◦ = 1080◦, andthesumoftheexterioranglesis 8 · 45◦ = 360◦. Interestingly, thesumoftheexterioranglesfortheoctagonisthesameasforatriangle, butthesumoftheinterioranglesfortheoctagonismorethanforatriangle. Asseeninthefollowingproposition, itturnsoutthatthesumoftheinterioranglesofaconvexpolygondependsuponthenumberofedgesofthepolygon, whereasthesumoftheexterioranglesdoesnotdependuponthenumberofedges. Thedemonstrationofthepropositionclarifieswhythisresultholds.

Proposition 2.3.2.

1. Thesumoftheinterioranglesofaconvex n-gonis (n− 2)180◦.

2. Thesumoftheexterioranglesofaconvex n-gonis 360◦.

Demonstration. Suppose that the convex n-gon P has interior angles α1, α2, α3, . . ., αn,andexteriorangles β1, β2, β3, . . ., βn. Forexample, forthepolygonoriginallyshowninFig-ure 2.3.3 (i), weseetheexteriorangleslabeledinFigure 2.3.6 (i).

Page 49: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

42 2. Polygons

Figure2.3.5

α1

β1

α2

β2α3 β3

α4

β4α5β5

(i) (ii)

Figure2.3.6

(1). Itispossibletobreakupthepolygon P into n − 2 triangles, wheretheverticesofthetrianglesareallverticesoftheoriginalpolygon. SeeFigure 2.3.6 (ii)foronewayofdoingthis.(Thereismorethanonewaytobreakupthepolygonintotriangles, butitwillnotmatterwhichwayischoosen.) UsingProposition 2.2.1 (1)weknowthatthesumoftheanglesineachofthesetrianglesis 180◦. Becausethereare n− 2 triangles, thesumofalltheanglesinallthetrianglesis (n − 2)180◦. However, asseeninFigure 2.3.6 (ii), puttingalltheanglesinallthetrianglestogetheristhesameasputtingalltheanglesintheoriginalpolygontogether. Hencethesumofalltheanglesintheoriginalpolygonis (n− 2)180◦.

(2). Weknowthat αi + βi = 180◦ foreach i = 1, 2, 3, . . . , n. Therefore βi = 180◦ − αi

foreach i. WethenusePart (1)ofthispropositiontoseethat

β1 + β2 + β3 + · · ·+ βn = (180◦ − α1) + (180◦ − α2) + (180◦ − α3) + · · ·+ (180◦ − αn)

= (180◦ + 180◦ + 180◦ + · · ·+ 180◦︸ ︷︷ ︸n times

)− (α1 + α2 + α3 + · · ·+ αn)

= n180◦ − (n− 2)180◦ = 2 · 180◦ = 360◦.

Page 50: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

2.3GeneralPolygons 43

Wenowturn toanglesumsinnon-convexpolygons. Consider thepolygonshowninFig-ure 2.3.7 (i). Theinterioranglesatvertices A, B, C, D, E and F are 135◦ each; theinterioranglesatvertices G and I are 90◦ each; andtheinteriorangleatvertex H is 270◦. Thesumoftheinterioranglesistherefore 6 · 135◦ + 2 · 90◦ + 270◦ = 1260◦. Noticethatthepoly-goninthefigurehas 9 edges. Ifweuse n = 9 intheformulagiveninProposition 2.3.2 (1),wewouldobtain (9 − 2)180◦ = 1260◦, whichispreciselythesumoftheinterioranglesinthepolygoninFigure 2.3.7 (i). Now, theformulainProposition 2.3.2 (1)wasonlyprovedforconvexpolygons, butperhapsitholdsfornon-convexpolygonsaswell. Theproofweusedforconvexpolygonsdoesnotworkfornon-convexpolygons. Forexample, thepolygonshowninFigure 2.3.7 (ii)cannotbedividedupintotrianglesinthesamewaythatwedidintheproofofProposition 2.3.2 (1). Itturnsoutthatanotherproofcanbeused. Thekeyisexteriorangles.

(i) (ii)

A

H I

BC

D

E

F G

Figure2.3.7

Howdowedealwithexterioranglesofnon-convexpolygons? Simplydefiningthemaswedidforconvexpolygonsdoesnotquitework. Recallthatwedefinedtheexteriorangleatthevertexofaconvexpolygonbyextendingbeyondthevertexoneoftheedgesofthepolygoncontainingthevertex, and forming the supplementaryangle to the interiorangle, whichwecalled theexteriorangleatthevertex. SeeFigure 2.3.4. However, ifwelookatthevertexlabeled H inFigure 2.3.7 (i), weseethatextendingeitheroftheedgescontainingthevertexwillgointotheinteriorofthepolygon, asituationthatdoesnotseemquiteright(atleastuponfirstglance).Onewayaroundthisproblemistorecallthattheinteriorandexterioranglesatavertexofaconvexpolygoncanberelatednotonlygeometrically, asinthedefinitionofexteriorangles,butintermsoftheirmeasure. Moreprecisely, themeasuresoftheinteriorandexterioranglesatavertexofaconvexpolygonaddupto 180◦. Therefore, themeasureofanexteriorangleisjust180◦ minusthemeasureoftheinteriorangle. (Westresstheword“measure”heretoemphasizethatitisdistinctfromtheactualangle, but, havingemphasizedithere, wewillreverttostandardterminologyandnotmentionitfurther.) Inthenon-convexcase, wecansimplytakethisrelation

Page 51: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

44 2. Polygons

betweeninteriorandexterioranglesasadefinition. Thatis, we define the exteriorangle atthevertexofanypolygon(convexornot)as 180◦ minustheinteriorangleatthevertex.LetuslookatthepolygoninFigure 2.3.7 (i). TheexterioranglesatverticesA, B, C,D, E and

F are 180◦ − 135◦ = 45◦ each; theexterioranglesatvertices G and I are 180◦ − 90◦ = 90◦

each; andtheexteriorangleatvertex H is 180◦ − 270◦ = −90◦. Itmayseemstrangetoobtainanegativeexteriorangleatvertex H, butlookhownicelyitworksout. ThesumoftheexterioranglesofthepolygoninFigure 2.3.7 (i)is 6 · 45◦ +2 · 90◦ − 90◦ = 360◦. Thissumispreciselythesumofexterioranglesforconvexpolygons, asgiveninProposition 2.3.2 (2). Itturnsout, aswewillseeinProposition 2.3.3 below, thatthesameformulasforsumsofinteriorandexterioranglesthatworkforconvexpolygonsalsoworkfornon-convexpolygons—aslongaswedefineexterioranglesfornon-convexpolygonsaswedid, andacceptthefactthatexterioranglescouldbenegativeaswellaspositive.BeforeweturntoProposition 2.3.3, letuslookmorecloselyattheissueofnegativevs.positive

exteriorangles. Thekeyistorecallthat, asdiscussedinSection 1.2, wedistinguishedbetweenclockwisevs.counterclockwiseangles, withtheformerhavingpositivedegreemeasure, andthelatterhavingnegativedegreemeasure. LookatthepolygonshowninFigure 2.3.8 (i). Thinkoftheedgesasgoingaroundthepolygonintheclockwisedirection, asindicatedbythearrows.Wewillonceagainobtainexterioranglesbyextendingedges, aswedidforconvexpolygons,but this timewewillalwaysextend theedge thatcomesbeforeavertex (where“before” iswithrespecttogoingaroundthepolygonintheclockwisedirection). WestartbylookingatthevertexlabeledA. Theinteriorangleatthisvertexislessthan 180◦. InFigure 2.3.8 (ii)weextendtheedgecontaining A thatcomesbefore A. Wecanthenlookattheanglefromtheextendededgetotheedgethatcomesafter A. Thisangleisclockwise, andisthereforeapositiveangle.Thisangleispreciselyequalto 180◦ minustheinteriorangleat A. Next, welookatthevertexlabeled B. Theinteriorangleatthisvertexisgreaterthan 180◦. InFigure 2.3.8 (ii)weextendtheedgecontaining B thatcomesbefore B. Wecanthenlookattheanglefromthisextendededgetotheedgethatcomesafter B. Thisangleiscounterclockwise, andisthereforeanegativeangle. Thisangleisagainpreciselyequalto 180◦ minustheinteriorangleat B. Inbothcases,weseethatitispossibletogiveageometricmeaningtotheexteriorangle, aslongaswetakeintoaccountthedifferencebetweenclockwisevs.counterclockwiseangles.

Wearenowreadyforthefollowingproposition, whichgeneralizesProposition 2.3.2.

Proposition 2.3.3.

1. Thesumoftheinterioranglesofan n-gonis (n− 2)180◦.

2. Thesumoftheexterioranglesofan n-gonis 360◦.

Demonstration. Supposewehavean n-gon P asshowninFigure 2.3.9 (i), withvertices A1,A2, A3, . . ., An, andwithinteriorangles α1, α2, α3, . . ., αn. Welet β1, β2, β3, . . ., βn betheexteriorangles. WewillfirstshowthatPart (2)holds, andthenshowthatPart (1)holdsbyusingPart (2).

Page 52: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

2.3GeneralPolygons 45

(i) (ii)

BB

AA

Figure2.3.8

(i) (ii)

A7

A4

A5

A6

A3A2

A1

A7

A4

A5

A6

A3

A2

A1

α1

α2

α3

α4

α5

α6

α7

β1

β2

β3

β4β5

β6

β7

Figure2.3.9

(2). AsshowninFigure 2.3.9 (ii), weextendeveryedgeof P intheclockwisedirection, andlabeltheexteriorangles. Observethattheanglefromtheextendededgeat A1 totheextendededgeat A2 isequaltotheexteriorangleat A1, whichisdenoted β1. Similarly, theanglefromtheextendededgeatA2 totheextendededgeatA3 isequaltotheexteriorangleatA2, whichisdenoted β2. Hence, theanglefromtheextendededgeatA1 totheextendededgeatA3 isequalto β1 + β2. Bythesameargument, theanglefromtheextendededgeat A1 totheextendededgeat A4 isequalto β1 +β2 +β3. Ifwekeepgoingallthewayaroundthepolygon, weseethattheanglefromtheextendededgeatA1 toitself, goingallthewayaround 360◦, isequaltoβ1 +β2 +β3 + · · ·+βn. Hence β1 +β2 +β3 + · · ·+βn = 360◦. (Notethatthisargumentworksonlybecausetheedgesofthepolygondonotintersecteachother; iftheywereallowedtointersecteachother, theanglefrom A1 toitselfaftergoingallthewayaroundthepolygonmightbetwice 360◦, orthreetimes 360◦, etc.)

(1). Thispartof thedemonstration isabackwardsversionof thedemonstrationofPropo-sition 2.3.2 (2). Weknow, bydefinition, that βi = 180◦ − αi foreach i = 1, 2, 3, . . . , n.

Page 53: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

46 2. Polygons

Therefore αi = 180◦ − βi forall i. WethenusePart (2)ofthispropositiontoseethat

α1 + α2 + α3 + · · ·+ αn = (180◦ − β1) + (180◦ − β2) + (180◦ − β3) + · · ·+ (180◦ − βn)

= (180◦ + 180◦ + 180◦ + · · ·+ 180◦︸ ︷︷ ︸n times

)− (β1 + β2 + β3 + · · ·+ βn)

= n180◦ − 360◦ = n180◦ − 2 · 180◦ = (n− 2)180◦.

Exercise 2.3.1. Showthataquadrilateralhasatmostoneinterioranglethatisgreaterthan180◦.

Exercise 2.3.2. Recall, statedinSection 2.1, thatarectangle isdefinedtobeaquadrilateralinwhichallfouranglesareequal.

(1) Showthatallfouranglesinarectangleare 90◦.

(2) Showthateveryrectangleisaparallelogram.

(3) Showthatoppositeedgesinarectanglehaveequallengths.

Exercise 2.3.3. Supposethataquadrilateralhastwopairsofequaladjacentangles. Showthatthequadrilateralisatrapezoid.

Exercise 2.3.4. Showthatanyparallelogramisconvex.

Page 54: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

2.3GeneralPolygons 47

Exercise 2.3.5. [UsedinSection 4.5] Supposethataquadrilateralhastwooppositeedgesthathaveequal lengths, and that these twoedgesarebothperpendicular tooneof theedgesthatisinbetweenthem. Thegoalofthisexerciseistoshowthatthequadrilateralisarectangle. Weoutlinetwodemonstrations, oneusingcongruenttriangles(insteps(1)–(3)below), andtheotherusingsimilartriangles(insteps(4)–(8)below); thereaderisaskedtofillinthedetailsofeachstep.Supposethat ABCD isaquadrilateral. Supposethat |AD| = |BC|, andthatboth AD

and BC areperpendicularto AB. SeeinFigure 2.3.10. Wenowproceedasfollows.

(1) Showthattriangles△ABC and△ABD arecongruent. Deducethat |AC| = |BD|.

(2) Showthattriangles △ACD and △BCD arecongruent. Deducethat ∡D = ∡C.(3) ByProposition 2.3.3 (1)we know that the sumof the angle in ABCD is 360◦.

Deducethat ∡C = 90◦ and ∡D = 90◦. Itfollowsthatallfouranglesinthequadri-lateralareequal, andhencethequadrilateralisarectangle.

(4) Wenowgiveanotherdemonstrationofthefactthatthequadrilateralisarectangle.Asafirststep, wewanttoshowthatthequadrilateralisaparallelogram. ItfollowsfromProposition 1.2.5 that AD and BC areparallel. Nowsupposethat AB andCD arenotparallel. Thenextendthemuntiltheymeet, sayinpoint P. Wewillarriveatalogicalcontradiction.

(5) Showthatthetriangles △ADP and △BCP aresimilar.

(6) Deducethat|AD|

|BC|=

|AP|

|BP|.

(7) Use the fact that |AP| > |BP| todeduce that |AD| > |BC|. Explainwhy thisisalogicalimpossibility, giventhehypothesesofthisexercise. Deducethat AB isparallelto CD, andhencethequadrilateralisaparallelogram.

(8) NowuseExercise 2.1.1 toshowthatthequadrilateralisarectangle.

Polygonscanbeveryirregularlooking, forexample, thepolygonshowninFigure 2.3.7 (ii).Wenowwanttoturnourattentiontopolygonsinwhich, asmuchaspossible, onepointlookslikeanyotherpoint. A polygonisa regularpolygon ifthefollowingtwoconditionshold: (1)alledgeshavethesamelength; (2)allinterioranglesareequal. Forexample, asquareandanequilateraltrianglearebothregularpolygons. Thatthefirstpartoftheabovedefinitiondoesnotalonesufficecanbeseenbyconsideringarhombus, inwhichalledgeshavethesamelength,butnotallinterioranglesareequal; arhombusisnotsomethingwewishtocallregular.A squareisaregularpolygonthathasfouredges. Istherearegular n-gonforeachpossible

n? Theanswerisyes. InFigure 2.3.11 weseearegulartriangle(alsoknownasanequilateral

Page 55: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

48 2. Polygons

A B

D C

Figure2.3.10

triangle), aregularquadrilateral(alsoknownasasquare), aregularpentagon, aregularhexagon,aregularheptagon(whichhassevenedges)andaregularoctagon. Ingeneral, foragivenpositiveintegern (whichisgreaterthanorequaltothree), wecanmakearegularn-gonasfollows. First,drawacircle. (Theradiusofthecircledoesnotmatter; differentchoicesofradiuswillyielddifferentlysizedpolygons, butthesizeofpolygonsdoesnotmattertoushere.) Next, calculate360◦/n. Thendraw n raysfromthecenterofthecircle, wheretheraysformanglesof 360◦/nbetweenthem. SeeFigure 2.3.12 (i). The n raysintersectthecirclein n points. Wetakethesepointstobetheverticesofapolygon, whichwethenconstructbyjoiningtheseverticeswithedges. Thepolygonthusconstructedisaregular n-gon. SeeFigure 2.3.12 (ii). Wementionthatthisconstructionofaregular n-gonisnotaclassicalstraightedgeandcompassconstructionofthesortusedinancientGreekmathematics, butthereisnoneedforustorestrictourselvestosuchconstructions. (It turnsout that it isnotpossible toconstructall regularpolygons intheancientGreekmanner.) Observe that for the regularpolygonsconstructedby theabovemethod, theverticesalllieonacircle. Itturnsoutthatanyregularpolygon, nomatterhowitwasconstructed, hasallitsverticesonacircle.

Asweseeinthefollowingproposition, theanglesinaregularpolygonaredeterminedbythenumberofedgesinthepolygon. ThisresultwillbeusefultousinSection 3.2.

Proposition 2.3.4.

1. Eachinteriorangleofaregular n-gonis(n− 2)180◦

n.

2. Eachexteriorangleofaregular n-gonis360◦

n.

Demonstration. BothpartsofthispropositionfolloweasilyfromProposition 2.3.3. Allinterioranglesinaregularpolygonareequal, andsoeachinteriorangleequalsthesumoftheinteriorangles, whichis (n−2)180◦, dividedbyn. A similarconsiderationholdsforexteriorangles.

Thefollowingpropositionnowfollowseasilyfromwhatwehavejustseen.

Page 56: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

2.4Area 49

Figure2.3.11

(i) (ii)

Figure2.3.12

Proposition 2.3.5. Everyregularpolygonisconvex.

Demonstration. It followsfromProposition 2.3.4 (1) that theinterioranglesineveryregularpolygonarelessthan 180◦. WenowuseProposition 2.3.1 todeducethateveryregularpolygonisconvex.

InTable 2.3.1 wegivethevaluesoftheinterioranglesofsomeoftheregularpolygons, ob-tainedbypluggingintheappropriatevaluesof n intotheformulagiveninProposition 2.3.4 (1).

2.4 Area

Westartthissectionwithadiscussionoftheareasofpolygons. Ourdiscussionofareaultimatelyreliesuponthreebasicideasconcerningarea, whichweassumewithoutproof: (1)arectanglethathaswidth x andheight y hasarea xy; (2)congruentshapeshaveequalareas; and(3)ifa

Page 57: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

50 2. Polygons

RegularPolygon NumberofEdges(n) InteriorAngleequilateraltriangle 3 60◦

square 4 90◦

regularpentagon 5 108◦

regularhexagon 6 120◦

regularheptagon 7 128.57◦

regularoctagon 8 135◦

Table2.3.1

shapeisbrokenupintoafinitenumberofpiecesthattogetherexactlyfilluptheoriginalshape,thentheareaoftheoriginalshapeisthesumoftheareasofthepieces.Inthefollowingproposition, wegiveformulasfortheareasoftriangles, trapezoidsandparal-

lelograms(thelasttwoofwhich, ifthereaderneedsreminding, aredefinedinSection 2.1). Inordertostatetheseformulas, weneedtodefinethenotionofanaltitudeineachofthesetypesoffigures. Inallthesecase, thecommonideaisasfollows. Supposewehavealine m andapoint P thatisnoton m. The altitude from P to m isthelinesegmentthatisperpendiculartom, andhasoneendpointin m, andtheotherendpointat P. SeeFigure 2.4.1.

m

P

altitude

Figure2.4.1

Supposewehaveatriangle, andwechooseanedgeofthetriangle. The altitude perpendiculartothatedgeisthealtitudefromthevertexoppositetheedgetothelinecontainingtheedge.Inthetriangle △ABC showninFigure 2.4.2 (i), weseethealtitude, labeled h, perpendiculartoedge AC. InFigure 2.4.2 (ii)weseethatthealtitudeperpendiculartotheedgeofatriangleneednotbeinsidethetriangle. A trianglehasthreedistinctaltitudes, oneperpendiculartoeachedge, andthesethreealtitudeswillingeneralnothavethesamelengths. Aninterestingfactisthatinanytriangle(evenanobtuseone), thelinescontainingthethreealtitudesmeetinasinglepoint, calledthe orthocenter ofthetriangle; see[WW98, Section4.6]formoredetails.

Next, supposewehavea trapezoid. The altitude of the trapezoid isconstructedby takinganypointononeofthetwoparalleledges, andconstructingthealtitudefromthatpointtotheotherparalleledge. SeeFigure 2.4.3 (i). A trapezoidhasmanyaltitudes, but it follows fromProposition 2.2.6 thattheyallhavethesamelength. Inaparallelogram, wecanconstructthe

Page 58: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

2.4Area 51

A

B

C A

B

h h

C

(i) (ii)

Figure2.4.2

altitudesperpendiculartoeachpairofedges, justasweconstructedthealtitudeofatrapezoid(whichhasonlyonepairofparallel edges). A parallelogramhas twodistinct altitudes, oneperpendiculartoeachpairofparalleledges, andthesetwoaltitudeswillingeneralnothavethesamelengths. SeeFigure 2.4.3 (ii)foroneofthealtitudesofaparallelogram.

h h

(i) (ii)

Figure2.4.3

Wecannowstateourformulasconcerningareas.

Proposition 2.4.1.

1. Supposethataparallelogramhasanedgeoflength b, andthealtitudeperpendiculartothatedgeoflength h. Thentheareaoftheparallelogramis bh.

2. Supposethatatrapezoidhasparalleledgesoflengthm1 andm2, andaltitudeoflength

h. Thentheareaofthetrapezoidism1 +m2

2h.

3. Supposethatatrianglehasanedgeoflength b, andaltitudeperpendiculartothatedge

oflength h. Thentheareaofthetriangleis1

2bh.

Demonstration.

(1). Thebasicideaistocutupourparallelogram, andrearrangeitintoarectangle. Morepre-cisely, supposethatwehaveaparallelogramwithverticesA, B,C andD, suchthat |CD| = b,andthatthealtitudeperpendicularto CD haslength h. SeeFigure 2.4.4 (i). Drawthelines

Page 59: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

52 2. Polygons

through A and B respectively that areperpendicular to the linecontaining CD; let E andF respectivelybe thepointsof intersectionof these lineswith the linecontaining CD. Fig-ure 2.4.4 (ii).

h

AB

C Db

h h

AB

C F D E

(i) (ii)

Figure2.4.4

Observethat BF and AE areparallel, becauseofProposition 1.2.5. Also, weknowthat AB

and F E areparallelbyhypothesis. Hencethat ABFE isaparallelogram. Moreover, becauseBF and AE arebothperpendicularto F E, weseebyExercise 2.1.1 that ABFE isarectangle.Next, byusingProposition 2.2.5 (1)weknowthat |AB| = |CD|, andthat |AD| = |BC|. It

followsfromProposition 2.2.6 that |BF| = |AE|. Moreover, because BC andAD areparallel,and BF and AE areparallelasnotedabove, itcanbeseenthat ∡CBF = ∡DAE (adetaileddemonstrationofthisequalityusesProposition 1.2.3; weleavethesedetailstothereader). ItthenfollowsfromtheSide-Angle-SideTheorem(Proposition 2.2.3)thattriangles△CBF and△DAE

arecongruent. Hence, thesetwotriangleshavethesamearea.WededucethattheparallelogramABCD hasthesameareaastherectangleABFE. WecanthinkoftheedgeAB asthebaseoftherectangleABFE, andAE asthealtitudeofthisrectangle. Usingtheobservationsatthestartofthisparagraph, weseethat |AB| = b, anditfollowsfromProposition 1.2.5 that |AE| = h.Hencetheareaoftherectangle ABFE is bh. Itfollowsthattheparallelogram ABCD hasareabh.

(2). ThereaderislefttoprovidethisdemonstrationinExercise 2.4.1.

(3). Supposethatwehaveatriangle△ABC, that |AC| = b, andthealtitudeperpendiculartoAC haslength h. SeeFigure 2.4.5 (i). WenowformaparallelogrambydrawingthelinethroughB thatisparalleltoAC, anddrawingthelinethroughC thatisparalleltoAB (Playfair’sAxiom(Proposition 1.1.1)guaranteesthatwecandrawtheselines). Let D bethepointofintersectionofthetwonewlines, sothat ABCD isaparallelogram. Figure 2.4.5 (ii).

ItisevidentthattheparallelogramABCD hasedgeAC asitsbase, andhasaltitudeoflengthh. ByPart (1)ofthisproposition, weknowthattheareaoftheparallelogramis bh. ByusingProposition 2.2.5 (1)weknowthat |AB| = |CD|, andthat |AC| = |BD|. It then followsfrom the Side-Side-SideTheorem (Proposition 2.2.2) that triangles △ABC and △BCD are

Page 60: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

2.4Area 53

h

A

B

Cb

h

A

B D

Cb

(i) (ii)

Figure2.4.5

congruent. Hence, thesetwotriangleshavethesamearea, andsoeachhashalftheareaofthe

parallelogram ABCD. Wededucethattheareaoftriangle △ABC is1

2bh.

Observethatifwethinkofatriangleasadegeneratetrapezoidinwhichoneoftheparalleledgeshaslengthzero, thentheformulafortheareaofatriangle(Part (3)oftheabovepropo-sition)followsimmediatelyfromtheformulafortheareaofatrapezoid(Part (2)oftheaboveproposition).AnimmediateconsequenceofProposition 2.4.1 isthefollowingresult. SeeFigure 2.4.6 for

anillustrationofthisfact.

Proposition 2.4.2.

1. Supposethattwoparallelogramshaveanedgeofthesamelength, andhavethealtitudesperpendiculartothoseedgeshavingthesamelength. Thentheparallelogramshavethesamearea.

2. Suppose that two triangleshaveanedgeof the same length, andhave thealtitudesperpendiculartothoseedgesofthesamelength. Thenthetriangleshavethesamearea.

h

b b

h

Figure2.4.6

Exercise 2.4.1. [UsedinThisSection] DemonstrateProposition 2.4.2 (2).

Page 61: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

54 2. Polygons

Exercise 2.4.2. Supposethattriangles △ABC and △A ′B ′C ′ aresimilar. Let Q and Q ′

respectivelydenotetheareasof △ABC and △A ′B ′C ′. Showthat

Q

Q ′ =|AB|

2

|A ′ B ′|2 .

Wenowhaveformulasfortheareasofrectangles, trianglesparallelogramsandtrapezoids.Whataboutmorecomplicatedpolygons? Itisnotpossibletohaveasimpleformulatocovereachpossibletypeofpolygon. However, itisalwayspossibletofindtheareaofanypolygonbychoppingitupintosimpleshapes(forexample, rectanglesandtriangles), figuringouttheareaofeachofthepieces, andthenaddingtheareasofthepiecesup. SeeFigure 2.4.7 foranexampleofacomplicatedpolygonchoppedupintorectanglesandtriangles.

Figure2.4.7

Exercise 2.4.3. FindtheareasofthepolygonsshowninFigure 2.4.8.

Weremindthereaderthattheperimeter ofapolygonisthesumofthelengthsofitsedges.

Exercise 2.4.4. Showthatiftworectangleshavethesameareaandthesameperimeter,thentheyhavethesamedimensions. (Thisoneusessomealgebra.)

Page 62: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

2.4Area 55

(i) (ii) (iii)

23

2

2

1

1

2 2

2

2 2

Figure2.4.8

Exercise 2.4.5.

(1) Findtwopolygonsallofwhoseedgeshaveintegerlengths, whichhavethesameareasandsameperimeters, butthatarenotcongruent.

(2) IfthetwoconvexpolygonsyoufoundinPart (1)werenotconvex, findtwoconvexpolygonsallofwhoseedgeshaveintegerlengths, whichhavethesameareasandsameperimeters, butthatarenotcongruent.

Exercise 2.4.6. A kite isaquadrilateralthathastwopairsofadjacentedgeswithequallengths. Wecallthediagonalthathasonepairofadjacentedgeswithequallengthsononesideandtheotherpairontheothersidethe crossdiagonal; theotherdiagonaliscalledthe maindiagonal. (Thenomenclatureinthisexerciseisnotstandardized.) Forthesakeofthisexercise, assumethatallkitesunderdiscussionareconvex(thatobviatestheneedconsideringdifferentsubcases), thoughtherearealsonon-convexkites.

(1) Showthatthemaindiagonalinakitebreaksthekiteintotwocongruenttriangles.

(2) Showthatthemaindiagonalinakitebisectseachoftheanglesatitsendpoints.

(3) Showthatthemaindiagonalinakitebisectsthecrossdiagonal.

(4) Showthatthecrossdiagonalinakiteisperpendiculartothemaindiagonal.

(5) Showthattheareaofakiteistheonehalftheproductofthelengthsofthediagonals.

Wecanapplytheconceptofareatoregularpolygons, startingwiththefollowingexercise.

Page 63: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

56 2. Polygons

Exercise 2.4.7. Findtheareaforeachofthefollowingregularpolygons.

(1) Anequilateraltrianglewithedgesoflength 1.

(2) A regularhexagonwithedgesoflength 1.

(3) A regularoctagonwithedgesoflength 1. (Hint: Donottrytosolvethisproblembydividingtheoctagonintoeightcongruenttriangleswithacommonvertexinthecenteroftheoctagon—thatmethodisquitetricky.)

Oneverynicepropertyofregularpolygonsisthattheyminimizeperimeteramongallpolygonswithagivennumberofedgesandagivenarea. Moreprecisely, supposeweareinterestedinpolygonswith n edges, where n issomepositiveintegergreaterthanorequaltothree. Supposefurtherthatwearegivenanarea A, where A issomepositivenumber. Amongallthe n-gonsthathavearea A, whichonehasthesmallestperimeter? Theansweristheregular n-gonwitharea A. Thoughthisresultseemsreasonableintuitively, thedemonstrationisbeyondthescopeofthistext. Alternatively, ifwearegivenaperimeter P, wecanaskwhich n-gonwithperimeterP hasthelargestarea. Again, theansweristheregular n-gonwithperimeter P.

Exercise 2.4.8.

(1) Supposewehaveacircle, andsupposethatA and B arepointsonthecirclethatarenotdiametricallyoppositeeachother. SupposefurtherthatC isanotherpointonthecirclethatisbetween A and B. Considertheareaofthetriangle △ABC. ExplainwhyofallpossiblechoicesofpointsC, theonewhere△ABC hasthemaximalareaiswhere C ismidwaybetween A and B.

(2) Giveaninformalexplanationthat, amongallpolygonswith n vertices, andwithitsverticesallonagivencircle, theregular n-gonwillhavethemaximalarea.

Wecanalsouseregularpolygonstohelpgiveusanintuitive(thoughnotrigorous)explanationregardingsomeaspectsofthenumber π. Ofcourse, thenumber π relatestocircles. However,wecanuseregularpolygonstohelpusunderstandcirclesbecause, aswementionedabove, ifwestartwithacircle, wecanformaregular n-gonwithverticesonthecircle, foranypositiveinteger n greaterthanorequaltothree. Ifwechoosethenumber n tobeverylarge, thenthen-gonapproximatesthecircleveryclosely. Thelargerthe n, thebettertheapproximation. Nopolygoneverequalsthecircle, thoughforverylarge n itmightbeimpossibletodistinguisharegular n-gonfromacirclewiththenakedeye.Todiscussthenumber π, recallthatitisusuallydefinedastheratioofthecircumferenceto

thediameterofacircle. Thatiscorrect, butthereisanaspecttothisdefinitionthatisusually

Page 64: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

2.4Area 57

glossedover—howdoweknowthatinallcircles, thereisthesameratioofthecircumferencetothediameter. Ifthisratioweredifferentindifferentcircles, thenthedefinitionof π wouldnotmakeanysense. Infact, thisratioisthesameinallcircles, ascanbeproved. A rigorousproofcanbefoundusingcalculus, butwecanusetrianglestogiveusanintuitiveideawhythisratioisthesameinallcircles. Beforewestart, wenotethatinsteadoftheratioofthecircumferencetothediameter, wecanjustaswelllookattheratioofthecircumferencetotheradiusofthecircle,whichshouldyield 2π ratherthan π. Ifwecanshowthatthetheratioofthecircumferencetotheradiusisthesameforanytwodifferentcircles, thatwillsuffice.Supposewehavearegiven twocirclesofdifferent sizes. Ineachcircle, constructa regu-

lar n-gonwithitsverticesonthecircle. Onesuchcircleandregular n-gonisshowninFig-ure 2.4.9 (i); inthefigurewehavea 10-gon, thoughitwouldbepossibletohaveanynumberofedges. Ineachofthepolygons, drawlinesegmentsfromthecenterofthecircletotheverticesofthepolygon, thusbreakingthepolygonupinto n isoscelestriangles. InFigure 2.4.9 (ii)weseethesmallerofourtwocircles; thelengthofeachedgeofthepolygonis a, andtheradiusofthecircleis r. InFigure 2.4.9 (iii)weseethelargerofourtwocircles; thelengthofeachedgeofthepolygonis c, andtheradiusofthecircleis s.

(i) (ii) (iii)

ac

r s

Figure2.4.9

Now, comparethetwopolygonsinthedifferentsizedcircles. Theyarebothregular n-gons,eventhoughtheyareofdifferentsizes. Hence, byProposition 2.3.4 (1), bothofthese n-gonshavethesameinteriorangles. Thebaseanglesintheisoscelestrianglesintowhichthepolygonsarebrokenuparethereforealsothesameinbothpolygons. Itfollowsthattheisoscelestrianglesinthesmallerpolygonareallsimilartotheisoscelestrianglesinthelargerpolygon. Inparticular,byusingProposition 2.2.9, weseethat

a

r=

c

s.

Multiplyingeachsideby n yieldsna

r=

nc

s.

Page 65: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

58 2. Polygons

Weobservethattheperimeterofthesmallerpolygonis na, andtheperimeterofthelargerpolygonis nc. Hence

Perimeterofthesmallerpolygon

Radiusofthesmallercircle=

Perimeterofthelargerpolygon

Radiusofthelargercircle.

If n isverylarge, thentheperimeterofthepolygonsisveryclosetothecircumferenceofthecircle.Byletting n gotoinfinity, wededucethat

Circumferenceofthesmallercircle

Radiusofthesmallercircle=

Circumferenceofthelargercircle

Radiusofthelargercircle,

whichiswhatweweretryingtoshow. Thisargumentisnotcompletelyrigorousasstated, butitdoesgiveaplausibleargument.Wecantaketheabovesortofreasoningonestepfurther. Supposethatacirclehasradius r.

Aswejustdiscussed, wehave C = 2πr, where C isthecircumferenceofthecircle. Thereis, ofcourse, anotherequallyusefulformulainvolving π, namelyA = πr2, whereA istheareaofthecircle. Wecannottakethisareaformulaasthedefinitionof π, becausewehavealreadydefinedπ in termsof thecircumference. Rather, wecangiveanintuitiveargument for this formula,giventhatwehavealreadyseenwhy C = 2πr oughttobetrue. (Again, ourargumentwillnotbecompletelyrigorous, thougharigorousargumentcanbefoundusingcalculus.)Supposewehaveacircleofradius r. Again, formaregular n-gonwithverticesonthecircle.

Thistime, makesurethat n isanevennumber. Weformisoscelestrianglesasbefore; thistime,wecoloreveryothertriangle. SeeFigure 2.4.10 (i)forthecasewhere n isten. Observethattheareaofthe n-gonisveryclosetotheareaofthecircle; if n isverylarge, thentheapproximationisquiteclose.

(i) (ii)

Figure2.4.10

Now, wetakethe n-gon, andwerearrangeitstrianglesasshowninFigure 2.4.10 (ii). Theshapethattheserearrangedtrianglesformisaparallelogram. However, if n isverylarge, thetriangleswillbeverythin, andtheparallelogramwillbealmostarectangle. Whatisthelength

Page 66: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

2.4Area 59

ofthealtitudeoftheparallelogram? If n isverylarge, thenthetriangleswillbeextremelythin,andthealtitudeofeachtrianglewillbeapproximatelythesameasthelengthofitssides, whichisjusttheradiusofthecircle, namely r. Whatisthelengthofthebaseoftheparallelogram? Itishalfthecircumferenceofthecircle, namely πr. Hence, usingProposition 2.4.1 (1), weseethattheareaoftheparallelogramisapproximately πr · r = πr2. If n getslargerandlarger, theapproximationgetsbetterandbetter. Note, however, thattheareaoftheparallelogramisveryclosetotheareaofthecircle, becauseitisthesameastheareaofthepolygoninsidethecircle.Onceagain, as n goestoinfinity, wededucethatareaofthecircleisactuallyequaltotheareaoftheparallelogram, andhencetheareaofthecircleis πr2. Onceagain, thisargumentisnotcompletelyrigorousasstated, butgivesanintuitivepictureofwhatishappening.Weend thissectionbyusing theconceptofarea todemonstratea result thaton the face

ofithaslittletodowitharea, namelyProposition 2.2.9, whichconcernssimilartriangles. Todemonstratethisproposition, weneedtwopreliminaryresults, towhichwenowturn; itisinthedemonstrationofthefirstoftheseresultsthatweencountertheuseofarea. Ourapproachhere follows [Mey99, Section2.4]. To read the statementofourfirstpreliminary result, seeFigure 2.4.11.

A

B

D E

C

Figure2.4.11

Proposition 2.4.3. Supposethatatriangle △ABC hasapoint D onedge AB, andapoint Eonedge AC, placedsothat DE isparallelto BC. Then

|AB|

|AD|=

|AC|

|AE|.

Demonstration. Asafirststep, weaddthelinesegmentBE, asshowninFigure 2.4.11 (i). Next,drawanaltitudefrom E to AB; supposethisaltitudehaslength h, asindicatedinthefigure.

Page 67: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

60 2. Polygons

A

B

D E

C

A

B

D E

C

h

(i) (ii)

Figure2.4.12

Considerthetriangle △ABE. UsingProposition 2.4.1 (3), weknowthattheareaofthistri-

angleis1

2|AB|h. Similarly, theareaofthetriangle △ADE is

1

2|AD|h. Itthenfollowsthat

areaof △ABE

areaof △ADE=

12|AB|h

12|AD|h

=|AB|

|AD|.

Next, returntotheoriginalsituationinFigure 2.4.11, andaddthelinesegmentDC, asshowninFigure 2.4.11 (ii). Thesamesortofreasoningasbeforeshowsthat

areaof △ACD

areaof △ADE=

|AC|

|AE|;

weleavethedetailstothereader.Asournextstep, wecomparethetwotriangles △DEB and △DEC showninthetwoparts

ofFigure 2.4.11. Wecanthinkof DE asthebaseofbothtriangles. Moreover, because DE isparallelto BC (byhypothesis), itfollowsthatthealtitudeof △DEB perpendicularto DE hasthesamelengthasthealtitudeof△DEC perpendiculartoDE (thisfactusesProposition 2.2.6).ItthenfollowsbyProposition 2.4.2 (2)that △DEB and △DEC havethesamearea.Finally, giventhattriangles △DEB and △DEC havethesameareas, weseethattriangles

△ABE and △ACD havethesameareas. Pluggingthisobservationsintothetwoformulasfortheratiosofareasthatwepreviouslysaw, wesee

|AB|

|AD|=

areaof △ABE

areaof △ADE=

areaof △ACD

areaof △ADE=

|AC|

|AE|.

Thuswehaveshownthedesiredequation.

Page 68: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

2.4Area 61

Our secondpreliminary result is theconverse to thepreviousproposition; again, seeFig-ure 2.4.11.

Proposition 2.4.4. Supposethatatriangle △ABC hasapoint D onedge AB, andapoint Eonedge AC, placedsothat

|AB|

|AD|=

|AC|

|AE|.

Then DE isparallelto BC.

Demonstration. WeseethegivensituationinFigure 2.4.13 (i); wedonotknowyetwhetherDE isparallelto BC ornot(becausethatiswhatwearetryingtoshow), andwehavedrawnthecasewherethetwolinesegmentsarenotparallel.

A

B

DE

C

A

B

D FE

C

(i) (ii)

Figure2.4.13

ByusingPlayfair’sAxiom (Proposition 1.1.1), wecandrawalinecontainingD thatisparalleltothelinecontaining BC. ThislinethroughD intersects AC inapoint, whichwewillcall F.Then DF isparallelto BC. SeeFigure 2.4.13 (ii).WecannowapplyProposition 2.4.3 tothetriangle △ABC withthepoints D and F. We

deducethat|AB|

|AD|=

|AC|

|AF|.

Ontheotherhand, weknowbyourhypothesesthat

|AB|

|AD|=

|AC|

|AE|.

Page 69: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

62 2. Polygons

Wecombinethesetwoequationstoderive

|AC|

|AF|=

|AC|

|AE|,

andbycancellingandrearrangingitfollowsthat |AF| = |AE|. Giventhat E and F arebothpointsin AC, weseethat E = F. ByconstructionweknowthatDF isparallelto BC, andwededucethat DE isparallelto BC.

WenowhavealltheingredientsneededforthepromiseddemonstrationofProposition 2.2.9.

DemonstrationofProposition 2.2.9. Supposethattriangles△ABC and△A ′B ′C ′ aresimilar.Wewillfirstshowthat

|AB|

|AB ′|=

|AC|

|AC ′|.

First, wenote that either |AB| = |AB ′| or |AB| = |AB ′|. If ithappens tobe thecasethat |AB| = |AB ′|, thenwecandeducethat △ABC and △A ′B ′C ′ arecongruent, usingtheAngle-Side-AngleTheorem(Proposition 2.2.4). Inthatcase, itwouldfollowthat |AC| = |AC ′|,andthenwewouldseethat

|AB|

|AB ′|= 1 =

|AC|

|AC ′|,

whichiswhatwearetryingtoshow.Nowassumethat |AB| = |AB ′|, because that is theremainingcase. Therearenowtwo

possibilities, namely |AB| > |AB ′| or |AB| < |AB ′|; wewilldiscussonlythefirstofthesetwocases, theothercasebeingvirtuallyidentical. So, assumethat |AB| > |AB ′|.Because |AB| > |AB ′|, wecanfindapoint D on AB sothat |AD| = |AB ′|. SeeFig-

ure 2.4.14. Nowfindapoint E on AC sothat

|AB|

|AD|=

|AC|

|AE|;

Suchapointcanalwaysbefound. Again, seeFigure 2.4.14.

WecannowapplyProposition 2.4.4 tothetriangle△ABC withpointsD and E. Thepropo-sitionimpliesthat DE isparallel to BC. WecannowuseProposition 1.2.3 todeducethattheangle α equalstheangleat B. Byhypothesisthetriangles △ABC and △A ′B ′C ′ aresim-ilar, andhencetheangleat B equals theangleat B ′. It followsthat theangle α equals theangleat B ′. Wealsoknowthattheangleat A equalstheangleat A ′. Giventhatwealsohave|AD| = |AB ′| (whichistruebyvirtueofourchoiceof D), weseethattriangles △ADE and△A ′B ′C ′ arecongruentbytheAngle-Side-AngleTheorem(Proposition 2.2.4). Wederivethat|AE| = |AC ′|. Finally, weknowbyconstructionthat

|AB|

|AD|=

|AC|

|AE|.

Page 70: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

2.5ThePythagoreanTheorem 63

A

B

D E

C

A'

B' C'α

Figure2.4.14

Itfollowsthat|AB|

|AB ′|=

|AC|

|AC ′|.

Thislastequationistheoneweweresupposedtodemonstrate.Wenotethatacompletelysimilarargumentcouldbeusedtoshowthat

|AC|

|AC ′|=

|BC|

|B ′C ′|;

wewillskipthedetails. Wehavethereforeshownthat

|AB|

|AB ′|=

|AC|

|AC ′|=

|BC|

|B ′ C ′|,

whichisthefirstdisplayedequationinthestatementofProposition 2.2.9. TheseconddisplayedequationinthestatementofProposition 2.2.9 followsstraightforwardlyfromthefirstdisplayedequation, andwewillleavethattothereader. Henceourdemonstrationiscomplete.

2.5 ThePythagoreanTheorem

This section treats what is probably themost famous theorem about triangles, namely thePythagoreanTheorem. (This theorem seems tohavebeenknownempirically inbothBaby-lonandChinabeforethetimeofPythagoras, thoughthereisnoevidencethatthetheoremwasprovedpriortoPythagoras.) TherearemanyotherequallyimportanttheoremsingeometryotherthanthePythagoreanTheorem, butwefocusonitnowbecauseitissofamiliar, andbecauseitbringstogetheranumberofideaswehaveencounteredsofarabouttriangleandpolygons.

Page 71: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

64 2. Polygons

ItisimportanttostatethePythagoreanTheoremcorrectly. WheneverI askstudentsinaclasstostatethePythagoreanTheorem, theresponseI invariablyreceiveis: “a2+b2 = c2.” However,justtostatethisequationisabsolutelynotcorrect. Itisnottruethatthisequationholdsfor anynumbers a, b and c. Theequationholdsonlyforparticularvaluesof a, b and c, namelythosethatcorrespondtothelengthsofthesidesandhypotenuseofarighttriangle. (Recallthatinarighttriangle, thetwoedgesthatformtherightanglearecalledthe sides ofthetriangle, andtheedgethatisoppositetherightangleiscalledthe hypotenuse ofthetriangle.)WearenowreadytostateanddemonstratethePythagoreanTheorem. Therearemanyproofs

ofthistheorem, goingbacktotheancientworld. ForEuclid’sproofseeProposition 47ofBookI of[Euc56], thoughyouhavetolookatsomeofEuclid’spreviouspropositionstofigureoutall thedetailsofhisproofof thePythagoreanTheorem. Wegive twodifferentproofsof thetheorem(bothquitedifferentfromEuclid’sproof), toshowhowthesameresultcanbeprovedbydifferentapproaches. Ourfirstproof(averywidelyusedone)isbasedonareaandcongruenceof triangles; thesecondisbasedonsimilarityof triangles. NeitherofourproofswouldhavemadesensetotheancientGreeks(whodidnothaveouralgebra). See[Loo40]foravarietyofproofsofthePythagoreanTheorem. A curiousfactoidisthatthereisaproofofthePythagoreanTheoremattributedtoPresidentJamesGarfield—perhapstheonlyknownmathematicalproofattributedtoapresidentoftheUnitedStates.

Proposition 2.5.1 (PythagoreanTheorem). Supposethatarighttrianglehassidesoflength a

and b, andhypotenuseoflength c. Then a2 + b2 = c2.

Demonstration. FirstProof: InFigure 2.5.1 (i)weseethetriangleunderconsideration. Giventhatthesumofthethreeanglesinthetriangleis 180◦ (aswesawinProposition 2.2.1 (1)), weknowthat α+ β = 90◦.Wenowconstructa squarewithsidesof length a + b, andbreak itupasshown inFig-

ure 2.5.1 (ii). Weseefourcopiesoftheoriginalrighttriangleinsidethelargersquare. Thatthesefourtrianglesarereallycongruenttotheoriginaltriangleisintuitivelyclear, andformallyfollowsfromtheSide-Angle-SideTheorem(Proposition 2.2.3).

Nowconsidertheangle γ, asindicatedinthefigure. Giventhat α, β and γ togethermakeupastraightline, weknowthat α + β + γ = 180◦. Because α + β = 90◦, aspreviouslymentioned, wededucethat γ = 90◦. A similarargumentshowsthat theother threeanglesbetweenthesidesoflength c arealso 90◦. Itfollowsthatthefigurethathasfouredgesoflengthc isinfactasquare.Weknowthattheentiresquarewithsidesoflength a + b hasarea (a + b)2. Ontheother

hand, wecanalsocompute theareaof theentiresquarebyaddinguptheareasof thefivepieces(onesquareandfourtriangles)intowhichwehavebrokenitup. Thesquarewithsidesoflength c hasarea c2. Eachofthefourcopiesoftheoriginaltrianglehasarea 1

2ab. Thetotal

areaistherefore c2 + 4 · 12ab = c2 + 2ab. Equatingthetwowaysofcomputingthetotalarea,

obtain

(a+ b)2 = c2 + 2ab.

Page 72: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

2.5ThePythagoreanTheorem 65

αα

α

α

α

ββ

β

β

β

γ

a

aa

a

a

bb

b

b

b

c

cc

c

c

(i) (ii)

Figure2.5.1

Recallfromalgebratheformula (a+ b)2 = a2 + 2ab+ b2. Wethenobtain

a2 + 2ab+ b2 = c2 + 2ab.

Canceling 2ab fromeachsideofthislastequationyields a2 + b2 = c2, whichiswhatwewantedtoprove.

SecondProof: InFigure 2.5.2 (i)weseethetriangleunderconsideration, wheretheanglebe-tween the sidesof lengths a and b is a right angle. In Figure 2.5.2 (ii)wehavedrawn thealtitudeperpendiculartoedge AB. Let D bethepointwherethealtitudeintersects AB. Intriangle△ABC, let a, b and c respectivelydenotethelengthsoftheedgesoppositeangles A,B and C. Let x denotethelengthof AD, andthusthelengthof BD is c− x.

Considerthetwotriangles△ABC and△DBC. Eachtrianglehasarightangle, andeachhastheangleat B, sotheyhavetwoequalangles. Becausethesumoftheanglesineachtriangleis 180◦, the two triangles in facthaveall threeangles the same. Thus the two trianglesaresimilar, wherevertices A, B and C respectivelyin △ABC correspondtovertices C, B and D

in △DBC. ItnowfollowsfromProposition 2.2.9 that

c

a=

a

c− x.

Itcanalsobeseenthatthetwotriangles △ABC and △ADC aresimilar, wherevertices A, Band C respectivelyin △ABC correspondtovertices A, C and D in △ADC. Itfollowsfrom

Page 73: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

66 2. Polygons

(i) (ii)

x c-xDB

b

C

A

a

cB

b

C

A

a

Figure2.5.2

Proposition 2.2.9 thatc

b=

b

x.

Ifwecrossmultiplytheabovetwoequations, weobtain

c(c− x) = a2 and cx = b2.

Multiplyingoutthefirstequation, weobtain

c2 − cx = a2 and cx = b2.

Substitutingthesecondequationintothefirst, weobtain

c2 − b2 = a2.

Moving b2 totheothersideyields a2 + b2 = c2, whichiswhatwewantedtoprove.

Exercise 2.5.1. Thetwosidesofarighttriangleare 6 and 11 inchesrespectively. Howlongisthehypotenuse?

Exercise 2.5.2. A 40 ft.wireisstretchedfromthetopofapoletotheground. Thewirereachestheground 25 ft.fromthebaseofthepole. Howhighisthepole?

Exercise 2.5.3. ProvethePythagoreanTheoremusingFigure 2.5.3 insteadofFigure 2.5.1.

Page 74: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

2.5ThePythagoreanTheorem 67

a

ab

aa

bb

b

c

cc

c

Figure2.5.3

ThePythagoreanTheoremstatesthatifarighttrianglehassidesoflength a and b, andhy-potenuseoflength c, then a2+b2 = c2. Couldithappenthatinanon-righttrianglewithedgesoflength a, b and c, theformula a2 + b2 = c2 alsoholds? Thefollowingpropositionsaysthatitcouldnothappen; inotherwords, theformula a2+b2 = c2 istheexclusiveprovinceofrighttriangles. ItisinterestingtonotethatwewillusethePythagoreanTheoremtodemonstratethefactthetheoremdoesnotholdinnon-righttriangles.

Proposition 2.5.2 (Converse to the PythagoreanTheorem). Supposewearegivena triangle△ABC. Let a, b and c respectivelydenotethelengthsoftheedgesoppositeangles A, B andC. Supposethat a2 + b2 = c2. Then C isarightangle.

Demonstration. Wefollow[Bar01, p.10]. Theangle C couldbeeitheracute(lessthan 90◦),obtuse(greaterthan 90◦)orarightangle(equalto 90◦). Wewillprovethatthefirsttwocasescannothappen; itwillthenfollowthat C isarightangle, whichiswhatwearetryingtoprove.Supposefirstthat C islessthan 90◦. SeeFigure 2.5.4 (i). InFigure 2.5.4 (ii)wehavedrawnthe

altitudeperpendiculartoedge BC. LetD bethepointwherethealtitudeintersects BC. Let hdenotethelengthof AD, andlet x denotethelenthof CD. Weseethatthelengthof BD isa − x. Observethatbecause C islessthan 90◦, itfollowsthat x > 0. (If C werearightangle,then D wouldbethesameas C, and x wouldbe 0.)

Thetwotriangles△ADC and△ABD arerighttriangles. ApplyingthePythagoreanTheoremtoeachone, weobtainthetwoequations

x2 + h2 = b2 and (a− x)2 + h2 = c2.

Isolating h2 ineachoftheseequationsyields

h2 = b2 − x2 and h2 = c2 − (a− x)2.

Page 75: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

68 2. Polygons

(i) (ii)

x a-xDB

hb

A

C

c

aB

b

A

C

c

Figure2.5.4

Equatingthesetwoexpressionsfor h2 givesus

b2 − x2 = c2 − (a− x)2.

Recallfromalgebratheformula (a− x)2 = a2 − 2ax+ x2. Wethereforeobtain

b2 − x2 = c2 − (a2 − 2ax+ x2).

Distributingthenegativesigninyields

b2 − x2 = c2 − a2 + 2ax− x2.

Cancelling x2 frombothsidesgiveus

b2 = c2 − a2 + 2ax.

Finally, bringthe a2 totheotherside, andwededucethat

a2 + b2 = c2 + 2ax.

Wenowhavealogicalimpossibility. Ontheonehand, wehaveassumedthat a2 + b2 = c2.Ontheotherhand, wejustdeducedthat a2 + b2 = c2 + 2ax. Giventhatneither a nor x is 0,thenneitheris 2ax, andsowehaveanimpossiblesituation. Theonlywayoutofthisproblemistoadmitthatourhypothesisthat C islessthan 90◦ isfalse.A similarargumentshowsthatthehypothesisthatC isgreaterthan 90◦ isalsofalse. (Weleave

ittothereadertosupplythedetails; thedifferenceisthatFigure 2.5.4 needstobemodifiedsothatC isgreaterthan 90◦, whichmakesthealtitudeperpendicularto BC beoutsidethetriangle△ABC.) Asaresult, theonlyremainingpossibilityisthat C isarightangle, whichiswhatwewantedtoshow.

ThePythagoreanTheoremdefinitelydoesnotholdfortrianglesthatarenotrighttriangles.WenowturntotwogeneralizationsofthePythagoreanTheoremthatdoholdforalltriangles.Thefirstofthesegeneralizations, themorewellknownandusefulofthetwo, iscalledtheLaw

Page 76: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

2.5ThePythagoreanTheorem 69

ofCosines, anditisessentiallythePythagoreanTheoremwithacorrectionfactorthatmakesitworkforalltriangles. TheLawofCosinesisimportantintrigonometry, andshowsupinotherbranchesofmathematics, andapplicationsofmathematics. TostatetheLawofCosines, weneedtousethetrigonometricfunctioncosine. Forthosenotfamiliarwithcosine, youcansimplyskipthestatementoftheLawofCosinesgivenbelow; wewillnotbeusingthislawatanypointinthistext. However, wementionit, toshowoneofthewaysinwhichthePythagoreanTheoremcanbegeneralizedtonon-righttriangles.Justtoremindthosefamiliarwiththetrigonometricfunctions, cosineisafunctionthatassigns

toeveryangle x anumberdenoted cos x. Forexample, wehave cos 0◦ = 1, and cos 60◦ = 1/2,and cos 90◦ = 0. TheLawofCosinesisasfollows.

Proposition 2.5.3 (LawofCosines). Supposewearegivenatriangle △ABC. Let a, b and c

respectivelydenotethelengthsoftheedgesoppositeangles A, B and C. Then

c2 = a2 + b2 − 2ab cosC.

ForaproofoftheLawofCosines, seemostbooksontrigonometryfordetails. WechosetohighlighttheangleC intheabovestatementoftheLawofCosines, thoughinanon-righttrianglenooneangleisspecial, andtheLawofCosinesalsostatesthat a2 = b2 + c2 − 2bc cosA andb2 = a2 + c2 − 2ac cosB. Next, supposethat △ABC isinfactarighttriangle, with C therightangle. Then C = 90◦, and cosC = 0. Inthatcase, theLawofCosinesjustreducestothePythagoreanTheorem.Wenowturntooursecond, lesswellknown, generalizationof thePythagoreanTheorem.

ThisgeneralizationisknownasPappus’VariationonthePythagoreanTheorem IntheLawofCosines, wemaintainthe a2, b2 and c2 thatareinthestatementofthePythagoreanTheorem,butputinanextracorrectionterm(involvingtrigonometry)toaccountfornon-righttriangles.Recallthatgeometrically, theterms a2, b2 and c2 correspondtotheareasofcertainsquares.InPappus’VariationonthePythagoreanTheorem, statedbelow, wereplacesquaresbycertainparallelograms, andbysodoingwewillbeabletoallowfornon-right triangleswithout theuseofacorrectionterm(andthuswithoutanytrigonometry). WhenreadingthestatementofPappus’VariationonthePythagoreanTheorem, itwillhelptolookatFigure 2.5.5.

Proposition 2.5.4 (Pappus’VariationonthePythagoreanTheorem). Supposewearegivenatri-angle△ABC. FormparallelogramsACDE andBCFG ontheedgesAC andBC respectively.Extendthelinesegments DE and FG untiltheyintersectinthepoint H. Formtheparallelo-gram ABIJ withedgesAJ and B I thatareparalleltoandhaveequallengthasHC. Thentheareaoftheparallelogram ABIJ equalsthesumoftheareasoftheparallelograms ACDE andBCFG.

Demonstration. First, weextend HC untilitcutsthroughtheparallelogram ABIJ, breakingitupintotwosmallerparallelograms AJKL and BIKL. SeeFigure 2.5.6. WewillnowshowthattheareaofparallelogramACDE equalstheareaoftheparallelogramAJKL. A completelyidenticalargument (thedetailsofwhichwewill skip)canbeused to show that theareaof

Page 77: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

70 2. Polygons

B

G

FH

J I

C

A

E

D

Figure2.5.5

parallelogram BCFG equalstheareaoftheparallelogram BIKL. Itwillthenfollowthatthesumoftheareasoftheparallelograms ACDE and BCFG equalsthesumoftheareasoftheparallelogramsAJKL and BIKL, whichinturnequalstheareaoftheparallelogramABIJ, thuscompletingtheargument.

B

G

FH

JK

I

C

A L

E

D

Figure2.5.6

Toshowthattheareaofparallelogram ACDE equalstheareaoftheparallelogram AJKL,weneedtomakeonemoreparallelogram. ExtendAJ untilitintersectsthelinecontainingDE

Page 78: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

2.5ThePythagoreanTheorem 71

inpointM. WeseethatMA isparalleltoHC. SeeFigure 2.5.7. HenceACHM isaparallel-ogram. Comparetheparallelograms ACDE and ACHM. Theybothhavetheedge AC, andthenbothhavethesamealtitudeperpendiculartothisedge. ItfollowsfromProposition 2.4.2 (1)thatthesetwoparallelogramshavethesamearea.

B

G

FH

JK

I

C

A L

E

D

M

Figure2.5.7

Next, comparetheparallelogramsACHM andAJKL. ObservethattheedgeHC ofthepar-allelogram ACHM isequalinlengthandparalleltotheedge AJ oftheparallelogram AJKL.Moreover, thealtitudesperpendicular to these twoedgesareequal. It follows fromProposi-tion 2.4.2 (1)thatthesetwoparallelogramshavethesamearea. Hence, becausetheparallelo-grams ACDE and ACHM havethesameareas, andtheparallelograms ACHM and AJKL

havethesameareas, itfollowsthattheparallelograms ACDE and AJKL, whichiswhatweneededtoshow.

When we apply Pappus’Variation on the PythagoreanTheorem to a right triangle, andwe choose parallelograms that happen to be squares, then we simply obtain the standardPythagoreanTheorem.

Page 79: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

72 2. Polygons

Page 80: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

3Polyhedra

3.1 Polyhedra–TheBasics

A polyhedron isasolidregionofspacethatisboundedbyafinitenumberofpolygonsthataregluedtogether. Wehavethreerequirementsaboutthewayinwhichwegluethepolygonstogether.

(1) Polygonsaregluededge-to-edge(thatis, entireedgesaregluedtoentireedges), orvertex-to-vertex.

(2) Everyedgeofapolygonisgluedtopreciselyoneotheredge.

(3) Notwopolygonsintersectexceptpossiblyalongtheiredgeswheretheyareglued.

SomepolyhedraareshowninFigure 3.1.1. Somenon-polyhedraareshowninFigure 3.1.2;theobjectinPart (i)haspolygonsthatarenotgluededge-to-edge, andtheobjectinPart (ii)hasthreeedgesofpolygonsgluedtogether. Notethatthepluralof“polyhedron”is“polyhedra.”Wewillrestrictourattentiontopolyhedramadeupoutofconvexpolygons, thoughitisalsopossibletoconsiderpolyhedrawithnon-convexfaces. (Itisalsopossibletolookatpolyhedrawithself-intersections, thatis, inwhichrequirement(3)isdropped; wewillnotbelookingatsuchpolyhedrainthistext, withonebriefexceptionattheendofSection 3.6.)

Foreachpolyhedron, the faces ofthepolyhedronarethepolygonsthatboundit; the edgesarethelinesegmentswherethefacesmeet; the vertices arethepointswhereedgesmeet. Forexample, thecube showninFigure 3.1.1 hassixsquarefaces, twelveedgesandeightvertices.Thefollowingsimplefactsaboutfaces, edgesandverticesofpolyhedra, whichwillbeofuse

lateron, canbederivedfromourrequirementsonhowpolygonsaregluedtogethertomakepolyhedra.

Page 81: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

74 3. Polyhedra

(i) (ii) (iii)

Figure3.1.1

(i) (ii)

Figure3.1.2

Proposition 3.1.1.

1. Everyedgeinapolyhedroniscontainedinprecisely 2 faces.

2. Everyvertexinapolyhedroniscontainedinatleast 3 edges.

3. Everyfaceinapolyhedroncontainsatleast 3 edges.

Just aswe had both convex and non-convex polygons, so toowe can have convex andnon-convexpolyhedra. Theideaofconvexityiscompletelythesameforpolyhedraasforpoly-gons. Intuitively, apolyhedronisconvexifithasno“indentations.” Moreformally, apolyhedronisconvexifanytwopointsinthepolyhedronarejoinedbyalinesegmentcontainedentirelyinthepolyhedron. ThepolyhedrainFigure 3.1.1 (i)and(ii)areconvex, whereasthepolyhedroninPart (iii)ofthefigureisnot. Wewillmostly, thoughnotexclusively, dealwithconvexpolyhedrainthistext. Oneusefulfactaboutconvexpolyhedron, whichwestatewithoutdemonstration,isthefollowing.

Proposition 3.1.2. Atanyvertexofaconvexpolyhedron, thesumoftheanglesatthevertexadduptolessthan 360◦.

Page 82: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

3.1Polyhedra–TheBasics 75

Thoughsomepolyhedraarequiteirregular, therearesomenicecategoriesofpolyhedrathatareconvenienttoworkwith. A pyramid isobtainedbytakingapolygonintheplane, takingapoint“above” thepolygon, and joining thispoint to theverticesof thepolygon. Thenewvertexisoftencalledthe conepoint ofthepyramid(itisalsoknownasthe apex ofthepyramid);thepolygonthatwestartedwithiscalledthe base ofthepyramid, andweoftencallsuchapyramidasa“pyramidoverthepolygon.” ThefamouspyramidsinGiza, Egypt, areexamplesofpyramidswithsquarebases(oftencalled“squarepyramids,” or“pyramidsoversquares”);observethatthemathematicaluseofthetermpyramidallowsforpyramidswithanybase, notjustasquarebase. SeeFigure 3.1.3 (i)forapyramidoverapentagon. A bipyramid isobtainedbytakingapolygonintheplane, takingonepoint“above”thepolygonandonepoint“below”it, andjoiningbothpointtotheverticesofthepolygon; thenewverticesarebothcalled conepoints ofthebipyramid(oneisthe“top”conepoint, andoneisthe“bottom”conepoint). SeeFigure 3.1.3 (ii)forabipyramidoverapentagon. A prism isobtainedbytakingapolygonintheplane, placinganidenticalcopyofthepolygondirectlyabovethefirst, andjoiningpairsofcorrespondingverticesofthetwocopiesofthepolygon. SeeFigure 3.1.3 (iii)foraprismoverapentagon. An antiprism isobtainedbytakingaregularpolygonintheplane, placingacopyoftheregularpolygonabovethefirst, butrotatedsothateachvertexoftheupperpolygonisabovethemiddleofanedgeofthelowerpolygon, andthenjoiningeachuppervertextothetwolowerverticesclosesttoit. SeeFigure 3.1.3 (iv)foranantiprismoverapentagon.

(i) (ii)

(iii) (iv)

Figure3.1.3

Theabovecategoriesofpolyhedracanoverlap. Forexample, as thereadercanverify, thebipyramidoverasquare, calledanoctahedron, isinfactalsoanantiprismoveratriangle.

Page 83: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

76 3. Polyhedra

Exercise 3.1.1. Foreachofthefollowingquestions, iftheanswerisyes, giveanexample,andiftheanswerisno, explainwhynot. (Toexplainwhyapolyhedroncannotbeintwodifferentcategories, itdoesnotsufficesimplytostatethatthetwocategoriesareconstructeddifferently, becausesometimestwodifferentconstructionscanyieldthesameresult, forexampletheoctahedron, whichisbothabipyramidandanantiprism.)

(1) Canapolyhedronbebothabipyramidandaprism?

(2) Canapolyhedronbebothaprismandanantiprism?

(3) Canapolyhedronbebothapyramidandeitheraprismoranantiprism?

(4) Canapolyhedronbebothapyramidandabipyramid? (Ifyouthinkthattheanswerisno, it isnot sufficient simply to say thatapyramidhasoneconepoint, andabipyramidhastwoconepoints. Perhapsifyoulookatacertainpolyhedroninonewaythereisoneconepoint, andviewedanotherwaytherearetwoconepoints;perhapsnot.)

Exercise 3.1.2. Findallpyramidsthathaveallregularfaces.

Justasthereareformulasfortheareasofsimpletypesofpolygons, therearealsoformulasforthevolumesofsimpletypesofpolyhedra. However, thedemonstrationsofthesevolumeformu-lasaremorecomplicatedthanforareaformulas, andsowewillstatethefollowingpropositionwithoutdemonstration. (See[Har00, Sections26-27]foratechnicaldiscussionofvolumes.) Justaswediscussedthenotionofthealtitudeofatriangle, parallelogramortrapezoid, wecansimi-larlydefinethenotionofanaltitudeforpolyhedrasuchaspyramidsandprisms; weomitfurtherdetails. A bipyramidismadeupoftwopyramidsgluedtogether, andeachofthesepyramidshasanaltitude.

Proposition 3.1.3.

1. Supposethataprismhasabaseofarea b, andaltitudeoflength h. Thenthevolumeoftheprismis bh.

2. Supposethatapyramidhasabaseofarea b, andaltitudeoflength h. Thenthevolumeofthepyramidis 1

3bh.

3. Supposethatabipyramidhasabaseofarea b, andaltitudesoflength h1 and h2 foreachofthetwopyramidsinthebipyramid. Thenthevolumeofthebipyramidis 1

3b(h1+h2).

Itisinterestingtocomparethevolumeformulaforpyramidswiththeareaformulafortriangles,andtocomparethevolumeformulaforprismswiththeareaformulaforparallelograms.

Page 84: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

3.1Polyhedra–TheBasics 77

Givenaconvexpolyhedron, wecanformanewpolyhedron, calledits dualpolyhedron, asfollows. First, foreachfaceoftheoriginalpolyhedron, chooseapointinitsinterior(forexample,choosethecenterofgravityoftheface). Thesechosenpointswillbetheverticesofthedualpolyhedron, calleddualvertices. Next, consideranedgeintheoriginalpolyhedron. Thisedgeiscontainedinpreciselytwofacesoftheoriginalpolyhedron. Wethenputanedgeinthedualpolyhedronjoiningthetwodualverticesthatarecontainedinthesetwofacesoftheoriginalpolyhedron. Wethusobtaintheedgesofthedualpolyhedron. Finally, consideravertexintheoriginalpolyhedron. Thisvertexiscontainedinsomefacesoftheoriginalpolyhedron. Wethenputafaceinthedualpolyhedronthathasasitsverticesthedualverticesthatarecontainedinthesefacesoftheoriginalpolyhedron. Wethusobtainthefacesofthedualpolyhedron.Forexample, supposeouroriginalpolyhedronisacube, asshowninFigure 3.1.4 (i). Thedual

ofthecubeisshowninsidethecubeinFigure 3.1.4 (ii). Thisdualpolyhedronhassixvertices,twelveedgesandeightfaces(itiscalledanoctahedron, andwewillencounteritagaininthenextsection).

(i) (ii)

Figure3.1.4

Exercise 3.1.3.

(1) Whatisthedualtoabipyramidoveran n-gon?

(2) Whatisthedualtoapyramidoveran n-gon?

Exercise 3.1.4. Suppose P isaconvexpolyhedron. Whatistherelationbetween P andthedualofthedualof P?

Page 85: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

78 3. Polyhedra

3.2 RegularPolyhedra

Justasregularpolygonswerethemost“uniform”polygonspossible, wewanttofindpolyhedrathatareas“uniform”aspossible. Forapolygontoberegular, itneedstosatisfytworequirement,namelythatalltheedgeshavethesamelengths, andthatalltheanglesareequal(requiringonlyedgesofequallengthdoesnotsuffice). Wewillneedsimilarrequirementstoinsurethatapolyhedroniscompletelyuniform. A convexpolyhedronisa regularpolyhedron ifthefollowingthreeconditionshold: (1)everyfaceisaregularpolygon; (2)allfacesareidentical; and(3)allverticesareidentical, whichmeansthatallverticesarecontainedinthesamenumberoffaces.Itisnothardtoseethatinaregularpolyhedron, alltheedgesmusthavethesamelength.Thatthefirsttwopartsoftheabovedefinitiondonotsufficecanbeseenbyconsideringa

bipyramidoveranequilateraltriangle, asshowninFigure 3.2.1. Ifalltheedgesofthispolyhe-dronhaveequallength, thenconditions(1)and(2)oftheabovedefinitionwillbesatisfied, butwestillwouldnotwanttocallthispolyhedronregular, becausetheverticesdonotall“lookthesame.” Moreprecisely, twooftheverticesarecontainedinthreetriangleseach, whereasthreeoftheverticesarecontainedinfourtriangleseach. Henceweneedcondition(3)ofthedefintionofregularpolyhedra.

Figure3.2.1

In thecaseofpolygons, wesawthat therewere infinitelymanydistinct regularpolygons,one foreachpossiblenumberof edges. That is, there is a regular 3-gon (alsoknownasanequilateraltriangle), aregular 4-gon(alsoknownasasquare), aregular 5-gon, aregular 6-gon,etc. (Ofcourse, eachoneofthesepolygonscouldbeconstructedindifferentsizes, butweareonlyinterestedinshapesthataregenuinelydifferent.) Thefollowingresultshows, somewhatsurprisingly, thatwhatholdsforregularpolygonsdoesnotholdforregularpolyhedra.

Proposition 3.2.1. Every regular polyhedron is one of the five polyhedra described inTa-ble 3.2.1.

Demonstration. Recall thatall regularpolyhedraareassumedtobeconvex. Thekeyto thisdemonstrationisProposition 3.1.2, whichsaysthatatanyvertexofaconvexpolyhedron, thesumoftheanglesatthevertexmustadduptolessthan 360◦.

Page 86: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

3.2RegularPolyhedra 79

Name Faces FacesperVertextetrahedron 4 triangles 3 trianglespervertexcube(akahexahedron) 6 squares 3 squarespervertexoctahedron 8 triangles 4 trianglespervertexdodecahedron 12 pentagons 3 pentagonspervertexicosahedron 20 triangles 5 trianglespervertex

Table3.2.1

Allthefacesinaregularpolyhedronarethesame(andareregularpolygons), andallverticesarecontainedinthesamenumberoffaces. Letusstartbyexaminingthesituationwhenallthefacesofaregularpolyhedronareequilateraltriangles. Weknowthattheanglesinanequilateraltriangleareall 60◦. Howmanyequilateraltrianglescancontaineachvertexofaregularpoly-hedron, andstillhavethesumoftheanglesateachvertexadduptolessthan 360◦? Weobservethat 3 · 60◦ = 180◦, that 4 · 60◦ = 240◦, that 5 · 60◦ = 300◦ andthat 6 · 60◦ = 360◦. Hence,weseethatitmightbepossibletohavearegularpolyhedronwithfacesthatareequilateraltri-angles, andwitheither 3, 4 or 5 facescontainingeachvertex; itwouldnotbepossibletohavearegularpolyhedronwithfacesthatareequilateraltriangles, andwith 6 ormorefacescontainingeachvertex. Thereindeedexistregularpolyhedrawithfacesthatareequilateraltriangles, andwitheither 3, 4 or 5 facescontainingeachvertex, namelythetetrahedron, theoctahedronandtheicosahedron. Thereexistnootherpolyhedrasatisfyingthesamecriteriaforthetypesoffacesandvertices. Wehavethereforefoundalltheregularpolyhedrawithfacesthatareequilateraltriangles.Next, letusexaminethesituationwhenallthefacesofaregularpolyhedronaresquares. We

knowthattheanglesinasquareareall 90◦. Howmanysquarescancontaineachvertexofaregularpolyhedron, andstillhavethesumoftheanglesateachvertexadduptolessthan360◦? Weobservethat 3 · 90◦ = 270◦ andthat 4 · 90◦ = 360◦. Hence, weseethatitmightbepossibletohavearegularpolyhedronwithfacesthataresquares, andwith 3 facescontainingeachvertex; itwouldnotbepossibletohavearegularpolyhedronwithfacesthataresquares,andwith 4 ormorefacescontainingeachvertex.Weseethatacubeisaregularpolyhedronwithfacesthataresquares, andwith 3 facescontainingeachvertex; thecubeisuniqueinsatisfyingthisproperty. Wehavethereforefoundalltheregularpolyhedrawithfacesthataresquares.Now, let us examine the situationwhenall the facesof a regular polyhedronare regular

pentagons. WeknowfromTable 2.3.1 thattheanglesinaregularpentagonareall 108◦. Howmanyregularpentagonscancontaineachvertexofaregularpolyhedron, andstillhavethesumoftheanglesateachvertexadduptolessthan 360◦? Weobservethat 3 · 108◦ = 324◦ andthat 4 · 108◦ = 432◦. Hence, weseethatitmightbepossibletohavearegularpolyhedronwithfacesthatareregularpentagons, andwith 3 facescontainingeachvertex; itwouldnotbepossibletohavearegularpolyhedronwithfacesthatareregularpentagons, andwith 4 ormore facescontainingeachvertex. A dodecahedron isa regularpolyhedronwith faces thatareregularpentagons, andwith 3 facescontainingeachvertex; thedodecahedronisuniquein

Page 87: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

80 3. Polyhedra

satisfyingthisproperty. Wehavethereforefoundalltheregularpolyhedrawithfacesthatareregularpentagons.Finally, letusexaminethesituationwhenallthefacesofaregularpolyhedronareregular

polygonswith 6 ormoreedges. WeknowfromTable 2.3.1 thattheanglesinaregularhexagonareall 120◦, andthattheanglesinaregularpolygonwithmorethan 6 edgesarelargerthan120◦. Howmanyregularpolygonswith 6 ormoresidescancontaineachvertexofaregularpolyhedron, andstillhavethesumoftheanglesateachvertexadduptolessthan 360◦? Theanswerisnone, giventhat 3 · 120◦ = 360◦, and 3 timesananglelargerthan 120◦ wouldbemorethan 360◦. Giventhateveryvertexinapolyhedronmustbecontainedinatleastthreefaces, weseethat itwouldnotbepossibletohavearegularpolyhedronwithfacesthatareregularpolygonswith 6 ormoreedges.Puttingalltheabovetogether, weseethattherearepreciselyfiveregularpolyhedra, aslisted

inTable 3.2.1.

Thefiveregularpolyhedra, whicharelistedinTable 3.2.1, areshowninFigure 3.2.2. Itcanbeshownthat theverticesofeachregularpolyhedronlieonasphere(seeTheorem44.4in[Har00]fordetails). Noticethattheregularpolyhedraarenamedbythenumberoffaceseachonehas. Thefiveregularpolyhedraarealsoknownasthe platonicsolids, inhonorofthean-cientGreekphilosopherPlato. (Forthosefansofchildren’sliterature, youmightknowoftheDodecahedronin“ThePhantomTollbooth;” ifyouarenotfamiliarwiththisbook([Jus61]), itishighlyrecommended.)

Webrieflymentionedthenotionofadualpolyhedron intheprevioussection. Letuslookatthedualsofeachofthefiveregularpolyhedra. Wealreadysawintheprevioussectionthatthedualof thecube is theoctahedron. The reader canverify, by sketching theappropriatepicture, thatthedualoftheoctahedronisthecube. Similarly, itcanbeseenthatthedualofthedodecahedronistheicosahedron, andthedualoftheicosahedronisthedodecahedron.Thedualof the tetrahedron is simply itself. We therefore see that the regularpolyhedraareself-containedinaverynicearrangementwhenitcomestoduality.

Exercise 3.2.1.

(1) Whichoftheregularpolyhedraarepyramids?

(2) Whichoftheregularpolyhedraarebipyramids?

(3) Whichoftheregularpolyhedraareprisms?

(4) Whichoftheregularpolyhedraareantiprisms?

Exercise 3.2.2. Findallconvexpolyhedrathatarebothbipyramidsandantiprisms.

Page 88: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

3.3Semi-RegularPolyhedra 81

Tetrahedron Cube Octahedron

Dodecahedron Icosahedron

Figure3.2.2

Exercise 3.2.3. Supposethatyouhaveacubemadeoutofclay; supposefurtherthattheclayisred, buttheoutsideofthecubeispaintedblue. Youthenslicethecubeinastraightlinewithaknife, causingthecubetobreakintotwopieces. Eachpiecehasanexposedredpolygon, wherethecubewassliced. Dependinguponhowyouslicethecube, youmightgetdifferentexposedpolygons; alltheexposedpolygonswillbeconvex. Forexample, ifyousliceparalleltooneofthefacesofthecube, yourexposedpolygonwillbeasquare;ifyousliceoffacornerofthecuberightnexttoavertex, yourexposedpolygonwillbeatriangle. Whatareallthepossibleexposedpolygonsthatcouldbeobtainedbyslicingthecube?

3.3 Semi-RegularPolyhedra

Regularpolyhedra, asdiscussedintheprevioussection, arethemostuniformpolyhedra. Wenowturntoaslightlybroadercategoryofpolyhedra, namelythe semi-regularpolyhedra, whichareconvexpolyhedrathatsatisfythefollowingtwocondition: (1)everyfaceisaregularpoly-gon; (2)allverticesare identical, whichmeans thatallverticesarecontainedinsametypes

Page 89: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

82 3. Polyhedra

ofpolygonsarrangedinthesameorder. Observethatthefacesarenotallrequiredtobethesametypeofpolygon. Itisthecasethatalledgesinasemi-regularpolyhedronhavethesamelength. Certainlyeveryregularpolyhedronisalsosemi-regular, buttherearesemi-regularpoly-hedrathatarenotregular. Forexample, weseeinFigure 3.3.1 asemi-regularpolyhedroncalledtherhombicuboctahedron, thefacesofwhichareallequilateraltrianglesandsquares, andtheverticesofwhichareeachcontainedinthreesquaresandonetriangle.

Figure3.3.1

Supposewearegivenavertexinapolyhedron. Wedefinethe vertexconfiguration ofthisvertex tobea listofnumbersof the form (a1, a2, . . . , an), where thenumbers a1 throughan arethenumbersofedgesofthepolygonscontainingthevertex, listedinorderaswegoaroundthevertex(itdoesnotmatterwhichpolygonwestartwith). Forexample, inthepolyhe-dronshowninFigure 3.3.1, everyvertexhasvertexconfiguration (3, 4, 4, 4). Thedefinitionofsemi-regularpolyhedraimpliesthatinanysemi-regularpolyhedron, allverticeshavethesamevertexconfiguration.Thefollowingpropositiontellsusallthepossiblesemi-regularpolyhedra.

Proposition 3.3.1. Everysemi-regularpolyhedronisoneofthefollowing:

(A) A regularpolyhedron.

(B) A prismoveraregularpolygon, withthesidesmadeupofsquares.

(C) Anantiprismoveraregularpolygon, withthesidesmadeupofequilateraltriangles.

(D) Oneofthe 14 polyhedradescribedinTable 3.3.1.

Wewillnotdemonstratetheaboveproposition. Thedemonstrationissimilarto, thoughmorecomplexthan, thedemonstrationshowingthatthereareonlyfiveregularpolyhedra(Proposi-tion 3.2.1); formoredetails, see, forexample, theproofofTheorem46.1in[Har00]. Picturesofthe 14 polyhedralistedinTable 3.3.1 aregiveninFigure 3.3.2. ObserveinTable 3.3.1 thattherhombicuboctahedronandpseudorhombicuboctahedronhavethesamevertexconfigurations,andthesamenumbersoffacesofeachtype; however, thesepolyhedraarenotidentical. TherhombicuboctahedronisshowninthelowerleftcornerofFigure 3.3.2, andthepseudorhom-bicuboctahedronisshowninthelowerrightcornerofthefigure. Thepseudorhombicubocta-hedroncanbeobtainedfromtherhombicuboctahedronbyrotatingthetop“cap”by 45◦.

Page 90: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

3.3Semi-RegularPolyhedra 83

Name VertexConfig. TypesofFacestruncatedtetrahedron (3, 6, 6) 4 trianglesand 4 hexagonstruncatedoctahedron (4, 6, 6) 6 squaresand 6 hexagonstruncatedicosahedron (5, 6, 6) 12 pentagonsand 20 hexagonstruncatedcube (3, 8, 8) 8 trianglesand 6 octagonstruncateddodecahedron (3, 10, 10) 20 trianglesand 12 10-gonstruncatedcuboctahedron (4, 6, 8) 12 squares, 8 hexagonsand 6 octagonstruncatedicosidodecahedron (4, 6, 10) 30 squares, 20 hexagonsand 12 10-gonscuboctahedron (3, 4, 3, 4) 8 trianglesand 6 squaresicosidodecahedron (3, 5, 3, 5) 20 trianglesand 12 pentagonsrhombicosidodecahedron (3, 4, 5, 4) 20 triangles, 30 squaresand 12 pentagonssnubcube (3, 3, 3, 3, 4) 32 trianglesand 6 squaressnubdodecahedron (3, 3, 3, 3, 5) 80 trianglesand 12 pentagonsrhombicuboctahedron (3, 4, 4, 4) 8 trianglesand 18 squarespseudorhombicuboctahedron (3, 4, 4, 4) 8 trianglesand 18 squares

Table3.3.1

Figure3.3.2

The14polyhedralistedinTable 3.3.1 areoftencalledthe Archimedeansolids. DonotgetcaughtupindecipheringthenamesoftheArchimedeansolids; itisnotimportant. Moreover,notallauthorsusethesamenamesforthe 14 polyhedralistedinTable 3.3.1. Theonewordfromthenamesofthesemi-regularpolyhedrathatisworthmentioningis“truncated.” Totruncateapolyhedron, wesimplychopoffasmallpiecearoundeachvertex. Forexample, atruncatedcubewillhaveeightsmalltriangles(oneforeachoriginalvertexofthecube), andsixoctagons(oneforeachoriginalsquarefaceofthecube). ThereaderisencouragedtolocatethetruncatedcubeinFigure 3.3.2.

Page 91: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

84 3. Polyhedra

The terms “semi-regularpolyhedron”and “Archimedean solid”areusedwith somevaria-tionintheliterature. Sometextsaddapropertycalled“vertextransitivity” tothedefinitionofsemi-regular (thoughwedonot). Wedonotyethave the tools toexplainvertex transitivity,thoughitwillbeexplainedinSection 5.7. ItturnsoutthatallthepolyhedralistedinProposi-tion 3.3.1 exceptforone, thepseudorhombicuboctahedron, satisfyvertextransitivity. Hence,thosetextsthatrequirevertextransitivitylistonly13Archimedeansolids.Observethatthereareinfinitelymanydifferentsemi-regularpolyhedra, becausetherearein-

finitelymanydifferentsemi-regularprismsandantiprisms(therebeingoneofeachforeachpos-sibleregularpolygon). However, becausetheregularpolyhedra, theprismsandtheantiprismsareallotherwiseknownpolyhedra, sometextsfocusontheArchimedeansolidswhentheydis-cusssemi-regularpolyhedra. Wenotethat, aswasthecaseforregularpolyhedra, theverticesofeachsemi-regularpolyhedronlieonasphere(seeCorollary46.2in[Har00]fordetails).

Exercise 3.3.1. WhatcanbesaidaboutthefacesofthedualofanArchimedeansolid?

Exercise 3.3.2. Weknowthatthedualofeachregularpolyhedronisitselfaregularpoly-hedron. Canithappenthatthedualofanon-regularsemi-regularpolyhedronisitselfasemi-regularpolyhedron? Iftheanswerisyes, giveanexample, andiftheanswerisno,explainwhynot.

3.4 OtherCategoriesofPolyhedra

Intheprevioustwosectionswediscussedregularpolyhedraandsemi-regularpolyhedra, whicharetypesofconvexpolyhedrathatsatisfycertainniceproperties. Inthissectionwediscusstwofurthertypesofrelativelynicepolyhedra. Westartwith deltahedra, whichareconvexpolyhedramadeupentirelyofequilateraltriangles. Wehavealreadyencounteredthreesuchpolyhedra,namelythetetrahedron, theoctahedronandtheicosahedron. Therearesomeotherdeltahedra,besidesthesethree, thoughtheyareneitherregularnorsemi-regular(thatis, notallverticesarecontainedinsametypesofpolygonsarrangedinthesameorder).

BEFORE YOU READ FURTHER:

Therearefivedeltahedrathatareneitherregularnorsemi-regular. Trytofindasmanyoftheseasyoucan.

Thefollowingpropositionlistsallthedeltahedra.

Proposition 3.4.1. Everyconvexdeltahedroniseitheraregularpolyhedron(atetrahedron, anoctahedronoranicosahedron), orisoneofthe 5 polyhedralistedinTable 3.4.1.

Page 92: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

3.4OtherCategoriesofPolyhedra 85

Name Facestriangularbipyramid 6 trianglespentagonalbipyramid 10 trianglessnubdisphenoid 12 trianglestricappedtriangularprism 14 trianglesbicappedsquareantiprism 16 triangles

Table3.4.1

Wenotethatnotallauthorsusethesamenamesforthefivenon-regularconvexdeltahedrathatwehaveusedintheabovetable, thoughthereisnodisagreementovertheactualpolyhe-dra, regardlessoftheirnames. Picturesofthe 5 polyhedra listed inTable 3.4.1 areshowninFigure 3.4.1.

triangular bipyramid

tricapped triangular prism

bicapped square antiprismsnub disphenoid

pentagonal bipyramid

Figure3.4.1

Wenextturntoanevenmorebroadcategoryofpolyhedra, namelythe face-regularpolyhe-dra, whicharepolyhedrathathaveallregularfaces, thoughnotallfacesarenecessarilythesame, andnotallverticesnecessarilyhavethesameconfigurationsoffacescontainingthem.(Wefollow[Har00]inusingtheterm“face-regular.”) Thiscategoryincludesallregularpolyhe-dra, allsemi-regularpolyhedraandalldeltahedra, butthereareothersaswell. Forexample,placingapyramidwithsquarebaseandequilateralsidesontopofacubeyieldstheface-regularpolyhedronshowninFigure 3.4.2. Aswasthecaseforregularandsemi-regularpolyhedra, alltheedgesinaface-regularpolyhedronmusthavethesamelength.

Page 93: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

86 3. Polyhedra

Figure3.4.2

Itturnsoutthattherearealimitednumberofconvexface-regularpolyhedra, thoughtheproofislengthy, andisbeyondthescopeofthisbook. Fortherecord, however, westatethefollowingProposition.

Proposition 3.4.2. Everyconvexface-regularpolyhedroniseitherasemi-regularpolyhedron,oroneof 91 otherpolyhedrathatarenotsemi-regular.

Ofthe 91 convexnon-semi-regularface-regularpolyhedramentionedintheabovePropo-sition, fivearethenon-regulardeltahedralistedinProposition 3.4.1. Weshouldmentionthatsometextslist 92 convexnon-semi-regularface-regularpolyhedra, becausetheydonotcon-siderthepseudorhombicuboctahedron tobesemi-regular(asmentionedinSection 3.3). These91 (or, insometexts, 92)polyhedraaresometimesreferredtoasthe Johnsonsolids, namedafterthepersonwhofirstpublishedthecompletelistofthesepolyhedra(see[Joh66], whichisverytechnical).HavingshownoneoftheJohnsonsolidsinFigure 3.4.2, weleaveittothereadertofindsome

othersinthefirsttwoofthefollowingExercises. Wenotethatallface-regularpyramidswerefoundinExercise 3.1.2.

Exercise 3.4.1. Findallconvexface-regularpolyhedrathathaveidenticalfaces, otherthanthedeltahedra.

Exercise 3.4.2. FindatleasttwoJohnsonsolidsthatarenotpyramids, bipyramidsordelta-hedra, andaredifferentfromtheoneshowninFigure 3.4.2.

Page 94: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

3.5EnumerationinPolyhedra 87

Exercise 3.4.3. A face-regularpolyhedroniscalled elementary ifitcannotbebrokenupintotwoormoreface-regularpolyhedrathatarejoinedalongacommonface. Forexample,theoctahedron isnotelementary, because itcanbebrokenup into twopyramidswithsquarebases. Findatleastoneothernon-elementaryface-regularpolyhedron, andatleastoneelementaryface-regularpolyhedron.

Exercise 3.4.4. Supposewehavetwoface-regularpolyhedra, andoneofthefacesinthefirstpolyhedronisidenticaltooneofthefacesinthesecondpolyhedron. Wecanthengluethetwopolyhedraalongtheiridenticalfaces, yieldingonelargerpolyhedra. Forexample,startingwithacubeandapyramidwithasquarebaseandequilateralsides, andgluingthetwoalongasquarefaceineach, resultsinthepolyhedronshowninFigure 3.4.2.

(1) Is thepolyhedron that results from thegluing two face-regularpolyhedraby thisprocessnecessarilyface-regular? Explainyouranswer.

(2) Supposetheoriginaltwoface-regularpolyhedrawerebothconvex. Isthepolyhe-dronthatresultsfromthegluingnecessarilyconvex? If theanswerisyes, explainwhy, andiftheanswerisno, giveanexampletoshowwhynot.

Exercise 3.4.5. Showthatthereareinfinitelymanynon-convexface-regularpolyhedra.

3.5 EnumerationinPolyhedra

Oneofthenicefeaturesofpolyhedra(asopposedto“smooth”objects, suchasspheres)isthattheyoffersomethingstobecounted, namelythenumberofvertices, thenumberofedgesandthenumberoffaces. Givenapolyhedron, welet V , E and F, respectively, denotethenumberofvertices, edgesandfacesofthepolyhedron. Forexample, foracubewehave V = 8, andE = 12, and F = 6. Forconvenience, wewritethesethreenumbersas (V, E, F), calledthefacevector ofthepolyhedron. Hence, thefacevectorofthecubeis (8, 12, 6).

Page 95: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

88 3. Polyhedra

Exercise 3.5.1.

(1) Whatisthefacevectorofeachoftheregularpolyhedra?

(2) Whatisthefacevectorofeachofthesemi-regularpolyhedra?

Exercise 3.5.2. Findaconvexpolyhedronsuchthatneither E nor F isdivisibleby 3.

Exercise 3.5.3.

(1) Whatisthefacevectorofapyramidoveran n-gon?

(2) Whatisthefacevectorofabipyramidoveran n-gon?

(3) Whatisthefacevectorofaprismoveran n-gon?

(Note: Youranswerforeachpartofthisexercisewillinvolve“n.”)

Exercise 3.5.4. Findabipyramidthathasthesamefacevectorastheicosahedron.

Exercise 3.5.5. Supposethataconvexpolyhedron P hasfacevector (V, E, F). Whatisthefacevectorofthedualof P?

Foreachpolyhedron, wecandetermine its facevector. It canhappen, however, that twodifferentpolyhedrahavethesamefacevector(justastwodifferentpeoplecanhavethesameheightandweight). Forexample, thetwopolyhedrashowninFigure 3.5.1 havethesamefacevectors. Ofcourse, iftwopolyhedrahavedifferentfacevectors, theycannotbethesame.

Whatcanbesaidaboutthenumbers V , E and F thatarisefrompolyhedra? Westartwiththefollowingverysimpleresult, whichfollowsfromthefactthatapolyhedronisasolidobjectinthreedimensionalspace.

Page 96: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

3.5EnumerationinPolyhedra 89

(i) (ii)

Figure3.5.1

Proposition 3.5.1. Supposethat P isapolyhedron.

1. V ≥ 4.

2. E ≥ 6.

3. F ≥ 4.

Inordertosaymoreabout V , E and F, weneedthefollowingnotion. Ratherthansimplylookingatthenumberoffaces, namely F, wewanttolookmorefinely, andcountthenumberoffaceswith 3 edgeseach, denoted F3, thenumberoffaceswith 4 edgeseach, denoted F4, etc.Ingeneral, foreachpositiveinteger n (where n ≥ 3), let Fn denotethenumberoffaceswith nedgeseach. Similarly, foreachpositiveinteger n (where n ≥ 3), let Vn denotethenumberofverticescontainedin n edgeseach. Forexample, forthepolyhedronshowninFigure 3.4.2, wehave F3 = 4, F4 = 5, F5 = 0, F6 = 0, etc.; wealsohave V3 = 4, V4 = 5, V5 = 0, V6 = 0,etc. Thefollowingresultwillbeusefulinprovingvariouspropositionsofinterest.

Proposition 3.5.2. Supposethat P isapolyhedron.

1. F = F3 + F4 + F5 + F6 + · · · .

2. V = V3 + V4 + V5 + V6 + · · · .

3. 2E = 3F3 + 4F4 + 5F5 + 6F6 + · · · .

4. 2E = 3V3 + 4V4 + 5V5 + 6V6 + · · · .

Demonstration.

(1). Thisequationisevidentlytrue, becauseeveryfacehasatleastthreeedges(byProposi-tion 3.1.1 (3)), andisthuscountedpreciselyoneamong F3, F4, F5, etc.

(2). Thisequationisevidentlytrue, becauseeveryvertexiscontainedinatleastthreeedges(byProposition 3.1.1 (2)), andisthuscountedpreciselyoneamong V3, V4, V5, etc.

Page 97: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

90 3. Polyhedra

(3). Thesum 3F3 + 4F4 + 5F5 + 6F6 + · · · countsalltheedgesthatarecontainedinallthefacesofthepolyhedron. However, eachedgeofthepolyhedroniscontainedinpreciselytwofaces, usingProposition 3.1.1 (1). Therefore, thesum 3F3+4F4+5F5+6F6+ · · · countseachedgetwice, andsoitequalstwicethenumberofedges. Inotherwords, wehave 3F3 + 4F4 +5F5 + 6F6 + · · · = 2E.

(4). ThisargumentisverymuchliketheoneforPart (3)ofthisproposition, usingthefactthateachedgeofthepolyhedroncontainstwovertices.

Part (3)oftheabovepropositionboilsdowntoamuchsimplerstatementinthecasewhereallthefaceshavethesamenumberofedges. Moreprecisely, if P isapolyhedronsuchthatallitsfacesare n-gons, then nF = 2E. ThereaderisaskedtodemonstratethisfactinExercise 3.5.6.Intheparticularcasewhere P hasalltriangularfaces, then 3F = 2E.

Exercise 3.5.6. [UsedinThisSection] Supposethat P isapolyhedron.

(1) Supposethatallthefacesof P are n-gons. Showthat nF = 2E.

(2) Supposethatallthefacesof P aretriangles. Showthat F isdivisibleby 2, and E isdivisibleby 3.

(3) Supposethateveryvertexof P iscontainedin q edges. Showthat qV = 2E.

BEFORE YOU READ FURTHER:

Arethereanyinterestingrelationsbetweenthethreenumbers V , E and F thatholdforallpolyhedra, or, atleast, allconvexpolyhedra? Trytolookforsuchrelationshipsyourself.Lookat thevaluesof V , E and F forvariousexamplesofpolyhedra, for instance theregularandsemi-regularpolyhedra; canyoufindanypatterns? Canyoufindanyrelationsbetween V , E and F thatholdsinallexamplesyouhaveexamined?

Thereareindeedrelationsbetweenthenumbers V , E and F thatholdforallpolyhedra. Oneexampleofsucharelationisgiveninthefollowingproposition.

Proposition 3.5.3. Supposethat P isapolyhedron.

1. E ≥ 3

2V .

2. E ≥ 3

2F.

Demonstration.

Page 98: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

3.5EnumerationinPolyhedra 91

(1). UsingProposition 3.5.2 (4)(2), inthatorder, weseethat

2E = 3V3 + 4V4 + 5V5 + 6V6 + · · ·≥ 3V3 + 3V4 + 3V5 + 3V6 + · · · = 3(V3 + V4 + V5 + V6 + · · · ) = 3V.

(2). ThiscaseisverysimilartoPart (1)ofthisproposition; thedetailsarelefttothereader.

Itfollowsfromtheabovepropositionthatforanypolyhedron, thenumberofedgesisalwaysgreaterthanboththenumberofverticesandthenumberoffaces.A moresubstantial(andmoredifficulttodemonstrate)relationbetweenthenumbers V , E and

F thatholdsforanyconvexpolyhedronisthefollowingproposition, knownasEuler’sFormula;itisduetothegreatmathematicianLeonhardEuler (1707-1783).

Proposition 3.5.4 (Euler’sFormula). Foranyconvexpolyhedron, wehave

V − E+ F = 2.

Demonstration. Supposewearegivenaconvexpolyhedron P. Wewant tofigureoutwhatV − E+ F equals. Thefirststepinthisdemonstrationistoformtheprojectionof P, whichwenowdescribe.Consider, forexample, acube. Imaginethatthecubeismadenotofsquaresgluedtogether,

butisjustawireframe. Wecouldthenputalightrightabovethewireframecube, andapieceofpaperbelowthecube, asshowninFigure 3.5.2 (i). Thelightcastsashadowonthepaper; theshadowispicturedinFigure 3.5.2 (ii). Wecallthisshadowthe projection ofthecube. Noticethattheprojectionismadeupofedgesandvertices, andthattheseedgesandverticesdivideuptheplaneintoanumberofregions. Weobservefurtherthatthenumberofverticesintheprojectionisthesameasthenumberofverticesintheoriginalcube, namely 8, andthatthenumberofedges in theprojection is thesameas thenumberofedges in theoriginalcube,namely 12. Further, wenoticethattheprojectiondividesuptheplaneinto 6 regions(ofwhich5 are“bounded”and 1 is“unbounded”), andthatthisnumberofregionsequalsthenumberoffacesofthecube.

Wecouldsimilarlyformtheprojectionofanyconvexpolyhedron P. InFigure 3.5.2 (iii)weseetheprojectionoftheregulartetrahedron. Thesameobservationaboutnumbersofvertices,edgesandregionsthatheldfortheprojectionofthecubeholdsfortheprojectionofanyconvexpolygon. Thatis, thenumberofverticesoftheprojectionequals V , thenumberofedgesoftheprojectionequals E, andthenumberofregionsintheplaneformedbytheprojectionequals F.Therefore, tofigureoutV−E+F for P, wecanjustaswellfigureoutV−E+F fortheprojection(where V and E nowmeanthenumberofverticesandedgesrespectivelyoftheprojection, andF nowmeansthenumberofregions). Itturnsoutthattheprojectionismucheasiertoworkwiththantheoriginalpolyhedron.Wenowproceedbymodifyingtheprojectiononestepatatime. Wewillverifythateach

modificationdoesnotchangethesum V − E+ F, thoughitmightchangeindividualvaluesofV , E and F. First, weaskwhethertheedgesontheprojectionhaveanycomplete“loops.” For

Page 99: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

92 3. Polyhedra

(i) (ii) (iii)

Figure3.5.2

example, supposetheprojectionisasshowninFigure 3.5.3 (i); thereareanumberofcompleteloopsinthisprojection, forexample, theedgeslabeled a, b, c and d formaloop. Weproceedasfollows. Supposewehavealoopinourprojection. Thenchooseoneoftheedgesthatmakeuptheloop(itdoesnotmatterwhich), andwewillremovethatedge. InFigure 3.5.3 (ii), wehaveremovedtheedgelabeled b. Theresultisanewconfigurationofvertices, edgesandregions.Whathappensto V , E and F asaresultofremovingoneedgefromaloop? Weobservethat Visunchanged, that E decreasesby 1, andthat F decreasesby 1. Hence, thenewvalueofthesumwearecalculatingis

V − (E− 1) + (F− 1) = V − E+ F.

Inotherwords, thesumV−E+F isthesameinthenewconfigurationasintheoldconfiguration.Nowconsiderthenewconfigurationofvertices, edgesandregions. Ithasfewerloopsthan

theoriginalprojection. Iftherearestillloops, thenremoveanotheredgefromoneoftheloops.Keepremovingoneedgeatatimeuntiltherearenomoreloopsleft. Afterallthenecessaryremovals, thevalueof V − E + F isstillunchanged, butwenowhaveasimplersituation, inthattherearenoloops. Forexample, weseeinFigure 3.5.3 (iii)onepossibleresultofremovingedgesfromalltheloopsinFigure 3.5.3 (i). (Therearedifferentchoicesforremovingedgesfromloopsateachstage, sotheresultingconfigurationcanvary, butitwillmakenodifference.)Wenowperformadifferent typeofmodification. Becauseour newconfigurationhas no

loops, itmusthave“free”vertices; thatis, verticesthataretheendpointsofonlyoneedge. Forexample, thevertexlabeled A inFigure 3.5.3 (iii)isafreevertex. Wethenchooseafreevertexinourconfigurationwithoutloops, andthenremoveboththefreevertexandthesingleedgeofwhichthevertexisanendpoint; weleaveinplacetheotherendpointoftheremovededge. InFigure 3.5.3 (iv), wehaveremovedthevertex A andtheedgethathas A asanendpoint. Whathappensto V , E and F asaresultofthisnewtypeofprocedure? Weobservethat V isdecreasesby 1, that E decreasesby 1, andthat F isunchanged. Hence, thenewvalueofthesumweare

Page 100: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

3.5EnumerationinPolyhedra 93

calculatingis(V − 1)− (E− 1) + F = V − E+ F.

Inotherwords, thesum V − E + F isonceagainthesameinthenewconfigurationasintheoldconfiguration.Nowconsiderthenewconfigurationofvertices, edgesandregions. Ithasfeweredgesthanthe

originalprojection. Iftherearestilledges, thentheremuststillbefreevertices. Keepremovingoneedgeatatimeuntilthereisonlyoneedgeleft. Then, nomatterwhattheoriginalprojectionwas, thefinalconfigurationwill lookliketheoneshowninFigure 3.5.3 (v). Ateachstepofourprocedure, thevalueof V − E+ F neverchanged. Hence, ifwecancomputethevalueofV − E+ F forthefinalconfiguration, thatwillbethesamevalueasfortheoriginalprojection,andhencefortheoriginalpolyhedron. InFigure 3.5.3 (v)weseethat V = 2, that E = 1 andthat F = 1. Hence V − E + F = 2 − 1 + 1 = 2. Therefore V − E + F = 2 fortheoriginalpolyhedron, whichiswhatwewantedtoshow.

(i) (ii) (iii)

(iv) (v)

a

b

c

d

a c

A

Figure3.5.3

Euler’sFormulahasmanyuses. Forexample, wecanuseittodeducefurtherrelationsbetweenthenumbers V , E and F forconvexpolyhedra. Onesuchresultisthefollowingproposition.

Proposition 3.5.5. Supposethat P isaconvexpolyhedron.

Page 101: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

94 3. Polyhedra

1. 4 ≤ F ≤ 2V − 4.

2. 4 ≤ V ≤ 2F− 4.

Page 102: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

3.5EnumerationinPolyhedra 95

Demonstration.

(1). IfwemultiplyEuler’sFormulaby 2 wehave

2V − 2E+ 2F = 4.

Next, weknowfromProposition 3.5.3 (2)that 2E ≥ 3F. Ifwesubtracttwonumbersfromthesamenumber, thensubtractingthesmallernumbergivesabiggerresult. So, weseethat

2V − 3F+ 2F ≥ 2V − 2E+ 2F = 4.

Itfollowsthat2V − F ≥ 4.

Rearranging, weobtain2V − 4 ≥ F.

CombiningthislastresultwithProposition 3.5.1 (3), wederivethat

4 ≤ F ≤ 2V − 4.

(2). ThisargumentisverymuchliketheoneforPart (1)ofthisproposition, withtheroleoffacesandverticesinterchanged.

Exercise 3.5.7. ThisexerciseusesExercise 3.5.6.Supposethat P isaconvexpolyhedron.

(1) Supposethatallthefacesof P aretriangles. Findaformulaforeachof E and F intermsof V .

(2) Supposethatallthefacesof P arequadrilaterals. Findaformulaforeachof E andF intermsof V .

(3) Supposethatallthefacesof P arepentagons. Findaformulaforeachof E and F intermsof V .

Exercise 3.5.8. Suppose that P isaconvexpolyhedron, andthatall the facesof P aretriangles. Assumefurtherthat P hasatleastfivevertices. Istherealwaysabipyramidoversome n-gonthathasthesamefacevectoras P? Ifthereis, find n intermsofthenumberofverticesof P.

Page 103: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

96 3. Polyhedra

Exercise 3.5.9. Supposethataconvexpolyhedron P isself-dual(thatis, thepolyhedronisit’sowndual). Findaformulaforeachof E and F intermsof V .

Exercise 3.5.10. Find all possible convex polyhedra P that are self-dual (as in Exer-cise 3.5.9), andallthefacesofwhicharetriangles.

Exercise 3.5.11. Supposethat P isaconvexpolyhedron. Showthat E ≤ 3F− 6.

Exercise 3.5.12. Supposethat P isaconvexpolyhedron. Showthat P mustcontainatleastone face thathaseither 3, 4 or 5 edges. (Inotherwords, thisexerciseshowsthat therecannotbeaconvexpolyhedronwithallfaceshaving 6 ormoreedges.)

Wearenow in aposition todiscuss a very interestingquestion regarding face vectors ofconvexpolyhedra. Weknowthateveryconvexpolyhedronhasafacevector (V, E, F). Canwegobackwardsinthisprocess? Thatis, supposewearegiventhreepositiveintegers (x, y, z);dothesethreenumbersnecessarilyformthefacevectorofaconvexpolyhedron? Theanswerisno. Forexample, supposeweweregiventhenumbers (5, 7, 1). Therecannotbeaconvexpolyhedronwiththesenumbersasitsfacevector, because F ≥ 4 foranyanyconvexpolygon(asinProposition 3.5.1 (3)). Howabout (5, 9, 7)? Wedonothaveaproblemwith V , E andF notbeinglargeenough, buttherestillcannotbeaconvexpolyhedronwiththesenumbersasitsfacevector, because 5 − 9 + 7 = 3, andsoEuler’sFormulaisnotsatisfied. Howabout(8, 11, 5)? Euler’sFormulaissatisfiedthistime, buttherestillcannotbeaconvexpolyhedrawiththesenumbersasitsfacevector, because 2 · 5 − 4 = 6, andyet 8 ≰ 6, sothesenumberdonotsatisfyProposition 3.5.5 (2).Theaboveexamplesshowussomeofthereasonswhythreepositiveintegers (x, y, z) might

notbethefacevectorofaconvexpolyhedron. ThefollowingPropositionsaysthatthesearetheonlypossiblethingsthatcangowrong.

Proposition 3.5.6. Supposewearegiventhreepositiveintegers (x, y, z). Thenthesenumbersarethefacevectorofaconvexpolyhedronifandonlyifthefollowingthreecriteriahold:

1. x− y+ z = 2.

2. 4 ≤ z ≤ 2x− 4.

3. 4 ≤ x ≤ 2z− 4.

Page 104: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

3.5EnumerationinPolyhedra 97

Inotherwords, if (x, y, z) satisfytheabovethreecriteria, thentheyarethefacevectorofsomeconvexpolyhedron(possiblymorethanone); iftheydonotsatisfyallthreecriteria, thentheyarenotthefacevectorofaconvexpolyhedron. Thedemonstrationoftheabovepropositionisbeyondthescopeofthisbook.Forexample, supposewearegiventhenumbers (5, 9, 6). Itcanbeverifiedthatthesenumbers

satisfyallthreecriteriainProposition 3.5.6, andsotheymustbethefacevectorofsomepolyhe-dron. Thereaderisaskedtofindsuchapolyhedron(hint: tryconstructingpyramids, bipyramids,andthelikewith 5 vertices).

Exercise 3.5.13. Foreachofthesetsofthreenumbersgivenbelow, statewhetherornotitisthefacevectorofaconvexpolyhedron. Ifitisthefacevectorofaconvexpolyhedron,findsuchapolyhedron; ifnot, explainwhynot.

(1) (5, 10, 6).

(2) (12, 18, 8).

(3) (23, 33, 12).

(4) (10, 20, 12).

DoesEuler’sFormulaholdforallpolyhedra? Theanswerisdefinitelyno. Forexample, considerthepolyhedral“torus” showninFigure 3.5.4 (“torus”isthemathematicalnameforanythingshapedlikethesurfaceofabagel). Itisseenfromthefigurethatthefacevectorofthispolyhedronis (16, 32, 16), andhence V − E + F = 16 − 32 + 16 = 0. ThereforeEuler’sFormuladoesnotholdinthiscase. ItturnsoutthatEuler’sFormulaholdsforthosepolyhedrathatdonothave“holes”throughthem, thoughitisbeyondthescopeofthisbooktogivethedetailsofwhythisistrue.

Figure3.5.4

Page 105: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

98 3. Polyhedra

EventhoughEuler’sformuladoesnotholdforallpolyhedra, itturnsoutthattheconceptofV − E + F isnonethelessusefulforallpolyhedra. Foranypolyhedron P, wedefinethe Eulercharacteristic of P, denoted χ(P), tobethenumber

χ(P) = V − E+ F.

Foranyconvexpolyhedra P, weknowfromEuler’sFormulathat χ(P) = 2. IfwedenotethepolyhedronshowninFigure 3.5.4 by T , thenwesawthat χ(T) = 0. Thoughwecannotgointofurtherdetailshere, weremarkthattheEulercharacteristic, anditsgeneralizations, isaveryimportantconceptinanumberofbranchesofmodernmathematics.Finally, weuseEuler’s formula togiveanotherproofofProposition 3.2.1, whichdescribes

the five platonic solids. What is interesting about this second proof is that it is entirelycombinatorial—thatis, itisbaseduponwholenumbers—andmakesnouseofgeometry.

DemonstrationofProposition 3.2.1. Suppose P isaregularpolyhedron. Thenbydefinition Pisconvex, allfacesof P areidentical; andallverticesof P arecontainedinthesamenumberoffaces(andhencethesamenumberofedges).Supposethateverypolygonof P has n edges, andthateveryvertexof P iscontainedin q

edges. ThenbyExercise 3.5.6 weknowthat nF = 2E and qV = 2E. Hence F = 2nE and

V = 2qE.

Wenowsubstitutetheaboveformulasfor F and V intoEuler’sformula, obtaining

2

qE− E+

2

nE = 2.

Dividingeverytermintheaboveequationby 2E andcancelingyields

1

q−

1

2+

1

n=

1

E.

Because E isapositivenumber, itfollowsthat

1

q−

1

2+

1

n> 0,

andtherefore1

q+

1

n>

1

2. (3.5.1)

Whatvaluesof n and q couldsatisfyEquation (3.5.1)? Thenumbers n and q arebothwholenumber. Moreover, weknowthat n ≥ 3, becauseeverypolygonhasat least 3 edges, andq ≥ 3, becauseinapolyhedroneveryvertexiscontainedinatleast 3 edges.Coulditbethat n ≥ 6? Supposethatistrue. Then 1

n≤ 1

6. ThenEquation (3.5.1)impliesthat

1

q+

1

6≥ 1

q+

1

n>

1

2,

Page 106: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

3.6CurvatureofPolyhedra 99

whichimpliesthat1

q>

1

2−

1

6=

1

3.

Itwouldfollowthat q < 3, whichisimpossible. Hence n ≤ 5. Therefore n isoneof 3, 4 and5.A similarargumentshowsthat q isoneof 3, 4 and 5. Therearethenninepossiblecasesfor

n and q.

1. n = 3 and q = 3. Weverifythat 13+ 1

3= 2

3> 1

2. Thispolyhedronisatetrahedron.

2. n = 3 and q = 4. Weverifythat 13+ 1

4= 7

12> 1

2. Thispolyhedronisanoctahedron.

3. n = 3 and q = 5. Weverifythat 13+ 1

5= 8

15> 1

2. Thispolyhedronisatetrahedron.

4. n = 4 and q = 3. Weverifythat 14+ 1

3= 7

12> 1

2. Thispolyhedronisacube.

5. n = 4 and q = 4. Weobservethat 14+ 1

4= 1

2, andsoEquation (3.5.1)isnotsatisfied.

Hence, thereisnosuchregularpolyhedron.

6. n = 4 and q = 5. Weobservethat 14+ 1

5= 9

20, andsoEquation (3.5.1)isnotsatisfied.

Hence, thereisnosuchregularpolyhedron.

7. n = 5 and q = 3. Weverifythat 15+ 1

3= 8

15> 1

2. Thispolyhedronisaicosahedron.

8. n = 5 and q = 4. Weobservethat 15+ 1

4= 9

20, andsoEquation (3.5.1)isnotsatisfied.

Hence, thereisnosuchregularpolyhedron.

9. n = 5 and q = 5. Weobservethat 15+ 1

5= 2

5, andsoEquation (3.5.1)isnotsatisfied.

Hence, thereisnosuchregularpolyhedron.

WehavethereforeverifiedthattheregularpolyhedraarepreciselythefivepolyhedralistedinTable 3.2.1.

3.6 CurvatureofPolyhedra

Ifwethinkofthe“surfaceofapolyhedron,” wenoticethatatsomeverticesthesurfaceappearstobe“curving”morerapidly, andinotherplacesitappearstobecurvingless. (Theword“curved”mightseemstrangewhenappliedtosomethingthatismadeupofflatpolygons, butthesametermisalsoappliedtosmoothsurfaces(suchasasphere), anditisquitestandard.) Forexample,considerthesurfaceofthepolyhedronshowninFigure 3.6.1. Intuitively, thesurfaceismoresharplycurvedatthevertexlabeledA thanatthevertexlabeled B. Itwouldbenicetoquantifycurvature byassigningtoeachvertexanumberthattellsushowcurvedthesurfaceisatthevertex. A verynicemethodforsodoing, whichwenowdescribe, goesbacktoDescartes. (See[Fed82]foratranslationandexpositionofDescartes’workonpolyhedra.)

Page 107: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

100 3. Polyhedra

A

B

Figure3.6.1

Theideaofcurvatureatavertexofapolyhedronistoseehowfartheneighborhoodofthevertexisfrombeingflat. Iftheneighborhoodisflat, thecurvatureshouldbe 0. Giventhataflatplanehasangle 360◦ aroundanypoint, weuse 360◦ asourbasisofcomparisonformeasuringcurvature. Foranypolyhedron, andforanyvertexofthepolyhedron, wedefinethe angledefectatthevertextobe 360◦ minusthesumofalltheangles(inthevariousfacesofthepolyhedron)thatcontainthevertex. Theangledefectisthecommonmeasureofcurvatureforverticesofpolyhedra. Forexample, if v isavertexinaregularoctahedron, thenthevertexiscontainedinfour 60◦ angles, andthereforetheangledefectatthevertexis

360◦ − (60◦ + 60◦ + 60◦ + 60◦) = 120◦.

Bycomparison, ifw isavertexinaregulardodecahedron, thenthevertexiscontainedinthree108◦ angles, andthereforetheangledefectatthisvertexis

360◦ − (108◦ + 108◦ + 108◦) = 36◦.

Thefactthattheangledefectatthevertexoftheregularoctahedronislargerthantheangledefectatthevertexoftheregulardodecahedroncorrespondstothefactthattheoctahedronisintuitivelymore“sharplypointed”atitsverticesthanthedodecahedron, ascanbeseenbylookingatpicturesofeach(or, evenbetter, lookingatmodelsofthem).

Exercise 3.6.1. Findtheangledefectateachoftheverticesofthefollowingpolyhedra.

(1) A cube.

(2) A regularicosahedron.

(3) ThepolyhedronshowninFigure 3.4.2 (assumingthatallthetrianglesareequilateral).

Page 108: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

3.6CurvatureofPolyhedra 101

Itcanbeseen, usingProposition 3.1.2, thatinaconvexpolyhedron, theangledefectatanyvertexispositive. However, innon-convexpolyhedra, itispossibletohaveanegativeangledefectatavertex. Thereadershouldtrytofindanexampleofapolyhedronwithavertexthathasnegativeangledefect.Simplycalculatingangledefects isof interest, but there ismore to the story than that. In

particular, Descartesdiscoveredaverysubtlefactaboutangledefects, whichwenowstate.

BEFORE YOU READ FURTHER:

Descarteslookedatthesumofalltheangledefectsinaconvexpolyhedron. Examineafewexamplesofpolyhedra, bothregularandnon-regular, and, ineachexample, calculatethesumoftheangledefectsatallthevertices. Doyounoticeapattern?

Ifyoudidtheabovecalculationscorrectly, youshouldhavenoticedthat foreveryconvexpolyhedronthatyoutried, thesumoftheangledefectsatall theverticesis 720◦. Descartesshowedthatthisremarkableresultindeedholdsforallconvexpolyhedra. GiventhatweknowabouttheEulercharacteristic ofpolyhedra(definedinSection 3.5), wecangeneralizeDescartes’resultasfollows. (Descartes, wholivedwellbeforeEuler, wasmostlikelyunawareoftheEulercharacteristic, thoughthereissomedebateaboutthatintheliterature.)

Proposition 3.6.1 (GeneralizedDescartes’Theorem). Supposethat P isapolyhedron. Thenthesumoftheangledefectsatalltheverticesof P equals 360◦ · χ(P).

Demonstration. Suppose a1, a2, . . . , aV aretheverticesof K, andsupposethat t1, t2, . . . , tFarethefacesof K. Notethatthereare V verticesand F faces. Supposethatface tk hasCk edges.Weobservethat

C1 + C2 + · · ·+ CF = 2E;

thisequationcanbeshownverysimilarlytothedemonstrationofProposition 3.5.2 (3); weleavethedetailstothereader.Foravertex ak, welet dk denotetheangledefectat ak; thatis, wehave

dk = 360◦ − (sumoftheanglesatvertex ak).

Thesumoftheangledefects, whichiswhatwearetryingtoevaluate, istherefore d1 + d2 +· · ·+ dV . WenowuseProposition 2.3.3 andtheaboveformulafor C1 +C2 + · · ·+CF toseethat

d1+d2 + · · ·+ dV =

= [360◦ − (sumofanglesat a1)] + · · ·+ [360◦ − (sumofanglesat aV)]

= [360◦ + · · ·+ 360◦︸ ︷︷ ︸V times

]− [(sumofanglesat a1) + · · ·+ (sumofanglesat aV)]

= 360◦ · V − (sumofallanglesof P)

Page 109: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

102 3. Polyhedra

= 360◦ · V − [(sumofanglesin t1) + · · ·+ (sumofanglesin tF)]

= 360◦ · V − [(C1 − 2)180◦ + · · ·+ (CF − 2)180◦]

= 360◦ · V − [(C1 + · · ·+ CF)180◦ − (2 · 180◦ + · · ·+ 2 · 180◦︸ ︷︷ ︸

F times

)]

= 360◦ · V − [2E · 180◦ − 360◦ · F]= 360◦ · V − 360◦ · E+ 360◦ · F= 360◦ · χ(P).

WenotethattheGeneralizedDescartes’TheoremultimatelyreliesuponEuclid’sFifthPostu-late, becauseintheproofofthetheoremweusetheformulainProposition 2.3.3 forthesumoftheinterioranglesinapolygon(whichinturnmakesuseofthefactthatthesumoftheinterioranglesinatriangleis 180◦, whichisprovedusingEuclid’sFifthPostulate).Finally, wecanuse theGeneralizedDescartes’Theorem togiveanotherdemonstrationof

Euler’sFormula(Proposition 3.5.4). Forthisnewdemonstration, weneedthefollowingobser-vationconcerningtheGeneralizedDescartes’Theorem. Recallthatourdefinitionofpolyhedra,asstatedinSection 3.1, involvesthreecriteriaonthefacesofeachpolyhedra, namelythat(1)facesaregluededge-to-edge; (2)everyedgeofafaceisgluedtotheedgeofpreciselyoneotherface; and(3)notwofaces intersectexceptpossiblyalongtheiredgeswhere theyareglued.Thethirdconditionimpliesthatapolyhedrondoesnothaveanyself-intersections. Actually, ifwelookcarefullyatthedemonstrationoftheGeneralizedDescartes’Theorem, itisseenthatwhereascriteria(1)and(2)arecrucial(inshowingthat C1 + C2 + · · · + CF = 2E), weneveractuallyusecriterion(3). Hence, theconclusionofGeneralizedDescartes’Theoremholdsevenforpolyhedrathatdonotsatisfycriterion(3); thatis, forpolyhedrainwhichfacesmightoverlapeachother, thoughwestillonlythinkofthefacesasbeinggluedtoeachotheralongtheiredges.

SecondDemonstrationofEuler’sFormula(Proposition 3.5.4). Suppose that P is a convexpolyhedron. Ourgoalistoshowthat χ(P) = 2.Choosea faceof P; call this face C. We thenstartbyexpanding C in suchaway that it

becomeswiderthantherestof P. SeeFigure 3.6.2 (i)and(ii)foranexampleofsuchstretching.(Notethatthissortofstretchingispossiblepreciselybecause P isconvex.)

Next, wecollapseallof P ontothefaceC, making P completelyflat. Bytheoriginalconvexityof P, weseethatinthecollapsedversionof P therearetwolayersoffaces: wehave C onthebottom, andthentherestof P ontopinasinglelayer. Thecollapsedversionof P isnolongerapolyhedronaswehavediscussedup tillnow, but itdoessatisfycriteria (1)and (2) in thedefinitionofpolyhedra. SeeFigure 3.6.2 (iii) for theresultofcollapsing theexampleshowninFigure 3.6.2 (ii). WhatweseeinFigure 3.6.2 (iii)looksverymuchliketheprojectionswesaw inFigure 3.5.2 (ii)and (iii), althoughweare thinkingof ithere inaverydifferentway.InFigure 3.5.2 (ii)and(iii)wethoughtofthepolyhedronasawireframewithnofaces, andthendrewtheshadowoftheframe; bycontrast, inFigure 3.6.2 (iii)wewanttothinkofthepolyhedronashavingitsfaces, andsimplycollapsingthepolyhedron, facesandall.

Page 110: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

3.6CurvatureofPolyhedra 103

(i) (ii) (iii)

C

Figure3.6.2

Observethattheabovestretchingandcollapsingprocesschangesthegeometryof P, butitdoesnotchange V , E or F. Hence, ifwewanttoshowthat χ(P) = 2, itsufficestoworkwiththecollapsedversionof P, insteadoftheoriginal. So, fromnowon, whenwesay“P,” wewillrefertothecollapsedversion.Letusnowcalculatethesumoftheangledefectsin P. Foreachvertexof P thatisintheinterior

of C, weseethat P isflatnear P, andthereforetheangledefectiszero. Hence, theonlyangledefectsthatarenotzeroareontheboundaryofC. Let a1, a2, . . . , an denotetheverticesoftheboundaryof C. Let α1, α2, . . . , αn denotetheinterioranglesat a1, a2, . . . , an respectively,andlet β1, β2, . . . , βn denotethecorrespondingexteriorangles. (SeeFigure 2.3.6 (i) foranexampleoftheseangles.) Considervertex a1. Giventhewaythat P iscollapsedonto C, weseethatthesumoftheanglesatvertex a1 isprecisely 2α1. Hencetheangledefectat a1 is360◦− 2α1. However, wecansimplifythisexpressionas 360◦− 2α1 = 2(180◦−α1) = 2β1,usingwhatweknowaboutexterioranglesfromSection 2.3. Thesameargumentshowsthattheangledefectat a2 is 2β2, andsimilarlyfortherestoftheverticesof C. Finally, weseethatthesumofalltheangledefectsof P equals

2β1 + 2β2 + · · ·+ 2βn = 2(β1 + β2 + · · ·+ βn).

However, wenotethatProposition 2.3.3 (2)tellsusthat β1+β2+ · · ·+βn = 360◦. Itfollowsthatthesumofalltheangledefectsof P equals 720◦.On theother hand, by theGeneralizedDescartes’Theorem (Proposition 3.6.1), which as

mentionedpriortothisdemonstrationcanbeappliedto P evenwhencollapsed, weknowthatthesumoftheangledefectsof P is 360◦ · χ(P). Comparingourtwocalculationsofthesumoftheangledefects, weseethat 360◦ · χ(P) = 720◦. Itfollowsthat χ(P) = 2, whichisthesameas V − E+ F = 2.

Page 111: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

104 3. Polyhedra

Page 112: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

Part IISYMMETRY &PATTERNS

105

Page 113: POLYGONS, POLYHEDRA, PATTERNS & BEYOND
Page 114: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

4Isometries

4.1 Introduction

Anexcellentplacetostartthestudyofsymmetry isthebook[Wey52], byHermanWeyl, oneof thegreatmathematiciansof the20thcentury. I recommendacareful readingof thefirstchapter(BilateralSymmetry)only; afterthattheauthorlapsesintosometechnicalitiesthatarebest skippedover, though inbetween the technicalparts therearephilosophical ideas (andpictures)thatarewellworthreading. WebeginwithalengthyquotefromWeyl(pp.3–6); theitalicsareintheoriginal.

“IfI amnotmistakentheword symmetry isusedinoureverydaylanguageintwomeanings. Intheonesensesymmetricmeanssomethinglikewell-proportioned,well-balanced, andsymmetrydenotesthatsortofconcordanceofseveralpartsbywhichtheyintegrateintoawhole. Beauty isboundupwithsymmetry. . . Inthissensetheideaisbynomeansrestrictedtospatialobjects; thesynonym“harmony”pointsmoretowardsitsacousticalandmusicalthanitsgeometricapplications . . .

“Theimageofthebalanceprovidesanaturallinktothesecondsenseinwhichthewordsymmetryisusedinmoderntimes: bilateralsymmetry , thesymmetryofleftandright, whichissoconspicuousinthestructureofthehigheranimals, especiallythehumanbody. Nowthisbilateralsymmetryisastrictlygeometricnotionand, incontrasttothevaguenotionofsymmetrydiscussedbefore, anabsolutelypreciseconcept . . .

“ . . . Symmetry, aswideorasnarrowasyoumaydefineitsmeaning, isoneideabywhichman[sic]throughtheageshastriedtocomprehendandcreateorder,beauty, andperfection.

Page 115: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

108 4. Isometries

“. . . FirstI willdiscussbilateralsymmetryinsomedetail . . . Thenweshallgener-alizethisconceptgradually . . . firststayingwithintheconfinesofgeometry, butthengoingbeyondtheselimits throughtheprocessofmathematicalabstractionalongaroadthatwillfinallyleadustoamathematical ideaofgreatgenerality,thePlatonicideaasitwerebehindallthespecialappearancesandapplicationsofsymmetry. Toacertaindegreethisschemeistypicalforalltheoreticknowledge:Webeginwithsomegeneralbutvagueprinciple(symmetryinthefirstsense), thenfindanimportantcasewherewecangivethatnotionaconcreteprecisemean-ing(bilateralsymmetry), andfromthatcasewegraduallyriseagaintogenerality,guidedmorebymathematicalconstructionandabstractionthanbythemiragesofphilosophy; andifweareluckyweendupwithanideanolessuniversalthantheonefromwhichwestarted. Gonemaybemuchofitsemotionalappeal, butithasthesameorevengreaterunifyingpowerintherealmofthoughtandisexactinsteadofvague.”

Thatnicelysumsupwhereweareheading, thoughwewillnotquitemakeittothefullestpossiblelevelofabstraction, thatrequiringagreaterdegreeofmathematicalbackgroundthanweareassuminginthistext. Wewill, nonetheless, getquiteclosetoWeyl’svision.Whentheword“symmetry”isusedcolloquially, itismostofteninreferencetobilateralsym-

metry, alsoknownas left-rightsymmetry. Theroleofbilateralsymmetry inartandnature iswithoutquestionquitelarge, evenifsymmetryisnotverymuchinfavorinthecontemporaryartworld. Indeed, somanyancientculturesusedbilateralsymmetryintheirartandornamen-tationthatitishardnottowonderwhy. Isitbecausethehumanbodyisessentiallybilaterallysymmetric(atleastexternally—theinternalorgansarenotsymmetricallyplaced)? Isitbecausesymmetryhassomearchetypalsymbolism?Biologically, whyisthehumanbodyexternallybilaterallysymmetric(andwhyisitnotsym-

metricinternally)? A relatedissueisthatofleftvs.right. Isthereanyinherentdifferencebetweenthetwo(nottomentionsuperiorityofoneovertheother—recalltheoriginoftheword“sinis-ter”)? Orareleftandrightdistinguishableonlyinthattheyareoppositesofoneanother? Suchphilosophicalquestionsarefascinating, butadiscussionofthemwouldtakeusabitfarafield.Readthefirstchapterof[Wey52]forextremelythoughtfulremarksontheseissues.Theconceptofbilateralsymmetryappliestoplanarobjects, thatis, two-dimensionalobjects

(forexample, adrawing)aswellas tospatialobjects, that is, threedimensionalobjects (forexample, asculpture). Forthesakeofrelativesimplicity, wewillrestrictourattentiontoplanarobjects(exceptinSection 5.7). Notetheword“relative”intheprevioussentence. Aswewillsee, therearemoresubtletiestothestudyofsymmetry—evenofplanarobjects—thanmeetstheeye; planarobjectsareeasiertoworkwiththanspatialones, buteventheyarenottrivial.Thoughtheconceptofbilateralsymmetryisaveryfamiliarone, andmostofuswouldhaveno

troubleidentifyingwhetheranygivenobjectisbilaterallysymmetricornot, aprecisedefinitionofbilateralsymmetrytakessomethought. Imaginethatanintelligentalienlandedinyourbackyard, and, becauseitjusthappenstospeakalanguagethatyouknow, youstartexplainingtoitallsortsofthingsaboutourculture; atsomepointyouusetheword“symmetric”(referring

Page 116: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

4.1Introduction 109

tosomethingthatisbilaterallysymmetric), andthealienasksyouformoredetails. Howwouldyouexplain it? Thereareanumberofwaysyoumightexplain theword“symmetric” to thealien(thoughonlyoneofthemwillturnouttobeusefulwhenweconsidersymmetryatitsmostgeneral).

BEFORE YOU READ FURTHER:

Thinkof variousways inwhichyoucouldexplainwhat itmeans for anobject tobebilaterallysymmetric.

ConsiderthethreeobjectsinFigure 4.1.1; twoofthemarebilaterallysymmetric, andoneisnot(thoughithasothersymmetry). SupposeyouwishtoexplaintoouralienthattheheartinFigure 4.1.1 (i)hasbilateralsymmetry. First, youcouldsaythatitlooksthesamewhenreflectedinamirror (unlike thewritingon thispage, forexample, whichwouldbebackwardswhenreflectedinamirror—unlessyouhappentobeLeonardodaVinci). Ofcourse, thisexplanationwouldnothelpyouralienifithadneverseenamirror. Second, youcouldtakethepieceofpaperwiththeheartonitandfolditinhalfalongtheverticallinethroughthecenteroftheheart,noticingthatthetwohalvesarethusseentobethesame. Thisapproachseemssatisfactory, andwouldprobablymakethingsquitecleartothealien.

(i) (ii) (iii)

Figure4.1.1

A thirdexplanationforthesymmetryoftheheartisthatifyoudrewitonapieceofverythinglass, andthenflippedtheglassoverabouttheverticallinethroughthecenteroftheheart, thedrawingoftheheartwouldlookthesameaftertheflipasbeforeit. Consideredanotherway,supposeyouplayedthefollowinggamewithsomeone. Youdrawafigureonapieceofverythinglass, andyouasktheotherpersontoclosehisorhereyes. Youtheneitherfliptheglassoverabouttheverticallineonthepieceofglassoryoudonot. Next, youaskthesecondpersontoopenhisorhereyes, andtellyouwhetherornotyouflippedtheglass. Ifyouhaddrawnanon-symmetricfigureontheglass, thesecondpersonwouldonlyhavetonotewhetherthefigurelookeddifferenttoseewhetheryouhadflippedtheglassornot. Ontheotherhand, hadyoudrawnaheart(oranyotherbilaterallysymmetricfigure, drawnsothatitslineofsymmetryistheverticallineinwhichyouflipped), thepersoncouldnottellwhetheryouhadflippedthe

Page 117: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

110 4. Isometries

glassornot, becausetheappearanceoftheheartdoesnotchangeasaresultofaflipabouttheverticallinethroughitscenter.Thisthirdmethodofexplainingthebilateralsymmetryoftheheartmayseemthemostcom-

plicated, butit isthemostusefulforourpurposes. Wesayingeneralthataplanarobjectisbilaterallysymmetricifthereisalinesothatiftheplaneisflippedaboutthisline, theobjectappearsunchanged. (Startingtheinnextsection, wewillcallsuchaflipbythemorestandardmathematicalterm“reflection.”) InFigure 4.1.2 (i)thelineusedtodetectbilateralsymmetryfortheheartisvertical. AsseeninFigure 4.1.2 (ii), thelineusedtodetectbilateralsymmetryofanobjectneednotbevertical. Anobjectmayalsobebilaterallysymmetricwithrespecttomorethanoneline, asinFigure 4.1.2 (iii), oreveninfinitelymaysuchlines, asisthecaseofthecircle(Figure 4.1.2 (iv)).

(i) (ii) (iii) (iv)

Figure4.1.2

Thereareothertypesofsymmetrythanjustbilateralsymmetry. Withhindsight, mathemati-cianscametounderstandthatthecommonfeatureofalltypesofsymmetryisthattheycanbedetectedthroughcertaintypesof“motionsoftheplane,” ofwhichflippingisonespecialcase.Anotherexampleofthetypeof“motionsoftheplane”usefultothestudyofsymmetryisrota-tion. Notall“motionoftheplane”areuseful, however. Forexample, stretchingortearingtheplane, whileinterestinginothercontexts, isnotofuseinthestudyofsymmetry. InChapter 5wewillhaveadetaileddiscussionofthesymmetryofvariouscategoriesofplanarobjects. InthischapterwelaythegroundworkforChapter 5 bygivingadetaileddiscussionoftherelevanttypesof“motionsoftheplane.”

4.2 Isometries–TheBasics

Intheprevioussectionwesawthatonewaytodetectthebilateralsymmetryofaplanarobjectisbyflippingtheobjectinaline, andseeingwhethertheobjectappearsunchanged. Flippingtheplaneinalineisoneexampleofacertaintypeof“motionoftheplane”thatiscrucialinthestudyofsymmetry. Twootherexamplesof“motionsoftheplane”wouldberotatingtheplane90◦ clockwiseaboutsomepoint, andshiftingtheentireplane 5 inchestotheright. Moremessy

Page 118: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

4.2Isometries–TheBasics 111

transformationssuchassquashingtheplanedowntoasinglepoint, stretchingtheplane, etc.,canalsobeimagined.Itisveryimportanttonote, however, thatweareinterestedonlyintheneteffectofa“motion,”

not“howitgetsthere.” Forexample, rotationby 90◦ clockwiseaboutsomepointhasthesameneteffectasrotationby 270◦ counterclockwiseaboutthesamepoint, andweconsiderthesetworotationstobethesame“motion.” Similarly, shiftingtheplane 10 inchestotherighthasthesameneteffectasfirstshiftingtheplane 15 inchestotheright, andthenshiftingit 5 inchestotheleft.Theword“motionof theplane” isactuallyanunfortunate term, in that itsusemightgive

thefalseimpressionthatweareinterestedinhowwedothe“motion,” ratherthanjusttheneteffect. Hence, wewillnotusetheinformalterm“motionoftheplane”anymore, andinsteadwilladheretothemorestandardmathematicalterm transformation oftheplane. Byatransformationoftheplane, wemeanaruleofassignmentthattakeseachpointintheplane, andassignsitsomepointwhereitwillendup. Forexample, shiftingtheplane 10 inchestotherighttakeseachpointintheplaneandassignsitanewlocation, namely 10 inchestotherightofitsinitialposition; firstshiftingtheplane 15 inchestotheright, andthenshiftingit 5 inchestotheleft,againtakeseachpointintheplaneandassignsitanewlocationthatis 10 inchestotherightofitsinitialposition. Althoughweashumanbeingsmightthinkofshiftingtheplane 10 inchestotherightasadifferent process thanfirstshiftingtheplane 15 inchestotherightandthenshiftingit 5 inchestotheleft, fromthepointofviewoftransformations, theprocessisirrelevant, andonlytheassignmentofpointstotheirfinallocationsisofinterestinthestudyofsymmetry. Wedenotetransformationswiththesametypeofnotationasusedforfunctions. Thatis, supposeT isatransformationoftheplane. Then, foreachpoint A intheplane, welet T(A) denotetheresultofapplyingthetransformationto A. Forexample, suppose T isthetransformationobtainedbyshiftingtheplane 10 inchestotheright. IfA isapointintheplane, then T(A) willbethepointthatis 10 inchestotherightof A. Notethat T moveseverypointintheplane 10inchestotheright, notjustsomeofthepoints.Tohelpavoidfurtherconfusionovertheterm“transformationoftheplane,” wesummarize

twoimportantpointsasfollows:

1. A transformationoftheplanetakeseachpointintheplane, andassignsittoapointwhereitendsup. Whatcountsistheneteffectofthetransformation, thatis, whereeachpointendsupinrelationtoitsinitialposition. Wemightthinkgeometricallyoftransformationsasprocesses, butthatprocessisjustforourpersonalintuitivebenefit, andhasnomathe-maticalsignificance. Twotransformationsarethesameiftheyhavethesameneteffects,eveniftheyseemdifferentasprocesses.

2. A transformationofplanetransformsthewholeplane, notjustsomepartoftheplane. Evenwhenwewillbelookingatsymmetriesofspecificobjects, andapplyingtransformationsoftheplanetothem, wealwaysneedtothinkofeachtransformationasbeingappliedtothewholeplane.

Page 119: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

112 4. Isometries

Forgettingtheabovetwopointsisacommonmistakeamongstudentsfirstlearningaboutsym-metry, andoftenleadstoalotofconfusion. So, pleasekeepthesetwopointsinmind.Wearenotinterestedinalltransformationsoftheplane, butonlythoserelevanttothestudyof

symmetry. Ifwethinkofflippingtheplaneaboutaline, orrotatingtheplaneaboutsomepoint,weseethatbothofthesetransformationshavethenicepropertythattheydonotstretch, shrinkordistort anything. Bothof these transformationspreserve lengths, angles, sizesand shapesprecisely. Itisthispropertyofnon-distortionthatiscrucialtothestudyofsymmetry. RecallfromSection 1.3 thattheconceptofdistancebetweenpointscanbeusedtodescribeobjectssuchaslinesandcircles, andcanbeusedtodetermineangles. Hence, itshouldnotbesurprisingthatpreservingdistancesbetweenpointsisthekeytodescribingthosetransformationsoftheplanethatdonotstretch, shrinkordistort. Moreprecisely, wesaythatatransformationoftheplaneisan isometry if, foranytwopointsA and B intheplane, theirdistancebeforethetransformationequalstheirdistanceafterthetransformation. UsingournotationfordistancebetweenpointsfromSection 1.3, wesay thata transformation T of theplane isan isometry if, forany twopoints A and B intheplane, wehave d(T(A), T(B)) = d(A,B); equivalently, wecansaythat |T(A) T(B)| = |AB|. (Sometextsusetheterm“rigidmotion” tomeanwhatwecallanisometry, thoughwewillnotusethatterm.)Itisalsopossibletodefinethenotionofisometryforthreedimensional(andhigher)space,

thoughwewillbestickingtoisometriesoftheplane(exceptinSection 5.7); theword“isom-etry”willthereforealwaysrefertoanisometryoftheplane, exceptwhereotherwisenoted. Acompletelythoroughandrigoroustreatmentofisometrieswouldbeverylengthy. Inthischapterwewilldiscusssomeofthebasicideasinvolvingisometries, asmuchasisneededforourstudyofsymmetry. Isometriesare, withoutquestion, thefundamental—andunifying—conceptinthemathematicalstudyofsymmetry, andourtimelookingatisometrieswillbewellspent.Therearemanythingstobesaidaboutisometries, butthemostbasicquestionsis: canwe

figureoutallthetypesoftransformationsoftheplanethatareisometries? ThecompleteanswertothisquestionwillbegiveninSection 4.6. Inthemeantime, wecandescribeindetailthreefamiliartypesofisometries.Thesimplesttypeofisometryiscalled translation. A translationistheresultof“sliding”the

planerigidlyinagivendirection, andbyagivendistance. InFigure 4.2.1 weseetheeffectoftranslatingtheplane 3 inchestotheright. Inthisfigure, asinmanyotherfigurestocome, inordertoseetheeffectoftheisometry, wedrawsomethingontheplane, tobeabletocompareitsinitialpositionwithitsfinalposition. Theplaneitselfisblank, andifwedonotdrawanythingonit, wecannotseeanydifferenceofhowtheplanelooksbeforeandafteranisometry. Imaginetheplaneasaninfinite, verythin, perfectlysmooth, sheetofglass—ifthesheetofglassismoved,itdoesnotlookanydifferent. Instead, wetaketwosheetsofglass, oneontopoftheother. Then,wedrawthesame non-symmetric objectonbothsheetsofglass, directlyontopofeachother.Wewilltypicallydrawtheletter F, becauseitissimple, thoughanynon-symmetricobjectwoulddo. (Weusetheterm“non-symmetric”intuitivelyrightnow; wewilldiscusstheterminmoredetailinSection 5.1.) Wethenperformtheisometryononeofthesheetsofglass. Comparingtheunmovedcopyoftheobject(calledthe initialobject) withthemovedone(calledthe terminal

Page 120: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

4.2Isometries–TheBasics 113

object), wecanobtainapictureoftheeffectoftheisometry. InFigure 4.2.1 weseelabeledtheinitial F andtheterminal F, illustratingtranslationby 3 inchestotheright. Westress, however,thatitisthewholeplanethatisbeingtranslated, notjusttheletter F.

Finitial

Fterminal

Figure4.2.1

A translationoftheplanecanbeinanydirection, andbyanyamount. Oneusefulwaytodescribeatranslationisasfollows. InFigure 4.2.2 weseetheresultoftranslatingtheplane. Inthisfigure, ratherthandrawinganinitialobjectsuchastheletter F, wesimplydrewonepoint,labeled A; thepoint A wastakentoanewpoint, labeled A ′, bythetranslation. Toseehowtheplanewastranslated, wedrewanarrowfrom A to A ′. Thearrowislabeled v. Thisarrowcompletelycharacterizesthetranslation, inthefollowingsense. Supposewehadstartedwithsomeotherpoint intheplane, say B, insteadof A; let B ′ denotethepoint towhich B wasmovedbythetranslation. Itwouldturnoutthatdrawinganarrowfrom B to B ′ wouldyieldanarrowthatisparalleltothearrowfrom A to A ′. Forourpurposeshere, twoparallelarrowsofthesamelengthareconsideredidentical. Sucharrows, whereweconsiderparallelarrowsofthesamelengthtobeidentical, arecalled vectors. Anytranslationcorrespondstoavector, calledits translationvector obtainedasjustdescribed, andanyvectordeterminesatranslation. Givenavector v, wedenoteby Tv thetranslationcorrespondingtothevector v; thatis, thetranslationobtainedbytakingeverypointintheplane, andmovingitbytheamountanddirectionofthevector v. If A isanypointintheplane, then Tv(A) istheresultoftaking A, andmovingitinthelengthanddirectionof v.

A

A’v

Figure4.2.2

A particularlynoteworthytranslationistranslationbyzerolength(itdoesnotmatterwhichdirection), calledthe trivialtranslation. Thetrivialtranslationdoesnot“moveanything,” thoughitisstillatransformationoftheplane, and, inparticular, anisometry. Recallthatatransformationoftheplaneisaruleofassignmentthattakeseachpointintheplane, andassignsitsomepointwhereitwillendup. Inthecaseofthetrivialtranslation, thetransformationtakeseachpoint

Page 121: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

114 4. Isometries

intheplane, andassignsitthefinallocationexactlywhereitstarted. Thisisometrythat“doesnotdoanything”isextremelyimportant(justasthenumberzeroisimportantinthestudyofnumbers). Anothernameforthetrivialtranslationisthe identityisometry, anditisdenoted I.If A isanypointintheplane, then I(A) = A. A translationthatisnotthetrivialtranslationiscalleda non-trivial translation.Anotherfamiliartypeofisometryiscalled rotation. InFigure 4.2.3 weseetheeffectofrotating

theplane 90◦ clockwiseaboutthepoint A; asusual, inordertoseetheeffectofthisisometry,wedrewaletter F ontheplane, andwethenseewherethisletter F endsup. Westress, onceagain, thatitisthewholeplanethatisbeingrotated, notjusttheletter F.

Finitial Fterminal

A

Figure4.2.3

Anyrotationischaracterizedbyknowingtwothings, namelythepointaboutwhichwerotate,calledthe centerofrotation, andtheanglebywhichwerotate. Whenwerotatetheplaneaboutapoint, wecanthinkofourrotationsaseitherclockwiseorcounterclockwise. Becauseweareonly interested in thenet effectof a rotation, not theprocessof rotation, it reallydoesnotmatterwhetherweuseclockwiseorcounterclockwiserotations. Forexample, rotationby 90◦

clockwiseaboutsomepointhasthesameneteffectasrotationby 270◦ counterclockwiseaboutthesamepoint, andsoweconsider these tworotations tobe thesame isometry. Moreover,bothoftheserotationshavethesameneteffectasrotationby 450◦ clockwise. Inordertoavoidredundancy, wewillusuallymakeuseof clockwise rotations; all rotationswillbeassumedclockwise, unlessotherwiseindicated. (Sometextsusecounterclockwiserotations, andsoinanytextyouread, itisimportanttomakesurewhichdirectionofrotationisbeingused.)Thenotationfortherotationbyangle α clockwisewithcenterofrotation A isdenoted RA

α ;ifitisnotimportanttodenotethecenterofrotation, wesometimeswrite Rα. Forexample, therotationshowninFigure 4.2.3 canbewrittenas RA

90◦ . Ifwewanttospecifyacounterclockwiserotation, wewillusenegativeangles. Forexample, therotationshowninFigure 4.2.3 couldalsobewrittenas RA

−270◦ . Insteadofusingdegreestodescribeangles, weoftendescriberotationintermsoffractionsofawhole 360◦ rotation. Forexample, arotationby 90◦ isthesameas 1/4ofawhole 360◦ rotation. Hence, wecanalsowritetherotationshowninFigure 4.2.3 as RA

1/4.

Page 122: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

4.2Isometries–TheBasics 115

Ingeneral, weusethenotation RA1/n, where n isawholenumber, tomeanaclockwiserotation

by 360◦/n, that is, a rotationby 1/n ofawhole 360◦ turn. Wecommonlycall rotationby180◦ a halfturnrotation (orjust halfturn). Rotationbyangle 0◦, orequivalentlybyanywholenumbermultipleof 360◦, isreferredtoasthe trivialrotation, andit is thesameisometryastheidentityisometry I mentionedpreviously. Notethat 0◦ isamultipleof 360◦, because 0◦ =0·360◦, sowecansimplystatethatatrivialrotationisonewheretheangleisamultipleof 360◦,where“multiple”inthiscontextwillalwaysmeanbyawholenumber. (Itmayseemstrange,buttranslationbyzeroisindeedthesameisometryasrotationbyzero.) A rotationthatisnotthetrivialrotationiscalleda non-trivial rotation.

Exercise 4.2.1. Drawtheeffectontheletter R showninFigure 4.2.4 astheresultofrotatingtheplaneby 60◦ clockwiseabouteachofthepointsshown. (Therewillbefouranswers,oneforeachpoint.)

BD

C

A R

Figure4.2.4

Thereisaveryinterestingdifferencebetweentranslationsandrotations. Whenwetranslatetheplanebyanyamountotherthanzero, nopointendsupwhereitstarted. Bycontrast, whenwerotatebyanyangleotherthanamultipleof 360◦, thereisalwaysone(andonlyone)pointthatdoesendupwhereitstarted, namelythecenterofrotation. A pointthatendsupwhereitstartedafterwedoanisometryoftheplaneiscalleda fixedpoint oftheisometry. If R isanisometry, andif X isapointintheplane, then X isafixedpointof R preciselyif R(X) = X.Usingthisterminology, weseethatanon-trivialtranslationhasnofixedpoints; thatanon-trivialrotationhasonefixedpoint; andthattheidentityisometryhaseverypointasafixedpoint.Althoughanon-trivial translationhasnofixedpoints, observethatanylinethat isparallel

tothedirectionoftranslationistakentoitselfbythetranslation. Forexample, iftheplaneistranslated 5 inchestotheright, thenanyhorizontallineistakenontoitselfbythetranslation;eachnon-horizontallineisnottakenontoitselfbythistranslation. A linethatistakenontoitselfbyanisometryoftheplaneiscalleda fixedline oftheisometry. A fixedlineisalinethatistakenontoitself; theindividualpointsofthefixedlineneednoteachbetakenontothemselves.

Page 123: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

116 4. Isometries

Theidentityisometryhaseverylineintheplaneasafixedline. Donon-trivialrotationshavefixedlines? Theanswerdependsupontheangleofrotation. A rotationby 180◦ (oranymultipleof 180◦)takeseverylinecontainingthecenterofrotationontoitself, soalltheselinesarefixedlinesoftherotation; linesthatdonotcontainthecenterofrotationarenotfixed. Ontheotherhand, arotationthatisnotbyamultipleof 180◦ hasnofixedlines.Thethirdtypeofisometrywewishtoexamineiscalled reflection. Reflectionisthemathemat-

icaltermforflippingtheplaneinaline. InFigure 4.2.5 weseetheeffectofflippingtheplaneinthelinelabeled n; asusual, wedrewaletter F ontheplaneasaninitialobject, andwethenseewherethis F endsupasaresultofthereflection. Westress, asalways, thatitisthewholeplanethatisbeingreflected, notjusttheletter F.

initial

terminalF

Fn

Figure4.2.5

A reflectionischaracterizedbythelineinwhichtheplaneisflipped, calledthe lineofreflec-tion (alsoknownasthe lineofsymmetry or mirrorline). Thenotationforareflectioninline nisMn; ifwehaveanumberoflines, forexample L1, . . . , Ls, thenwewillwritethereflectionsintheselinesas M1, . . . ,Ms whenthemeaningisclear.Althoughwethinkofreflectioninalineasflippingtheplaneaboutthatline, thereisanother

wayofthinkingaboutreflectionthatcapturestheideabetter(especiallyifwewanttocomparereflectionoftheplaneinalinewithreflectionofthreedimensionalspaceinaplane—whichisreflectioninamirror). Recallthatwhatcountsinanisometryisonlyitsneteffect, thatis,whereeachpointoftheplaneendsupinrelationtoitsinitialposition, andnotthegeometricprocessusedtovisualizetheisometry(forexample, flippingtheplaneinthecaseofreflection).LetuslookatFigure 4.2.5. Picksomepointintheinitial F, andthenfinditscorrespondingpointintheterminal F; forexample, wewillpickthepointattheverybottomrightoftheinitial F.Whatistherelationofthispointintheinitial F andthecorrespondingpointintheterminal F?InFigure 4.2.6 welabelthechosenpointontheinitial F by A, anditscorrespondingpointontheterminal F by A ′. Wecanthendrawthelinesegment AA ′, asshowninthefigure. Thecrucialobservationisthat AA ′ isperpendiculartothelineofreflectionm, andthatthepointsA and A ′ areeachthesamedistancefromtheline m, thoughonoppositesidesofit. Thatis,ifwelabelthepointofintersectionof AA ′ and m by O, thenthelengthsof AO and A ′ O

Page 124: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

4.2Isometries–TheBasics 117

areequal. Whatwehavesaidaboutthepoint A alsoholdsforanyotherpointintheinitialF. Therefore, giventheline m andtheinitial F, insteadofobtainingtheterminal F byflippingtheplaneabout m, wecouldhavefoundtheterminal F bytakingeachpointintheinitial F,drawingaperpendicularlineto m fromthepoint, andthenlocatingthecorrespondingpointontheterminal F bycontinuingtheperpendicularpastm thesamedistancewewentfromthestartingpointto m. Bydoingthisprocesstosufficientlymanypointsontheinitial F (oranyotherinitialobject), wecouldconstructtheterminalobject. Thismethodalsoholdsinthreedimensionalspace. Whenyoulookatyourselfinthemirror, yourimageisasfarbehindthemirrorasyouareinfrontofit.

initial

terminalF

Fm

A

A’

O

Figure4.2.6

Exercise 4.2.2. Drawtheeffectontheletter R showninFigure 4.2.7 astheresultofre-flectingtheplaneineachofthelinesshown. (Therewillbethreeanswers, oneforeachline.)

Tocomparereflectionswithtranslationsandrotations, recallthenotionoffixedpoints. Inareflection, everypointonthelineofreflectionisfixed, butnootherpoint isfixed. This factcontrastswithnon-trivial translations, whichhavenofixedpoints, andnon-trivial rotations,whichhaveonefixedpointeach. Theidentityisometryhasallpointsfixed. Observethatunliketranslationsandrotations, whichcanbetrivialornot(thatis, therearetranslationsandrotationsthatequaltheidentityisometry), thereisnotrivialreflection; thatis, noreflectioncanequaltheidentityisometry.

Exercise 4.2.3. Suppose m isalineintheplane. Describeallfixedlines ofthereflectionMm.

Page 125: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

118 4. Isometries

Rm

p

n

Figure4.2.7

Exercise 4.2.4. [UsedinSections 4.5, 4.3 and4.6, andAppendixA] Supposethat A andB aredistinctpointsintheplane. Let m betheperpendicularbisectorof AB.

(1) Showthat Mm takes A to B andtakes B to A, andthat Mm istheonlyreflectionoftheplanetodoso.

(2) Showthat Mm fixesanypointthatisequidistantto A and B.

Thereisanotherimportantdistinctionbetweenthetranslationsandrotationsontheonehand,andreflectionsontheotherhand. InFigure 4.2.1 weseetheeffectofatranslationontheletterF; inFigure 4.2.3 weseetheeffectofarotationontheletter F. Certainly, inFigure 4.2.1 theterminal F stilllooksjustlikealetter F. InFigure 4.2.3 theterminal F doesnotlookpreciselyliketheletter F usuallydoes, butifyouturnyourhead(orthepage)justtherightamount, theterminal F doeslooklikeastandardletter F. Bycontrast, inFigure 4.2.5, whichshowstheeffectofareflectionontheletter F, nomatterhowyouturnyourhead, theterminal F doesnotlookright. Thereflection“reverses”theletter F (andanyotherinitialobject), andthusitdoesnotlooklikeastandardletter F. Theterminal F looks like themirror imageof the initial F. Theformalterminologyweuseisthattranslationsandrotationsare orientationpreserving, whereasreflectionsare orientationreversing.Wehavesofardiscussedthreeparticulartypesofisometries: translations, rotationsandre-

flections. Arethereanyothertypesofisometries, ordothesethreetypesincludeallisometries?Intuitively, itishardtoimagineanyothertypeofisometry, butthatisnotarigorousargumentthatwoulddemonstratethatthethreetypesofisometriesaretheonlytypesthatexist. Toobtainabetterfeelforthisquestion, weneedtolookatisometriesfromaslightlydifferentpointofview, asdiscussedinSection 4.3.

Page 126: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

4.3RecognizingIsometries 119

4.3 RecognizingIsometries

InSection 4.2, wediscussedisometriesastransformationsoftheplane. Toseewhateffectaparticularisometryhas, wewoulddrawanobjectintheplane, suchastheletter F, andseewhathappenedtotheobjectasaresultoftheisometrybycomparingtheinitialobjectwiththeterminalobject. Wenowwanttotakea“backwards”lookatisometries. Supposetwopeopleweretoplaythefollowinggame. Onepersondrawsaletter F onablackboard, tobeusedasaninitialobject. Thesecondpersonthencloseshereyes. Thefirstpersonchoosessomeparticularisometry, performstheisometry, anddrawstheterminal F ontheboardthatresultsfromapplyingtheisometry. Thefirstpersontheneraseseverythingontheboardotherthantheinitial F andtheterminal F. Thesecondpersonnowopenshereyes, andlooksatthetwoletters F ontheboard. Canthesecondpersonfigureoutwhatisometrythefirstpersonused? Inotherwords,insteadoftakinganisometryandseeingwhatitseffectis, thesecondpersonseestheeffectoftheisometry, andtriestofigureoutwhattheisometryis.Itwillturnoutthatthesecondpersoncanalwaysfigureoutwhatisometrythefirstperson

used; howthesecondpersondoessoisthesubjectofthepresentsection, thoughthecompleteanswerwillbegivenonlyinSection 4.5. Thereis, however, onecaveat. Supposethefirstpersondoesthefollowing. First, shetranslatestheplane 15 inchestotheright. Then, beforethesecondpersonopenshereyes, shetranslatestheplane 5 inchestotheleft, anddrawstheterminal Fafterdoingbothtranslations. Theneteffectwillbethattheterminal F liesexactly 10 inchestotherightoftheinitial F. Thefirstpersontheneraseseverythingontheblackboardotherthantheinitialandterminalletters F. Whenthesecondpersonopenshereyesandtriestofigureoutwhatisometrywasused, shewouldmostlikelythinkthattheisometryusedwastranslationoftheplaneby 10 inchestotheright. Thereisnowaythatthesecondpersoncouldguessthatthefirstpersonstartedbytranslatingtheplane 15 inchestotheright, andthentranslatingtheplane5 inchestotheleft. Theonlythingthatthesecondpersoncanfigureoutistheneteffectofwhatthefirstpersondid, nottheparticularprocess. However, asmentionedinSection 4.2, itisonlyneteffectthatisofinterestinourdiscussionofisometries.Letusnow rephraseourquestion. Supposewehave two identical letters F on theplane,

onelabeledastheinitialobject, andonelabeledastheterminalobject. Canwefindasingleisometryoftheplanethatwouldhavetheeffectoftakingtheinitial F totheterminal F? (Itmightwellbeaskedwhetherwecanfindmorethanoneanswer, butitwillturnoutthatthereisnevermorethanone; thisfactisprovedrigorouslyinAppendix A,butwewillnotgointothedetailshere.)Letusstartbylookingatsomeparticularcases. First, considertheinitialandterminalletters

F showninFigure 4.3.1.

Here it seems fairlyclear thatwecanfindasingle isometryof theplane thatwouldhavetheeffectof taking the initial F to the terminal F, namelya translation. Tofigureoutwhichtranslation, labelsomepointontheinitial F bytheletter A; thenlabeltheexactcorrespondingpointontheterminal F bytheletterA ′. InFigure 4.3.2 wehavetakentheleft-mostpointonthebottomofeachletter F asthepointbeinglabeled. Wecanthentake v tobethevectorfrom A

Page 127: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

120 4. Isometries

Finitial F

terminal

Figure4.3.1

to A ′. Thetranslation Tv istheisometrywearelookingfor; thatis, ithastheeffectoftakingtheinitial F totheterminal F. Observethatitwouldnothavemadeanydifferencehadwechosenadifferentpoint A intheinitial F, aslongas A ′ isthepointintheterminal F thatcorrespondstoourchoiceof A.

Finitial

A’

A

vFterminal

Figure4.3.2

Next, considertheinitialandterminalletters F showninFigure 4.3.3. Isthereasingleisometrythatwouldhavetheeffectoftakingtheinitial F totheterminal F?

F Finitial terminal

Figure4.3.3

Letusconsiderthethreetypesofsymmetrieswithwhichwearefamiliar, namelytranslations,rotationsandreflections. A translationcouldnotpossiblytaketheinitial F to theterminal FinFigure 4.3.3, becausethelatterisatananglewiththeformer. A reflectionalsocouldnotpossiblytaketheinitial F totheterminal F, becauseareflectionisorientationreversing, and

Page 128: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

4.3RecognizingIsometries 121

yettheterminal F isnotreversed. Hence, theonlytypeofisometrywithwhichwearefamiliarthatcouldpossiblyworkisarotation. Itturnsoutthatarotationdoesindeedwork. Tofindtherotationthatworks, weneedtofinditscenterofrotationandangleofrotation.Westartbyfindingthecenterofrotation. Aswasthecaseinthepreviousexample, weproceed

bylabelingsomepointontheinitial F bytheletter A, andlabelingthecorrespondingpointontheterminal F bytheletterA ′. Whereverthecenterofrotationweareseekingislocated, itmustbeequidistanttothetwopoints A and A ′; thatis, ifapoint X intheplaneisthesoughtaftercenterofrotation, then d(X,A) = d(X,A ′). WenowmakeuseofProposition 1.3.1, whichsaysthatapoint X intheplanehas d(X,A) = d(X,A ′) ifandonlyifitisontheperpendicularbisectorof AA ′. Hence, wecannarrowoursearchforthecenterofrotationtothosepointsontheperpendicularbisectorofAA ′. SeeFigure 4.3.4. Howdoweknowwhichpointonthislineisthecenterofrotation? Thetrickistorepeatourprocedurewithanotherpairofcorrespondingpoints, say B and B ′. Thecenterofrotationisalsoontheperpendicularbisectorof BB ′. ThesetwoperpendicularbisectorsareshowninFigure 4.3.5. Noticethatthesetwolinesintersectinpreciselyonepoint. Becausethecenterofrotationmustbeonthetwoperpendicularbisectors,itmustbepreciselythepointwherethetwoperpendicularbisectorsintersect. Wehavethereforefoundthecenterofrotation. ItturnsoutthatitdoesnotmatterwhichpointsA and B wechooseon the initial F; wewillalwaysobtain thesamecenterof rotation, labeled O in thefigure.Finally, tofindtheangleofrotation, justmeasuretheanglebetweenfromthelinesegmentOA

tothelinesegment OA ′; itwouldworkjustaswelltouse OB and OB ′. Alltold, wehavenowdeterminedtherotationthattakestheinitial F totheterminal F.

FFinitial terminal

AA’

Figure4.3.4

Asourthirdexample, considertheinitialandterminalletters F showninFigure 4.3.6. Onceagainweaskwhetherthereisasingleisometrythatwouldhavetheeffectoftakingtheinitial Ftotheterminal F.

Page 129: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

122 4. Isometries

FFinitial terminal

AA’

BB’

O

Figure4.3.5

F

Finitial

terminal

Figure4.3.6

Inthiscase, weseethattheterminal F hasreversedorientationwhencomparedtotheinitialF. Hence, theonlytypeofisometrywithwhichwearefamiliarthatcouldpossiblyworkisareflection. Itturnsoutthatareflectiondoesindeedwork. Howdowefindthelineofreflection?Asbefore, westartby labelingsomepointon the initial F by the letter A, and labeling thecorrespondingpointontheterminal F bytheletter A ′. UsingExercise 4.2.4 (1), weknowthatthelineofreflection, ifthereisone, mustbetheperpendicularbisectorofAA ′. SeeFigure 4.3.7.

Page 130: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

4.3RecognizingIsometries 123

Ifanyotherpairofcorrespondingpointsontheinitial F andterminal F ischosen, say B and B ′,thentheperpendicularbisectorof BB ′ isseen(inthecaseofFigure 4.3.6)tobethesamelineastheperpendicularbisectorof AA ′. Wehavethereforefoundthedesiredlineofreflection.

F

Finitial

terminal

A

A’

B

B’

Figure4.3.7

Exercise 4.3.1. IneachofthethreepartsofFigure 4.3.8 areshowninitialandterminalletters F, obtainedbyusingan isometry. Foreachof the threecases, statewhat typeofisometrywasused. Moreover, iftheisometryisarotation, indicateitscenterofrotation;if the isometry isa translation, indicate the translationbyanarrow; if the isometry isareflection, indicatethelineofreflection.

Asourfinalexample, considertheinitialandterminalletters F showninFigure 4.3.9. Isthereasingleisometrythatwouldhavetheeffectoftakingtheinitial F totheterminal F?

Asinthepreviousexample, weseethattheterminal F hasreversedorientationwhencom-paredtotheinitial F. Hence, notranslationorrotationcouldwork. A reflectionmightseemlikeagoodbet, butthattoodoesnotwork. InFigure 4.3.10 weseetwopairsofcorrespondingpointsontheinitial F andterminal F, labeledA andA ′, and B and B ′. Weseeinthiscasethattheperpendicularbisectorof AA ′ isnotthesamelineastheperpendicularbisectorof BB ′. Ifareflectiontooktheinitial F totheterminal F, thenitwouldneedtohavebothperpendicularbisectorsasitslineofreflection, whichmakesnosense. Hence, thereisnoreflectionthattakestheinitial F totheterminal F.

Whatcanwesayasaresultofthislastexample? Wewouldhavetodrawoneoftwopos-sibleconclusions: eitherthattwoidenticalcopiesoftheletter F canbedrawnintheplanein

Page 131: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

124 4. Isometries

(iii)

(i) (ii)

FterminalF

initial

FFinitial

Finitial

Fterminal

terminal

Figure4.3.8

Finitial

Fterminal

Figure4.3.9

suchaway thatno isometryof theplane takesone to theother, or, alternatively, that thereareisometriesotherthanthethreetypeswehavediscussedsofar(translations, rotationsandreflections). Whichofthesepossibilitiesisthecorrectone? Wewillseetheanswertothisques-tioninSection 4.5. First, however, wewillneedaveryimportanttool, whichisdescribedinSection 4.4.

Page 132: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

4.4CombiningIsometries 125

FF

initial

terminalA

A’

B

B’

Figure4.3.10

4.4 CombiningIsometries

Justasnumbersbecometrulyusefulonlywhenwecanadd, subtract, multiplyanddividethem,thetransformationsoftheplanediscussedabovebecomemuchmoreinterestingwhenweseehowtocombinethem. Ifwethinkofatransformationoftheplaneasawayofmovingthepointsintheplane, thenifwearegiventwotransformations, wecancombinethembyfirstdoingoneandthendoingthesecond. Suppose P and Q aretransformationsoftheplane; welet Q ◦ P

denotethecombinedtransformationobtainedbyfirstdoing P andthendoing Q. WerefertoQ ◦ P asthe composition of P and Q. (Thenotation Q ◦ P mayseem“backwards”atfirstglance, inthatitmeansdoing P firstratherthanQ first, butthisnotationisverystandardinthemathematicalliterature, andisalsoquiteconvenientinsomesituations, sowewillstickwithit.) Thephrases“P followedby Q”and“Q following P”meanthesamethingas Q ◦ P. Onewayofobtainingafeelforthenotation Q ◦ P isbylookingatwhat Q ◦ P doestoapointA intheplane. Theresultofapplyingtheisometry Q ◦ P tothepoint A wouldbedenoted(Q ◦ P)(A). However, weknowthatthepoint (Q ◦ P)(A) isobtainedbyfirstdoing P to A,resultinginthepoint P(A), andthendoing Q tothat, resultinginthepoint Q(P(A)). Hence,weseethat (Q ◦ P)(A) = Q(P(A)).Beforewelookatexamplesofcompositionsofisometries, weneedtoaskthefollowingques-

tion: thecompositionoftwoisometriesisatransformationoftheplane; isitalsoanisometry?Fortunately, theanswerisyes. Intuitively, thisassertionseemsreasonable, becausedoingeachoftwoisometriesindividuallydoesnotchangedistancesbetweenpointsintheplane, sodoingthemconsecutivelyshouldnotchangedistancesbetweenpoints. UsingournotationfordistancebetweenpointsfromSection 1.3, wecanwriteoutourdemonstrationformallyasfollows.

Proposition 4.4.1. Supposethat P and Q areisometries. Then Q ◦ P isanisometry.

Demonstration. Supposethat A and B arepointsintheplane. Weneedtoshowthattheirdis-tancebeforethetransformationQ ◦ P equalstheirdistanceafterthetransformation. Because Pisanisometry, weknowthat d(P(A), P(B)) = d(A,B). Because Q isanisometry, weknow

Page 133: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

126 4. Isometries

that d(Q(P(A)), Q(P(B))) = d(P(A), P(B)). Itthenfollowsthat d(Q(P(A)), Q(P(B))) =d(A,B). However, we know that Q(P(A)) can be rewritten as (Q ◦ P)(A), and thatQ(P(B)) canberewrittenas (Q ◦ P)(B). Puttingourobservationstogether, wededucethatd((Q ◦ P)(A), (Q ◦ P)(B)) = d(A,B). Wehavethereforeshownpreciselywhatisneededtoseethat Q ◦ P isanisometry.

Letuslookatsomeexamplesofcompositionofisometries. InFigure 4.4.1 weseefourlineslabeledm, n, k and l, withthelinesallintersectinginapointA. Letusstartwithaverysimplecomposition, namely RA

1/4 ◦ RA1/2. Thiscompositionmeansfirstrotatingtheplaneclockwiseby

1/2 ofawholerotationcenteredatA, andthenrotatingtheplaneclockwiseby 1/4 ofawholerotationcenteredatA. Theneteffectofthiscompositionisclearlyrotatingtheplaneclockwiseby 3/4 ofawholerotationcenteredat A. Insymbols, wehave RA

1/4 ◦ RA1/2 = RA

3/4.

A

n

m

k

l

Figure4.4.1

Next, letustryaslightlymorecomplicatedcomposition, namely Mm ◦ RA1/2. Hereitwould

behardtoguesstheanswer, aswedidinthepreviouscomposition. Rather, wewillcalculatethecompositionbydrawinganobjectontheplane, forexampletheletter F, andthenseeingwhathappenstotheletter F asaresultofdoingeachofthetwoisometriesinthegivenorder.Intheleft-mostpartofFigure 4.4.2, weseethataletter F hasbeendrawn. (Wecouldjustaswellhavedrawntheletter F anywhereelseintheplane.) InthemiddlepartofFigure 4.4.2,weseetheresultofdoing RA

1/2 totheplane. Itisimportanttoobservethatwhiletheletter F

hasbeenmovedasaresultofdoing RA1/2, thelinesofreflectionhavenotmoved; theyarefixed

linesofreference, andarenotpartoftheplanethatistransformedwhenwedoanisometry.Hence, whenwereferto Mm, forexample, wewillalwaysbereferringtothesameline, nomatterwhatotherisometrieswemighthavedonepreviously. (Ifthemeaningofsymbolssuchas“Mm”weretodependuponwhatcamebeforeit, thenthesamesymbolswouldmeandifferentthingsindifferentsituations, whichwouldleadtomuchconfusion.) Intheright-mostpartofFigure 4.4.2, weseetheresultofdoing Mm totheletter F inthemiddlepartofthefigure. Thecomposition Mm ◦ RA

1/2, whichwearetryingtocompute, thereforetakestheletter F shownintheleft-mostpartofthefigure, andmovesittowhereitisshownintheright-mostpartof

Page 134: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

4.4CombiningIsometries 127

thefigure. Now, byProposition 4.4.1, weknowthatthecomposition Mm ◦ RA1/2 isitselfan

isometry. So, weneedtofinda single isometrythatwouldtaketheletter F intheleft-mostpartofthefiguretotheletter F intheright-mostpartofthefigure. TheanswerisseentobeMk. Wethereforeseethat Mm ◦ RA

1/2 = Mk.

l l

k

Am

n

l

k

F

Am

n

Fk

Am

nF

R1/2

AMm

R1/2

AMm Mk° =

Figure4.4.2

Inpractice, it ispossible todo theabovecompositionabitquickerbydoing itall inonedrawing, butlabelingeachstep, asshowninFigure 4.4.3. Ifyoudocompositionsbythisquickermethod, makesureyoulabeleachstep; otherwise, itwillbeimpossibleforyoutogobackandfigureoutwhatyoudid(orforanyoneelsetounderstandwhatyoudid).

Weareallfamiliarwithsomeofthebasicpropertiesofadditionandmultiplicationofnumbers,forexamplethattheorderofadditionormultiplicationdoesnotmatter; thatis, wealwayshavea+b = b+a foranynumbers a and b, andsimilarlyformultiplication. WewilldiscusssuchpropertiesinmoredetailinChapter 6. Doescompositionofisometriessatisfyallthesamebasicpropertiesasadditionandmultiplicationofnumbers? Unfortunately, theanswerisno.ReferringonceagaintoFigure 4.4.1, letusnowcomparethetwoexpressions RA

1/4 ◦ Mm

and Mm ◦ RA1/4. We leave it to the reader to verify (usingdrawings similar to that shown

inFigure 4.4.2) that RA1/4 ◦ Mm = Ml andthat Mm ◦ RA

1/4 = Mn. Hence, theorderofcompositionofisometriesdoesmatter, incontrasttoadditionofnumbers. Itisnotthecasethatordermatterswiththecompositionofeverytwopossibleisometries, forexampleMm ◦ Mk =RA1/2 and Mk ◦ Mm = RA

1/2, butitisthecasethatordersometimesmatters. Hencewedonot

Page 135: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

128 4. Isometries

Am

n

l

k

F F

F

1

2

3

Figure4.4.3

haveageneralruleforcompositionofisometriesanalogoustothegeneralrule a+ b = b+ a

fornumbers.Ontheotherhand, somepropertiesofadditionandmultiplicationofnumbersdoholdfor

compositionofisometries. Forexample, weknowthat a + (b + c) = (a + b) + c foranynumbers a, b and c. Letus lookatanexampleofa similarcalculation forcompositionofisometries. StillreferringtoFigure 4.4.1, considerthetwoexpressions Mk ◦ (RA

1/4 ◦ Mn) and

(Mk ◦ RA1/4) ◦ Mn. Computingeachoftheseexpression, wesee

Mk ◦ (RA1/4 ◦ Mn) = Mk ◦ Mm = RA

1/2

and(Mk ◦ RA

1/4) ◦ Mn = Ml ◦ Mn = RA1/2.

(Weleaveittothereadertoverifyeachstepofthesecalculations.) ThegeneralversionofthispropertyisgivenasPart (2)ofthefollowingproposition.

Proposition 4.4.2. Supposethat P, Q and R areisometries.

1. P ◦ I = P and I ◦ P = P.

2. (P ◦ Q) ◦ R = P ◦ (Q ◦ R).

Demonstration.

(1). Wewillshowthat P ◦ I = P; thefactthat I ◦ P = P canbeshownsimilarly, thedetailsbeinglefttothereader. Let A beapointintheplane. Wewillshowthat (P ◦ I)(A) = P(A).BecauseA waschosenarbitrarily, itwillthenfollowthattheisometry P ◦ I equalstheisometryP, becausetheydothesamethingtoeverypointintheplane. Letusexamine (P ◦ I)(A). Aswehaveseenpreviously, wemayrewritethisexpressionas P(I(A)). Wealsoknowthat I(A) = A.Puttingtheselasttwoobservationstogether, weseethat (P ◦ I)(A) = P(I(A)) = P(A), whichiswhatwewantedtoshow.

Page 136: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

4.4CombiningIsometries 129

(2). Let A beapointintheplane. Wewillshowthat ((P ◦ Q) ◦ R)(A) = (P ◦ (Q ◦R))(A). Because A waschosenarbitrarily, itwillthenfollowthattheisometry (P ◦ Q) ◦ R

equalstheisometry P ◦ (Q ◦ R), becausetheydothesamethingtoeverypointintheplane.Startingwiththelefthandsideoftheequationwewishtoprove, wecompute

((P ◦ Q) ◦ R)(A) = (P ◦ Q)(R(A)) = P(Q(R(A)))

= P((Q ◦ R)(A)) = (P ◦ (Q ◦ R))(A).

Proposition 4.4.2 mightnotseemveryimpressive, butitwillbeused(sometimesexplicitly,andmoreoftenimplicitly)throughoutourdiscussionofisometriesandsymmetry. OneuseofPart (2)ofthepropositionthatwementionnowisthatitallowsustowriteexpressionssuchasP ◦ Q ◦ R unambiguously. Thatis, supposewehavethreeisometries, namely P, Q and R,andtwopeopleareaskedtocomposethem, inthegivenorder(whichiswhattheexpressionP ◦ Q ◦ R wouldmean). Giventhatwecanonlycomposetwoisometriesatatime, onepersonmightcompute P ◦ Q ◦ R bydoing (P ◦ Q) ◦ R, and theotherpersonmightcomputeP ◦ Q ◦ R bydoing P ◦ (Q ◦ R). BecauseofPart (2)oftheproposition, weareassuredthatbothpeoplewillobtainthesameanswer, andthereforeitisnotambiguoustowrite P ◦ Q ◦ R

Weend this sectionwith a comment. This section is ratherbrief, andcontainsone fairlysimple idea, namely forming the compositionof two isometriesbyfirst doingone isometryandthendoingtheother. Donotletthesimplicityofthisideafoolyou. Theideaofformingthecompositionof isometries is thecrucialstepthatallowsforamathematical treatmentofsymmetry, and forvarious substantial resultsabout the symmetryofornamentalpatterns, asdiscussedinChapter 5. Indeed, itmightbesaidthatwechoosetostudysymmetryintermsofisometriespreciselybecauseisometriescanbecomposed. Bycomposingisometries, wewillbeabletoviewthevarioussymmetriesofanobjectnotasisolatedthings, butasthingsthatinteractwitheachother, anditispreciselythisinteractionthatwillleadtointerestingresults.

Exercise 4.4.1. ReferringtoFigure 4.4.1, computethefollowingcompositions; thatis, foreachofthefollowingexpressions, findasingleisometrythatisequaltoit.

(1) RA1/4 ◦ RA

1/3.

(2) RA1/4 ◦ Mn.

(3) Mn ◦ Mm.

(4) Ml ◦ RA3/4 ◦ Mn.

(5) RA1/4 ◦ Mm ◦ RA

1/2.

For futureuse, wegive the followingproposition, whichsummarizes theeffectofcompo-sitionofisometriesonthepreservationorreversaloforientation. Thisproposition, Part (3)of

Page 137: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

130 4. Isometries

whichintuitivelysays that twonegativesmakeapositive, certainlyseemsplausible, andweomitadetaileddemonstration(whichwouldrequireamoretechnicallysophisticateddefinitionoforientationpreservingandreversingthanwehavegiven).

Proposition 4.4.3. Supposethat P and Q areisometriesoftheplane.

1. If P and Q arebothorientationpreserving, then P ◦ Q isorientationpreserving.

2. If P isorientationpreservingandQ isorientationreversing, orvice-versa, then P ◦ Q isorientationreversing.

3. If P and Q arebothorientationreversing, then P ◦ Q isorientationpreserving.

4.5 GlideReflections

Section 4.3 endedwithaquery: theexampleshowninFigure 4.3.9 demonstratedthateitherwehadtoconcludethattwoidenticalcopiesoftheletter F canbedrawnintheplaneinsuchawaythatnoisometryoftheplanetakesonetotheother, orthatthereareisometriesotherthanthethreetypeswehavediscussedsofar, namelytranslations, rotationsandreflections. Wenowusethenotionofcompositionofisometries, asdiscussedinSection 4.4, toresolvethisquestion.Aspreviouslystated, itisnotpossibletotaketheinitial F totheterminal F inFigure 4.3.9

byatranslation, arotationorareflection. However, drawtheline m halfwaybetweenthetwoletters F, asshowninFigure 4.5.1. Itcanthenbeseenthatfirstreflectingtheplanein m, andthentranslatingtheplanedownwardbytheappropriatedistance, willtaketheinitial F totheterminal F. Itwouldalsoworktotranslatetheplanedownward, andthenreflectinm. Therefore,althoughnosinglereflectionortranslationoftheplanewilltaketheinitial F totheterminal F,itisthecasethatthecompositionofareflectionandatranslationdoestaketheinitial F totheterminal F. Weknowthatreflectionandtranslationareisometries, andsobyProposition 4.4.1,wealsoknowthatthecompositionofareflectionandatranslationisanisometry. Hence, thereisanisometryoftheplanethattakestheinitial F totheterminal F inFigure 4.3.9. Letuscallthisisometry G. Thecrucialpointisthis: eventhough G wasmadeupoutofareflectionandatranslation, itisasingleisometryinitsownright. Recallthatwhatcountsinanisometryisonlyitsneteffect, thatis, whereeachpointoftheplaneendsupinrelationtoitsinitialposition,andnotthegeometricprocessusedtovisualizetheisometry(inthepresentcasefirstreflectingandthentranslating). Giventhatwecannottaketheinitial F totheterminal F inFigure 4.3.9byasingletranslation, rotationorreflection, wededucethattheisometryG isnotatranslation,rotationorreflection. Hence, thereareisometriesthatarenotofthethreefamiliartypes.

Theisometry G discussedaboveisanexampleofnewtypeofisometry, calleda glidereflec-tion. A glidereflectionisanisometrythatisobtainedbyfirstreflectingtheplaneinaline, andthentranslatinginadirectionparalleltothelineofreflection. (Pleasenotetheword“parallel”here.) Thelineofreflectionusedinformingaglidereflectioniscalledthe lineofglidereflection.Ifthetranslationusedinaglidereflectionhaszerolength, theglidereflectioniscalleda trivialglidereflection. Thatis, atrivialglidereflectionisaglidereflectionthatisjustareflection. A

Page 138: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

4.5GlideReflections 131

FF

initial

terminal

m

Figure4.5.1

glidereflectionthatisnotjustareflectioniscalleda non-trivial glidereflection. Wenotethatanon-trivialglidereflectionhasnofixedpoints, butthelineofglidereflectionisafixedline.Also, wenotethataglidereflectionreversesorientation.Thenotationforaglidereflection, wherethereflectionisinline m, andthetranslationisby

vector v (whichisparallelto m), is Gm,v. Insymbolswecanwritethat Gm,v = Tv ◦ Mm. Wereiteratetheimportantpointthataglidereflectionisasingleisometry, whichtakeseachpointoftheplane, andassignsitsomepointwhereitwillendup. Thefactthatweconstructaglidereflectionasthecompositionoftwootherisometriesdoesnotdetractfromthefactthattheglidereflectioncanbethoughtofasanisometryinitsownright.Animmediatequestionthatcomestomindconcerningglidereflectionsiswhetheritmatters

ifwefirstreflectandthentranslate, orvice-versa. Althoughingeneraltheorderdoesmatterwhenwecomposetwoisometries, inthecaseofconstructingglidereflections, itturnsoutnottomatter.

Proposition 4.5.1. Supposem isalineintheplane, and v isavectorthatisparalleltom. ThenMm ◦ Tv = Tv ◦ Mm.

Demonstration. Supposem and v arerespectivelyalineandvectorasshowninFigure 4.5.2 (i).Let A beanypointintheplane. Weneedtoshowthatboth Mm ◦ Tv and Tv ◦ Mm take A tothesamepointintheplane. Itwillfollowthat Mm ◦ Tv = Tv ◦ Mm. Ifthepoint A isontheline m, thenitiseasytoseethat Mm ◦ Tv and Tv ◦ Mm take A tothesamepoint; weleavethedetailstothereader. Nowsupposethat A isnotontheline m.IfwefirstdoMm, thepointA istakentothepoint B, asshowninFigure 4.5.2 (ii). Ifwethen

do Tv, thepoint B istakentopoint C, asshowninthefigure. Ontheotherhand, ifwefirstdo Tv, thepoint A istakentothepoint D, asshowninFigure 4.5.2 (ii). Ifwecouldshowthatdoing Mm takes D to C, thenitwouldfollowthatboth Mm ◦ Tv and Tv ◦ Mm take A to D,whichimpliesthat Mm ◦ Tv and Tv ◦ Mm bothtake A tothesamepointintheplane, whichiswhatweneededtoshow.

Page 139: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

132 4. Isometries

Considerthequadrilateral ABCD. Asafirststep, wewillshowthatthisquadrilateralisarectangle. First, weuseExercise 4.2.4 (1)toseethat m istheperpendicularbisectorof AB.Next, becausethevector v isparallelto m, itfollowsthateachof AD and BC isparalleltom. Because m isperpendicularto AB, itfollowsbyProposition 1.2.3 that AD and BC arebothperpendicularto AB. Moreover, because Tv takes A to D, and B to C, weseethat AD

hasthesamelengthas BC. WecannowapplyExercise 2.3.5 tothequadrilateral ABCD, andsothisquadrilateralisinfactarectangle.Let P thethepointwherethelinem intersectsthelinesegmentAB; weknowfromprevious

commentsthat P isthemidpointofAB. LetQ bethepointwherethelinem intersectsthelinesegment CD. SeeFigure 4.5.2 (iii). Weknowthat ABCD isarectangle. ByExercise 2.3.2, wededucethat ABCD isaparallelogram. Inparticular, itfollowsthat CD isparallelto AB. Be-causeAB isperpendiculartom, itfollowsfromProposition 1.2.3 that CD isperpendiculartom. ItissimpletoseethatthequadrilateralAPQD isarectangle(itiscertainlyaparallelogram,anduseExercise 2.1.1). Hence AP hasthesamelengthas DQ. Because ABCD isaparal-lelogram, itfollowsfromProposition 2.2.5 (1)that CD hasthesamelengthas AB. BecauseAP hashalfthelengthof AB, andbecause AB and CD havethesamelengths, itfollowsthat DQ hashalfthelengthof CD. Fromalltheabovereasoning, wededucethat m istheperpendicularbisectorof CD. ItfollowsfromExercise 4.2.4 (1)that Mm takes C to D, andthatiswhatweneededtoshow.

D C

v v

(i) (ii) (iii)

m m

D

BA BA P

Q C

m

Figure4.5.2

Page 140: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

4.5GlideReflections 133

Exercise 4.5.1. Drawtheeffectontheletter R showninFigure 4.5.3 astheresultofglidereflectingtheplaneusingeachofthepairsoflineofreflectionandtranslationvectorshown.

Rm

p

n

v

u

w

Figure4.5.3

Exercise 4.5.2. Supposethat G isaglidereflection. Whatkindofisometryis G ◦ G?

Exercise 4.5.3. Suppose m isalineintheplane, and v isavectorthatisnotparalleltom. Isitalwaysthecasethat Mm ◦ Tv = Tv ◦ Mm? Explainyouranswer.

Anotherimportantquestionconcerningglidereflectionisthefollowing. Weconstructaglidereflectionbyfirstreflectinginaline, andthentranslatinginadirectionparalleltothelineofreflection. Whatwouldhappen ifwewere to reflect theplane ina line, and then translateinadirectionnotparalleltothelineofreflection. Wouldweobtainyetanothernewtypeofisometry? Itturnsoutthatthecompositionofanyreflectionandanytranslationequalseitherareflectionoraglidereflection(dependingupontherelationshipbetweenthelineofreflectionandthetranslationvector), thoughwewillomitthedetails. Thereforewedonotobtainanynewtypeofisometrybyfirstreflectingandthentranslatinginadirectionnotparalleltothelineofreflection.RecallFigure 4.3.9. Whenwefirstencountered thatexample, wesaw thatno translation,

rotationorreflectionalonecouldtaketheinitial F totheterminal F. Atthetimewewerenotfamiliarwithanyothertypesofisometries, butnowweknowaboutglidereflections, andwe

Page 141: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

134 4. Isometries

haveseeninthecurrentsectionthattheinitial F inFigure 4.3.9 canbetakentotheterminal Fbyaglidereflection. Howwasthisglidereflectionfound?Tofindtheisometrythattakestheinitial F totheterminal F inFigure 4.3.9, westartjustas

wedidforreflections, namelybylabelingtwopointsontheinitial F bytheletters A and B,andlabelingthecorrespondingpointontheterminal F bytheletters A ′ and B ′. Wecanthenfindthemidpointsofthetwolinesegments AA ′ and BB ′, anddrawalinethroughthesetwomidpoints. Callthisline m. SeeFigure 4.5.4.

FF

initial

terminal

A

A’

B

B’

m

Figure4.5.4

It is seen that simply reflecting theplane in the line m doesnot take the initial F to theterminal F. However, ifwefirstreflecttheplaneintheline m, andthenfollowthisreflectionbyatranslationparalleltom bytheverticaldistancebetweentheinitial F andterminal F, thenthecompositionofthereflectionandtranslationwillindeedtaketheinitial F totheterminal F.Hence, thereisaglidereflectionthattakestheinitial F totheterminal F.Wecannowstate thecompleteanswer to theproblemof recognizing isometriesby their

effects, whichweleftunfinishedinSection 4.3. ThatouransweriscompletereliesuponPropo-sition 4.6.1 inthenextsection, aswellassomemathematicaldetailsweskipovertoavoidadigression, butwecanstatethecompleteanswerrightnow. Supposewearegivetwoidenti-calletters F intheplane. Wecanthenfindwhichsingleisometrytakesone F totheother, asfollows. (Moreover, thisisometryturnsouttobeunique.) Therearetwocases.

Case1: thetwoletters F havethesameorientation. Connecttwopairsofcorrespondingpointswithlinesegments, andformtheperpendicularbisectors. Ifthetwoperpendicularbisectorsin-tersect, thentheisometryisarotation, withthepointofintersectionbeingthecenterofrotation;theanglecanbefoundbydrawinglinesfromthecenterofrotationtocorrespondingpointsonthetwoletters F, andmeasuringtheanglebetweenthesetwolines. Ifthetwoperpendicularbisectorsareparallel, theisometryisatranslation; simplydrawanarrowfromapointonone Ftoitscorrespondingpointonanother F.

Page 142: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

4.5GlideReflections 135

Case2: thetwo Fshaveoppositeorientations. Connecttwopairsofcorrespondingpointswithlinesegments, andfindthemidpointsofthesetwolines. Drawalinethroughthetwomidpoints.If the line through themidpoints isperpendicular to theconnecting linesegments, then theisometryisareflectioninthelinethroughthemidpoints; ifthelinethroughthemidpointsisnotperpendiculartotheconnectinglinesegments, thentheisometryisaglidereflection, obtainedbyfirstreflectinginthelinethroughthemidpoints, andthentranslatingasnecessary.

Exercise 4.5.4. IneachofthethreepartsofFigure 4.5.5 areshowninitialandterminalletters F, obtainedbyusingan isometry. Foreachof the threecases, statewhat typeofisometrywasused. Moreover, iftheisometryisarotation, indicateitscenterofrotation;if the isometry isa translation, indicate the translationbyanarrow; if the isometry isareflection, indicatethelineofreflection; iftheisometryisaglidereflection, indicatethelineofreflectionusedintheglidereflection.

(iii)

(i) (ii)

FterminalFinitial

Finitial

F Finitial

Fterminal

terminal

Figure4.5.5

Page 143: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

136 4. Isometries

4.6 Isometries—TheWholeStory

HavinglearnedaboutglidereflectionsinSection 4.5, wearenowfamiliarwithfourtypesofisometries: translations, rotations, reflectionsandglidereflections. Are thereanyother typesofisometries? Asstatedinthefollowingproposition, theanswerisno. Thispropositionisthemostfundamentalfactaboutisometriesoftheplane, anditwillformthebasisformuchofoursubsequentdiscussionofisometriesandofsymmetry(giveninthischapterandthenext). Thedemonstrationofthispropositionissomewhatlengthy, andisgiveninAppendix A.

Proposition 4.6.1. Anyisometryoftheplaneiseitheratranslation, arotation, areflectionoraglidereflection.

WediscussedinSection 4.2 thenotionsoffixedpoints, fixedlines, andorientationpreservingandreversing. Nowthatweknowallthetypesofisometries, wesummarizethesepropertiesforalltypesofisometriesinTable 4.6.1.

IsometryType FixedPoints FixedLines OrientationIdentityisometry I allpoints alllines preservingNon-triv.trans. Tv nopoints linesparallelto v preservingNon-triv.rot. RA

α thepoint A none, oralllinesthrough A preservingRefl. Mm pointson m m, andalllinesperp.to m reversingNon-triv.gl.refl. Gm,v nopoints theline m reversing

.

Table4.6.1

Dowereallyneedallfourtypesofisometries? Theanswerisbothyesandno. Wecouldobtainallisometriesbyusingjusttranslations, rotationsandreflections, ifweallowforcombinationsofthem(becauseglidereflectionsareobtainedbycomposingreflectionsandtranslations). Ac-tually, ifwewanttobethemost“economical”intermsofusingthefewesttypesofisometriestoobtainallothers, wecoulduseonlyreflections. Itturnsout, thoughthisfactisnotatallobvious,thatwecangetalltheotherthreetypesofisometries(andthereforeallisometries)bycombininguptothreereflectionsatatime. Indeed, thebulkoftheproofofProposition 4.6.1, asgiveninAppendix A,involvesshowingthattheneteffectofanyisometryoftheplanecanbeobtainedbyeithertheidentity, orthecompositionofone, twoorthreereflections. If, however, wewanteachisometry(meaningeachpossibleneteffect)tobedescribedbyasingletransformationoftheplane, ratherthanacompositionofothertransformations, thenweneedtranslations, rotations,reflectionsandglidereflections. Ourgoalbeingnotefficiencybutobtaininganunderstandingofisometriesandsymmetry, wewilluseallfourtypesofisometries.Ifwecombinetwoisometries, howdoweknowwhattheresultis? Oneapproachwouldbeto

drawaninitialobjectintheplane, performthetwoisometriesoneaftertheother, andthenlookattheneteffecttakingtheinitialobjecttotheterminalobject. WecouldthenapplythemethodofrecognizingisometriesdiscussedinSections 4.3 and4.5 tofigureoutwhattheresultingsingleisometrywas. However, itwillbemoreusefultobeabletoknowtheresultofcombiningtwo

Page 144: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

4.6Isometries—TheWholeStory 137

isometriessimplyfromknowingthetwoisometriesthatarecombined. (Asaroughanalogy, itissimilarlybettertofigureout 547× 23 withpencilandpaper, ratherthanmaking 23 rowsof547 stoneseach, andthencountingthetotalnumberofstones.)Recallingthateveryisometryisoneofourfourtypes, wecanseehowtocombineanytwo

isometriesbybreakingupourdiscussionintovariouscases, dependinguponwhichtwotypesofisometriesarebeingcombined. Insomecaseswecanobtainveryspecificresultsabouttheresultofcomposingtwoisometriesofagiventype; inothercases, itisverydifficulttowriteaformulafortheresultingisometry(unlessweusesomemoreadvancedmathematics), butwecanatleaststateitstype. Insomeofthecases, wewillrestrictourattentiontonon-trivialtranslations,rotationsandglidereflections, toavoidvariousspecialcases. Wewillstateherethethreemostimportantresults, namelythoseconcerningcompositionsof twotranslations, tworeflectionsandtworotations. Itisalsopossibletodiscussthecompositionsoftwoglidereflections, andcompositionsoftwodifferenttypesofisometries; toavoidalengthydigression, wewilldiscusstheseothercasesinAppendix B.Inorder todiscuss the compositionof two translations, weneed todiscuss thenotionof

additionofvectorsintheplane. Supposewehavetwovectors v andw intheplane, representedbyarrows, asshowninFigure 4.6.1 (i). Wecanaddthesetwovectorsasfollows. First, positionthetwoarrowssothattheyhaveacommonstartingpoint, asshownFigure 4.6.1 (ii); thereisnoproblemmovingarrowsthatrepresentvectors, aslongasthearrowsarenotstretchedorshrunk, orrotated. Next, wecanformtheparallelogramwiththetwoarrowsassides, asshownFigure 4.6.1 (iii). Finally, wetakethediagonalintheparallelogramtobeanarrowforthesumof v and w, denoted v +w; seeFigure 4.6.1 (iv). Thistypeofvectoradditionisveryusefulinbothmathematicsandthesciences(forexample, theadditionofforcesinphysics).

(i) (ii)

(iii) (iv)

v

w

vv

w

w

vv

w

w

v

w

v+w

Figure4.6.1

Page 145: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

138 4. Isometries

Wecannowuseadditionofvectorstounderstandthecompositionoftranslations.

Proposition 4.6.2. Supposethat Tv and Tw aretranslationsoftheplane. Then Tw ◦ Tv = Tv+w.

Demonstration. Chooseanypoint A intheplane. Thentheresultofdoing Tw ◦ Tv to A isthesameasfirstdoing Tv to A, yielding Tv(A), andthendoing Tw tothat, yielding Tw(Tv(A)).SeeFigure 4.6.2. However, thetriangleshowninthisfigureisthesameasthelowerhalfoftheparallelogramshowninFigure 4.6.1 (iv). Hence Tw(Tv(A)) isthesameas Tv+w(A). Becausethisreasoningholdsforanypoint A intheplane, wededucethattheisometry Tw ◦ Tv hasthesameneteffectastheisometry Tv+w. Itfollowsthat Tw ◦ Tv = Tv+w.

w

v

v+w

Tv(A)A

Tw(Tv(A))

Figure4.6.2

Itisseenthatforanytwovectors v andw intheplane, wehave v+w = w+ v. Combiningthisobservationwiththeaboveproposition, wededucethatforanytwovectors v and w, wehave Tw ◦ Tv = Tv ◦ Tw. Inotherwords, orderdoesnotmatterwhentwotranslationsarecomposed. Bycontrast, orderdoesmatterwhenmostotherisometriesarecomposed.Wenowturntothecompositionoftworeflections; therearethreesubcases, dependingupon

whetherthetwolinesofreflectionareequal, areparallel, orareneitherparallelnorequal.

Proposition 4.6.3. Supposethat Mm and Mn arereflectionsoftheplane.

1. If m = n, then Mn ◦ Mm = I.

2. If m and n areparallel, then Mn ◦ Mm = Tv, where v is thevector that is in thedirectionperpendicularto m and n, andthathaslengthtwicethedistancefrom m ton.

3. If m and n areneitherparallelnorequal, then Mn ◦ Mm = RAα , where A isthepoint

ofintersectionof m and n, andwhere α istwicetheanglefrom m to n.

Demonstration. WeknowthateachofMm andMn areorientationreversing, andtherefore, byProposition 4.4.3 (3)weknowthatMn ◦ Mm isorientationpreserving. GiventhatMn ◦ Mm isanisometrybyProposition 4.4.1, thenitiseitheratranslation, arotation, areflectionoraglidereflectionbyProposition 4.6.1. UsingTable 4.6.1, it followsthat Mn ◦ Mm mustbeeitheratranslationorarotation(ortheidentityisometry, whichisbothatranslationorarotation),becausereflectionsandglidereflectionsareorientationreversing.

Page 146: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

4.6Isometries—TheWholeStory 139

(1). Thisisclear, becauseMm istheresultofflippingtheplaneaboutthelinem, andflippingtheplaneaboutthesamelinetwiceleaveseverypointintheplanewhereitstarted.

(2). Weclaimthat Mn ◦ Mm doesnotfixanypointintheplane. Suppose, tothecontrary,that Mn ◦ Mm didfixsomepoint, say B. Thatwouldmeanthat Mn(Mm(B)) = B. WethendeducethatMn(Mn(Mm(B))) = Mn(B). ByapplyingPart (1)ofthispropositiontoMn, wethereforeseethat Mm(B) = Mn(B).Howcould thispossiblyhappen? Thereare threecases, dependinguponwhether B ison

m, ison n orisnotoneitherline. If B ison m, then Mm(B) = B, but Mn(B) = B, butthiscannotpossiblybethecase, giventhatMm(B) = Mn(B). So, weconcludethat B isnotonm.A similarargumentshowsthat B isnoton n. Nowsupposethat B isnotoneitherm or n. ThenMm(B) = B and Mn(B) = B. Inthatcase, weuseExercise 4.2.4 (1)todeducethat m istheperpendicularbisectorofthelinesegmentfrom B to Mm(B), andthat n istheperpendicularbisectorofthelinesegmentfrom B toMn(B). However, giventhatMm(B) = Mn(B), weseethat m mustbethesamelineas n, whichcannotbe, giventhat m and n areparallel, whichmeansthattheyaredistinctlines. Thefinalconclusionofthisargumentisthat Mn ◦ Mm hasnofixedpoints, becauseourassumptiontothecontraryledtoalogicalimpossibility.WeknowthatMn ◦ Mm iseithertheidentityisometry, atranslationorarotation. Theidentity

isometryfixesallpoints, andanon-trivialrotationfixespreciselyonepoint. Hence, weseethatMn ◦ Mm mustbeatranslation. Tofindoutwhichtranslation, wecansimplyseewhathappenstoonepointintheplane. Forconvenience, supposethatboththelines m and n arevertical,asinFigure 4.6.3 (ifnot, simplychangeyourvantagepoint). Consideranypoint X onthelinem. Then Mm fixes X, and Mn takes X toapoint Y thatisdirectlytotherightof X, andatadistancefrom X thatistwicethedistancefromm to n. ItfollowsthatMn ◦ Mm = Tv, wherev isthevectorthatisinthedirectionperpendicularto m and n, andthathaslengthtwicethedistancefrom m to n.

(3). ObservethatthepointA, whichistheintersectionofthelinesm and n, isfixedbybothMm andMn. HencethepointA isfixedbyMn ◦ Mm. SupposeZ isapointonthelinem thatisdifferentfromthepointA. SeeFigure 4.6.4. ThenMm fixesZ, andMn doesnot(becauseZ isnoton n). Hencethepoint Z isnotfixedbyMn ◦ Mm. WethereforeseethatMn ◦ Mm fixessomepointsanddoesnotfixothers. WeknowthatMn ◦ Mm iseithertheidentityisometry, atranslationorarotation. Theidentityisometryfixesallpoints, andanon-trivialtranslationfixesnopoints. ItfollowsthatMn ◦ Mm isanon-trivialrotation. Sucharotationfixespreciselyonepoint, namelyitscenterofrotation. ItthereforemustbethecasethatthepointA isthecenterofrotation. Tofindtheangleofrotation, wecansimplyseewhathappenstoonepointotherthanA. Takethepoint Z chosenabove. SupposethatMn ◦ Mm moves Z tothepointlabeledW in

Figure 4.6.4. Usingthedefinitionofreflection, itcanbeseenthattheanglefromtheline←→AW

totheline n isequaltotheanglefromtheline m (whichisthesameastheline←→AZ)tothe

line n. (A rigorousdemonstrationoftheequalityofthesetwoanglescanbeobtainedbyusingcongruenttriangles; thereaderisaskedtoprovidedetailsinExercise 4.6.1.) Itfollowsthatthe

Page 147: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

140 4. Isometries

rotationwithcenterofrotation A thattakes Z to W mustberotationbytheangle α, whichistwicetheanglefrom m to n. Wethereforeseethat Mn ◦ Mm = RA

α .

nm

X Y

Figure4.6.3

Z

W

A

n m

Figure4.6.4

Page 148: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

4.6Isometries—TheWholeStory 141

Exercise 4.6.1. [UsedinThisSection] InthedemonstrationofProposition 4.6.3 (3), we

assertedthattheanglefromtheline←→AY totheline n isequaltotheanglefromthelinem

totheline n; seeFigure 4.6.4. Usecongruenttrianglestodemonstratethisclaim.

Weturnnexttothecompositionoftworotations. Onceagainwehavetwomaincases, thistimedependinguponwhetherthetwocentersofrotationarethesameornot. However, inthecasewherethetwocentersofrotationarenot thesame, therearetwosubcases, dependinguponwhether the twoanglesadduptoamultipleof 360◦ ornot. Moreover, whenthe twoanglesdonotadduptoamultipleof 360◦, thenwewillnotbeabletogiveasimpledescriptionoftheresultingisometry, whichisdefinitelyarotation, butforwhichitistrickytodescribethecenterofrotation. A pictorialapproachtofindingthedesiredcenterofrotationisfoundinthedemonstrationofProposition 4.6.4 (thispictorialapproachwillbeusefulinAppendix E).

Proposition 4.6.4. Supposethat RAα and RB

β arerotationsoftheplane.

1. If A = B, then RBβ ◦ RA

α = RAα+β.

2. If A = B, andif α + β isnotamultipleof 360◦, then RBβ ◦ RA

α = RCα+β, where C isa

pointintheplaneuniquelydeterminedbyA, B, α and β (andwhichisdescribedmorepreciselyinthedemonstration).

3. If A = B, andif α+ β isamultipleof 360◦, then RBβ ◦ RA

α = Tv, where v isthevectorfrom A to RB

β(A).

Demonstration. Weknowthateachof RAα and RB

β areorientationpreserving, andtherefore,byProposition 4.4.3 (1)weknowthat RB

β ◦ RAα isorientationpreserving. Giventhat RB

β ◦ RAα

isanisometrybyProposition 4.4.1, thenitiseitheratranslation, arotation, areflectionoraglidereflectionbyProposition 4.6.1. UsingTable 4.6.1, itfollowsthat RB

β ◦ RAα mustbeeither

atranslationorarotation(ortheidentityisometry, whichisbothatranslationorarotation).Considerthefixedpointsof RB

β ◦ RAα , ifthereareany. If R

Bβ ◦ RA

α turnsouttohavenofixedpoints, thenitmustbeanon-trivialtranslation; ifithasatleastonefixedpointandatleastonepointthatisnotfixed, thenitmustbeanon-trivialrotation, andthefixedpointmustbethecenterofrotation; ifithasmorethanonefixedpoint, thenitmustbetheidentityisometry.

(1). Supposethat A = B. Then RBβ ◦ RA

α = RAβ ◦ RA

α . Becauseboth RAβ and RA

α fixthepointA, then RA

β ◦ RAα fixesA aswell. Hence RA

β ◦ RAα hasafixedpoint, andcannotbeanon-trivial

translation; itmustthereforebearotationwithcenterofrotation A, ortheidentityisometry(whichcanalsobethoughtofasarotationwithcenterofrotation A).Nowthatweknowthat RA

β ◦ RAα isarotationwithcenterofrotation A, thequestionisby

whatangle. Drawaninitialobjectintheplane, forexampletheletter F. Ifweperform RAα , then

theresultingimageoftheletter Fwillmakeangle αwiththeoriginalletter F. IfwethenperformRAβ , theresultingimageoftheletter F willnowmakeangle α + β withtheoriginalletter F.

Hence, theonlypossiblerotationthatequals RAβ ◦ RA

α is RAα+β.

Page 149: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

142 4. Isometries

(2). Supposethat A = B, andthat α+ β isnotamultipleof 360◦. Byaddingorsubtractingmultiplesof 360◦ toeachofα andβ asnecessary, wecanensurethatα andβ arebothbetween0◦ and 360◦; addingandsubtractingmultiplesof 360◦ doesnotchangetheeffectof RB

β or RAα .

Wenowmakethefollowingconstruction. First, wedrawalinesegmentfrom A to B. Next, wedrawtheangle α atthepointA, andtheangle β atthepoint B, sothatbothanglesarebisectedby AB. SeeFigure 4.6.5. Thetwoanglesintersectinpoints C and D asshown. Inthefigure,forconvenience, wehavepositionedthepoints A and B sothat AB ishorizontal; ifthislinesegmentisnothorizontal, thentheconstructionwouldlookjustlikewhatwehaveshown, butrotatedappropriately. Thereare, infact, anumberofdifferentcasesthatwouldlooksomewhatdifferentfromwhatisshowninthefigure, dependinguponwhethereachoftheangles α andβ islessormorethan 180◦; wehavedrawnthecasewherebothanglesarelessthan 180◦. Thekeypointtonoteisthat, because α + β isnotamultipleof 360◦, thetwoangleswillindeedintersectintwopoints.

A α β B

C

D

Figure4.6.5

Wenowmakethefollowingobservation. Ifweapplytheisometry RAα totheplane, thepoint

labeled C willbetakentothepoint D. Ifwethenapply RBβ, thepoint D willbetakenbackto

C. Hence, thecomposition RBβ ◦ RA

α fixesthepoint C. Ontheotherhand, itcanbeseenthatRBβ ◦ RA

α doesnotfixthepoint D. Therefore, theisometry RBβ ◦ RA

α fixesatleastonepoint,butdoesnotfixallpoints. Wealreadysawthat RB

β ◦ RAα iseitherarotation, atranslationor

theidentityisometry. Because RBβ ◦ RA

α cannotbeanon-trivialtranslation(whichwouldfixnopoints), northeidentityisometry(whichfixesallpoints), itmustbearotation. A rotationfixespreciselyonepoint, namelyitscenterofrotation. Wededucethat RB

β ◦ RAα isarotationwith

centerofrotation C.Nowthatweknowthat RB

β ◦ RAα isarotation, thequestionisbywhatangle. Usingthesame

ideaasinthedemonstrationofPart (1)ofthisproposition, itisseenthattheanglemustbeα+β.Hence, theonlypossiblerotationthatequals RB

β ◦ RAα is RC

α+β.

(3). Supposethat A = B, andthat α+ β isamultipleof 360◦. Because α+ β isamultipleof 360◦, theneither α and β arebothmultiplesof 360◦, orneitheraremultiplesof 360◦. Wehavetolookateachofthesetwocasesseparately.

Page 150: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

4.6Isometries—TheWholeStory 143

First, supposethat α and β arebothmultiplesof 360◦. Then RBβ and RA

α areboththeidentityisometry. Itfollowsthat RB

β ◦ RAα isalsotheidentityisometry. Becausetheidentityisometryisa

trivialtranslation, then RBβ ◦ RA

α = Tv, where v haslengthzero.Next, suppose thatneither α nor β is amultipleof 360◦. Thenneither RB

β nor RAα is the

identityisometry. Wewanttoshowthat RBβ ◦ RA

α isatranslation. Wewillshowthisresultbyeliminatingtheotherpossibilities. First, notethat RA

α fixesthepoint A, but RBβ doesnotfixthe

point A, because RBβ isanon-trivialrotation. Itfollowsthat RB

β ◦ RAα doesnotfixthepoint A,

andtherefore RBβ ◦ RA

α isnottheidentityisometry.Now, supposethat RB

β ◦ RAα werearotation. Thenitwouldhavesomecenterofrotation,

sayapoint D. If RBβ ◦ RA

α werearotation, bywhatanglewouldtherotationbe? UsingthesameideaasinthedemonstrationofPart (1)ofthisproposition, itisseenthattheanglemustbeα+ β. Hence, theonlypossiblerotationthatcouldequal RB

β ◦ RAα wouldbe RD

α+β. However,weareassumingthat α+β isamultipleof 360◦. Itwouldthenfollowthat RD

α+β istheidentityisometry, andhencethat RB

β ◦ RAα istheidentityisometry. However, wehaveseenthat RB

β ◦ RAα

doesnotfixthepoint A, soitcouldnotpossiblybetheidentityisometry. Wethereforehavealogicalcontradiction. Theonlyresolutionofthisdilemmaisthat RB

β ◦ RAα cannotbearotation.

Wededucethat RBβ ◦ RA

α mustbeatranslation.Because RB

β ◦ RAα is a translation, it equals Tv, where v is somevector in theplane. To

determinethisvector, wecantakeanypointintheplane, seewhereitendsafterperformingRBβ ◦ RA

α , andthentakethearrowfromthepoint’soriginalpositiontoitsfinalposition. Forconvenience, wechoosethepoint A. Because RA

α fixesthepoint A, thenweseethattheresultofapplying RB

β ◦ RAα to thepoint A results in thepoint RB

β(A). Therefore, wededuce thatRBβ ◦ RA

α = Tv, where v isthevectorfrom A to RBβ(A).

Havingjustgivenpropositionsdescribingthedetailsofsomeofthepossiblecompositionsofisometries, weleavethedetailsoftheothertypesofcompositionstoAppendix B.Whatwestaterightnowisasummaryofallthewaysofcombiningthefourdifferenttypesofisometriesinachart, asseeninTable 4.6.2. Noticethatthistablecanbebrokenintofoursub-boxes, basedonorientationpreservingororientationreversing. Inthistable, weincludetrivialtranslations,rotationsandglidereflections, toavoidspecialcases.

◦ translation rotation reflection glidereflectiontranslation trans. trans.orrot. refl.orgl.refl. refl.orgl.refl.rotation trans.orrot. trans.orrot. refl.orgl.refl. refl.orgl.refl.reflection refl.orgl.refl. refl.orgl.refl. trans.orrot. trans.orrot.

glidereflection refl.orgl.refl. refl.orgl.refl. trans.orrot. trans.orrot.

.

Table4.6.2

Page 151: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

144 4. Isometries

Exercise 4.6.2. Supposearotationisfollowedbyaglidereflection, whichisthenfollowedbyareflection. Whattypeofisometry(orisometries)couldbeobtainedasaresultofthiscomposition?

Exercise 4.6.3. Describetheisometrythatresultsfromahalfturnfollowedbyanotherhalf-turn? (Theresultdependsuponwhetherthetwohalfturnshavethesamecenterofrotationornot.)

Exercise 4.6.4. [UsedinSection 5.5] A halfturnisfollowedbyareflection. Supposethatthecenterofrotationof thehalfturnisonthelineofreflection. Showthat theresultingisometryisareflectioninthelinethroughthecenterofrotationandperpendiculartotheoriginallineofreflection.

Exercise 4.6.5. [UsedinSection 5.5] A halfturnisfollowedbyareflection. Supposethatthecenterofrotationofthehalfturnisnotonthelineofreflection. Showthattheresult-ingisometryisaglidereflection, whichhaslineofglidereflectionthroughthecenterofrotation, andperpendiculartotheoriginallineofreflection.

Exercise 4.6.6. [UsedinSection 5.5] A halfturnisfollowedbyaglidereflection. Supposethatthecenterofrotationofthehalfturnisonthelineofglidereflection. Showthattheresulting isometry is a reflection, whichhas lineof reflectionperpendicular to the lineofglidereflection, andatadistancefromthecenterofrotationhalf thedistanceof thetranslationintheglidereflection.

Exercise 4.6.7. [UsedinSection 5.5] A reflectionisfollowedbyaglidereflection. Supposethat the lineof reflection isperpendicular to the lineofglide reflection. Show that theresultingisometryisahalfturn, withthecenterofrotationonthelineofglidereflection.

Finally, we turn to thequestionof inversesof isometries. Bywayofanalogy, consider theintegersandtheoperationofaddition. Giventhenumber 5, isthereanumberthat“cancelsit

Page 152: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

4.6Isometries—TheWholeStory 145

out”withrespecttoaddition? Theanswerisyes, namelythenumber−5, because 5+(−5) = 0,and (−5) + 5 = 0. WewilldiscussthisconceptatitsmostgeneralinSection 6.4, butfornow,wewanttoknowwhetherthereisananalogof“cancelingout”intherealmofisometriesandcomposition. Supposewearegivenanisometry P. Canwefindsomeotherisometry Q that“cancels” P out? Thatis, canwefindanisometryQ suchthat P ◦ Q = I andQ ◦ P = I? (Weneedtospecifyboththeseequations, becauseingeneraltheorderofcompositionofisometriesdoesmatter, andwecannotautomaticallydeduceoneoftheseequationsfromtheother.) IfwecanfindsuchanisometryQ, isiscalledan inverseisometry of P; weoftensimplysay inverse ofP forshort. Forexample, considertheisometry P thatistranslationtotherightby 4 inches. IfweletQ betranslationtotheleftby 4 inches, thenclearlyQ cancelsout P, andvice-versa, inthatdoingone, andthentheother, leavesuswiththeidentityisometry. Inotherwords, translationtotheleftby 4 inchesistheinverseoftranslationby 4 inchestotheright.Doeseveryisometryhaveaninverse? Ifso, istheinverseunique? Cantheinverse, ifitexists,

befoundeasily? AsseeninProposition 4.6.5, theanswertoallthesequestionsisyes. Weusethefollowingcommonnotation. Suppose P isanisometry. Theinverseisometry, of P isdenotedP−1. Wethereforehave P ◦ P−1 = I and P−1 ◦ P = I. Theselasttwoequationsmeanthatforanypoint X intheplane, wehave P(P−1(X)) = X and P−1(P(X)) = X.Inorder todiscuss inversesof translations, wewill need the followingnotionconcerning

vectorsintheplane. Supposewehaveavector v intheplane, representedbyanarrow. Wedefinethe inversevector of v tobethevector, denoted−v, representedbythearrowthathasthesamelengthasthearrowrepresenting v, buthavingtheoppositedirection. Clearly v+(−v) = 0and (−v) + v = 0, where 0 heremeansavectorwithlengthzero.

Proposition 4.6.5. Supposethat P isanisometry. Then P hasauniqueinverse. Further, wecanfindtheinverseof P asfollows.

1. I−1 = I.

2. If Tv isatranslation, then (Tv)−1 = T−v.

3. If RAα isarotation, then

(RAα

)−1= RA

−α.

4. If Mn isareflection, then (Mn)−1 = Mn.

5. If Gn,v isaglidereflection, then (Gn,v)−1 = Gn,−v.

Demonstration. WeknowfromProposition 4.6.1 thateveryisometryoftheplaneiseitheratranslation, arotationareflectionoraglidereflection. Hence, oncewedemonstrateParts (2)–(5)ofthisproposition, aswillbedoneshortly, thenitwillbeverifiedthateveryisometryhasaninverse.Toshowthattheinverseofeachisometryisunique, supposetothecontrarythatthereisan

isometry P thathastwodistinctinverses Q and R. Then, bythedefinitionofwhatitmeanstobeaninverse, weknowthat P ◦ Q = I and Q ◦ P = I, andthat P ◦ R = I and R ◦ P = I.Wethenseethat

Q = Q ◦ I = Q ◦ (P ◦ R) = (Q ◦ P) ◦ R = I ◦ R = R,

Page 153: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

146 4. Isometries

wherewemakerepeateduseofProposition 4.4.2. Wehavenowderivedthat Q = R, whichisalogicalimpossibility, becauseweassumedthatQ and R weredistinct. Theonlywayoutofthisproblemistodeducethat P cannothavetwodistinctinverses, whichmeansthattheinverseof P isunique.WenowdemonstrateParts (1)–(5)oftheproposition. Thesedemonstrationsareallbasedon

thesameidea, whichisthatinordertoshowthattwoisometriesareinverses, weshowthatthey“canceleachotherout.”

(1). ByusingProposition 4.4.2 (1), weseethat I ◦ I = I. Itfollowsthat I−1 = I.

(2). Supposethat Tv isatranslation. ThenbyProposition 4.6.2 itfollowsthat

T−v ◦ Tv = Tv+(−v) = T0 = I.

A similarargumentshowsthat Tv ◦ T−v = I. Wededucethat (Tv)−1 = T−v.

(3). Supposethat RAα isarotation. ThenbyProposition 4.6.4 (1)itfollowsthat

RA−α ◦ RA

α = RAα+(−α) = RA

0 = I.

A similarargumentshowsthat RAα ◦ RA

−α = I. Wededucethat(RAα

)−1= RA

−α.

(4). SupposethatMn isareflection. ThenbyProposition 4.6.3 (1)itfollowsthatMn ◦ Mn =I. Wededucethat (Mn)

−1 = Mn.

(5). Suppose that Gn,v isaglidereflection. WeknowfromProposition 4.5.1 that Gn,v =Mn ◦ Tv and Gn,v = Tv ◦ Mn, andsimilarlyfor Gn,−v. Wenowcomputethat

Gn,−v ◦ Gn,v = (Mn ◦ T−v) ◦ (Tv ◦ Mn) = Mn ◦ (T−v ◦ Tv) ◦ Mn

= Mn ◦ I ◦ Mn = Mn ◦ Mn = I,

where the thirdequalityholdsbyPart (2)of thisproposition, and thefifthequalityholdsbyPart (4). A similarargumentshowsthat Gn,v ◦ Gn,−v = I. Wededucethat (Gn,v)

−1 = Gn,−v.

Page 154: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

5SymmetryofPlanarObjectsandOrnamentalPatterns

5.1 BasicIdeas

Ourgoalinthischapteristoapplythegeneralconceptofmathematicalsymmetrytothestudyofornamentalpatterns. Suchpatternscanbe 1-dimensional, 2-dimensionalor 3-dimensional. Anexampleofa 1-dimensionalornamentalpatternisastringofbeads; anexampleofa 2-dimen-sionalpatternisapieceofwallpaper; anexampleofa 3-dimensionalpatternisapileofcannonballs. Wewillconcentrateon 2-dimensionalornamentalpatterns, that is, planarornamentalpatterns. Suchpatternsarequitecommoninart, crafts, designandarchitecture, andarefoundinmanyculturesaroundtheworld. Forexample, wallpaperisquitecommoninEuropeancul-ture; theMuslimtraditionusescomplicatedgeometricdesignsintheirbuildings; variousAfricanpeoplesuserepeatingpatternsintheirart. (Symmetriesofthreedimensionalobjectshavealsobeenstudied, butaremuchmorecomplicatedthanintheplanarcase, andwewillonlydiscusssuchsymmetryverybrieflyinSection 5.7.) A completestudyofplanarornamentalpatternsin-volvessomefairlyadvancedmathematics, namelygrouptheory(whichwewilldiscussbrieflyinChapter 6, thoughwewillnotbeabletodiscussthefullsetoftechnicalitiesneededforacompletelyrigoroustreatmentofornamentalpatterns). Evenwithoutallthetechnicaltoolsofgrouptheory, however, wecanexamineandanalyzevarioustypesofornamentalsymmetry.Ourmaintoolinthestudyofsymmetryistheconceptofisometry. InChapter 4 wediscussed

someofthefundamentalpropertiesofisometriesoftheplane. AsweviewedthingsinChapter 4,theplaneitselfwasblank, thoughwesometimesdrewafigure(suchastheletter F)onit, inordertoseewhathappenedwhenweperformedanisometry. Now, bycontrast, wewanttostartwithanobjectdrawnontheplane, andthenanalyzethesymmetryofthisobjectbyusingisometries.Bytheterm“object” drawnontheplanewesimplymeanacollectionofpointsintheplane.Thesepointscouldbeisolated(asinFigure 5.1.1 (i)), orcouldformageometricfigure(asinFigure 5.1.1 (ii)), orcouldformapicture(asinFigure 5.1.1 (iii)), orcouldformanythingelse.

Page 155: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

148 5. SymmetryofPlanarObjectsandOrnamentalPatterns

Wewilloftenrefertoanobjectdrawnintheplaneasa“planarobject” ora“planarpattern;”wewilloftendroptheadjective“planar,” becauseitwillalwaysbeassumed(exceptforafewcases, wherewewillexplicitlysaythatwearelookingatnon-planarobjects). Wewillignoreissuesofcolor inourdiscussionofornamentalpatterns, andwillconsiderallpatterns tobe“black”pointsonatransparentplane.

(i) (ii) (iii)

Figure5.1.1

RecallourinformaldiscussionofsymmetryinSection 4.1, inwhichwerelatedsymmetrytothenotionoftransformationsoftheplane. Givenaplanarobject, a symmetry oftheobjectisanyisometryoftheplanethatcarriestheobjectontoitself. Thatis, afterperformingtheisometry,theobjectlooksjustasitdidbeforetheisometrywasperformed. Insymbols, if K isanobjectand P isanisometryoftheplane, then P isasymmetryof K preciselyif P(K) = K; wedonotrequirethat P fixeseverypointof K, butonlythat P takesallof K ontoitself. (Althoughweareusingisometriestofindthesymmetryofagivenobject, westressthattheisometriesare, asalways, transformationsofthewholeplane, notjusttheobject.) Notethatwiththisdefinitionof symmetry, weuse theword“symmetry”asanoun (beingan isometry). Weare thereforeinterestedinwhetheranobjecthassymmetries, notinwhetheritis“symmetric,” aswouldbeusedmorecolloquially.Suppose, forexample, thatourobjectistherectangleshowninFigure 5.1.2 (i). Reflectionin

averticallinethroughthecenteroftherectangleisanisometrythathastherectanglelandonitself; wedenotethisverticallineby L1, andthereflectioninthatlinebyM1. Similarly, reflectioninahorizontallinethroughthecenteroftherectangleisanisometrythathastherectanglelandonitself; wedenotethislineby L2, andthereflectioninthislineby M2. SeeFigure 5.1.2 (ii).Rotationby 180◦ aboutthecenteroftherectangleisanisometrythathastherectanglelandonitself; wedenotethisrotationby R1/2. Arethesetheonlysymmetriesoftherectangle? Notquite. Thereisonemoresymmetry, namelytheidentityisometry. Thesefourisometries, namelyI, R1/2, M1 and M2 areallthesymmetriesoftherectangle.

Letuslookatthesymmetriesofsomeotherobjects, startingwiththeobjectshowninFig-ure 5.1.3 (i). Thesymmetriesofthisfigureare I, R1/3 and R2/3. Hence, comparingthisobjectwiththerectangle, weseethatdifferentobjectscanhavedifferentcollectionsofsymmetries.Ontheotherhand, considertheletterH showninFigure 5.1.3 (ii). ObservethattheletterH haspreciselythesamefoursymmetriesastherectangle, namely I, R1/2, M1 and M2. Wethere-

Page 156: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

5.1BasicIdeas 149

(i) (ii)

L1

L2

Figure5.1.2

foreseethattwodifferentobjectscanhavethesamesymmetries. Fromadesignpointofview,clearlytherectangleandtheletter H aredifferent. Fromasymmetrypointofview, however,theyarethesame. Bothpointsofviewareworthconsidering, thoughourconcerninthistextis,needlesstosay, symmetry, notdesign. Finally, considertheobjectshowninFigure 5.1.3 (iii).Colloquially, wemightsaythatthisobject“isnotsymmetric.” Whileexpressingavalidsenti-ment, suchastatementisnotaccuratefromourmathematicalperspective. TheobjectshowninFigure 5.1.3 (iii)doesinfacthaveasymmetry, namelytheidentityisometry I (everyobjecthasI asasymmetry). Thattheobjectappearstobe“notsymmetric” isexpressedpreciselybythefactthat I istheonlysymmetryoftheobject.

(i) (ii) (iii)

HFigure5.1.3

Wehavejustlistedallthesymmetriesofafewdifferentobjects. Inprincipleitispossibletolistall thesymmetriesofanyobject. Someobjectshaveinfinitelymanysymmetries(wewillseeexamplesshortly), sowecannotinpracticemakealistofallthesymmetriesofeveryob-ject. However, wecanstillcollectallthesymmetriesofanobjectintheory, evenifwecannotexplicitlylistthem. Anyobjecthasatleastonesymmetry, namely I, andsothecollectionofsymmetriesofanyobjectdoesindeedexist. Wecallthecollectionofallsymmetriesofanobject

Page 157: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

150 5. SymmetryofPlanarObjectsandOrnamentalPatterns

the symmetrygroup oftheobject. Theword“group” usedheredoesnotsimplymeanacol-lectionofthings, butisusedinitstechnicalmathematicalmeaning. Themathematicalconceptofa“group,” discussedinChapter 6, ispartofthemathematicalfieldofabstractalgebra, andhasmanyusesbeyondjustthestudyofsymmetry. Groupshavebeenwidelystudiedbymath-ematicians, andsomefactsfromthetheoryofgroupscanbeusedtoobtainrathersurprisingresultsaboutthesymmetriesofobjectssuchasfriezepatternsandwallpaperpatterns(discussedinSections 5.5 and5.6 respectively).Usingourpreviousexamples, weseethatthesymmetrygroupoftherectangleshowninFig-

ure 5.1.2 (i)is {I, R1/2,M1,M2}, andthesymmetrygroupoftheobjectshowninFigure 5.1.3 (i)is {I, R1/3, R2/3}. Anysymmetrygroupcontainsatleastonesymmetryinit, namelytheidentityisometry. Anobjectthatwouldbedescribedcolloquiallyashaving“nosymmetry,” suchastheobjectshowninFigure 5.1.3 (iii), hasasymmetrygroupthatcontainspreciselyonesymmetry,namelytheidentityisometry.

Exercise 5.1.1. ForeachoftheobjectsshowninFigure 5.1.4, listallsymmetries.

(i) (ii) (iii)

(iv) (v)

Figure5.1.4

WeknowbyProposition 4.6.1 thatanyisometryoftheplaneisatranslation, arotation, areflectionoraglidereflection. Hence, anysymmetryofanobjectisoneofthesefourtypes.Tosaveverbiage, whenanobjecthasasymmetrythatisanon-trivialtranslation, wewillreferto itasa translationsymmetry of theobject; whenanobjecthasasymmetry that isanon-trivialrotation, wewillrefertoitasa rotationsymmetry oftheobject; whenanobjecthasa

Page 158: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

5.1BasicIdeas 151

symmetrythatisareflection, wewillrefertoitasa reflectionsymmetry oftheobject; whenanobjecthas a symmetry that is anon-trivial glide reflection, wewill refer to it as a glidereflectionsymmetry oftheobject. Whenwearelookingatthesymmetriesofanobject, wewillrefertotheidentityisometryasthe identitysymmetry oftheobject. Forexample, theobjectinFigure 5.1.3 (i)hasrotationsymmetrybutnoreflectionsymmetry; theobjectinFigure 5.1.3 (ii)hasbothrotationandreflectionsymmetry. Wenotethatobjectsthathavetranslationsymmetryorglidereflectionsymmetryhaveto“goonforever.” InFigure 5.1.5 (i)weseeanobjectthat, ifweassumeitcontinuesindefinitelyinbothdirections, hastranslationsymmetry. Ontheotherhand, justbecauseanobject“goesonforever”doesnotmeanitautomaticallyhastranslationsymmetry; seeFigure 5.1.5 (ii). WewillseefurtherexamplesoftranslationsymmetryandglidereflectionsymmetryinSections 5.5 and5.6.

. . . F F F F F F . . . . . . 1 2 3 4 5 6 . . . (i) (ii)

Figure5.1.5

Wewillneedsomeadditionalterminology. Ifanobjecthasatranslationsymmetry, thenwecanlookatthetranslationvectorofthistranslationsymmetry, andwerefertothistranslationvectorasa translationvectoroftheobject. Ifanobjecthasarotationsymmetry, thenwecanlookatthecenterofrotationofthisrotationsymmetry, andwerefertothiscenterofrotationasa centerofrotationoftheobject. A centerofrotationofaplanarobjectmightbethecenterofrotationforrotationsoftheobjectbyvariousangles. Ifanobjecthasareflectionsymmetry, thenwecanlookatthelineofreflection, andwerefertothislineofreflectionasa lineofreflectionoftheobject. Ifanobjecthasaglidereflectionsymmetry, thenwecanlookatthelineofglidereflection, andwerefertothislineofglidereflectionasa lineofglidereflectionoftheobject.Wesee, therefore, thatagivenplanarobjectmightormightnothavecertaindistinguished

pointsthatarecentersofrotations, anditmightormightnothavecertaindistinguishedlines,someofwhichmightbelinesofreflection, andsomelinesofglidereflection.

Exercise 5.1.2. ForeachoftheobjectsshowninFigure 5.1.6, findandindicatethecentersofrotationandthelinesofreflection.

Page 159: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

152 5. SymmetryofPlanarObjectsandOrnamentalPatterns

(i) (ii) (iii)

(iv) (v)

Figure5.1.6

Exercise 5.1.3. ThefollowingquestionsinvolvewordsinEnglishwrittenincapitalletters.Assumethatalllettersareassymmetricaspossible, andthatW isobtainedfromM by 180◦

rotation.

(1) Findfourwordsthathaveahorizontallineofreflection. Findthelongestsuchwordyoucanthinkof.

(2) Findoneormorewordsthathaveaverticallineofreflection. Findthelongestsuchwordyoucanthinkof.

(3) Findoneormorewordsthathavea 180◦ rotationsymmetry. Findthelongestsuchwordyoucanthinkof.

Nowthatwehavethenotionoftranslationvectors, centersofrotations, linesofreflectionandlinesofglidereflectionofanobject, wecanstatethefollowingtechnicalresultabouthowthesedistinguishedvectors, pointsandlinesaretreatedbysymmetriesoftheobject. Wewillusethisresultlater, whenwestudythesymmetriesofcertaintypesofplanarobjects. Thisresultshouldnotbesurprising, becausewhatitsaysintuitivelyisthatasymmetryofanobjecttakesspecialkindsofvectors, pointsandlinestothesamekindsofvectors, pointsandlines, whichisreasonablegiventhatasymmetryofanobjectleavestheobjectlookingunchanged. Weomittheproofofthisproposition.

Proposition 5.1.1. Supposethat P isaplanarobject, andlet S beasymmetryof P.

Page 160: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

5.1BasicIdeas 153

1. If X isacenterofrotationof P, then S(X) isacenterofrotationof P.

2. If m isalineofreflectionof P, then S(m) isalineofreflectionof P.

3. If m isalineofglidereflectionof P, then S(m) isalineofglidereflectionof P.

4. If v isatranslationvectorof P, then S(v) isatranslationvectorof P.

A keyideainthestudyofsymmetryisthatwecandomorewithsymmetriesthansimplylistthesymmetriesofeachobject. Giventwosymmetriesofanobject, whicharebothisometriesoftheplane, wecanformthecompositionofthesetwosymmetries(asdiscussedinSection 4.4),toobtainanewisometryoftheplane. Whatmakesthiswholestudyofsymmetriesworkfromamathematicalperspectiveisthatthecompositionoftwosymmetriesofanobjectisinfactalsoasymmetryoftheobject. Wenowformulatethisfactmoreprecisely.

Proposition 5.1.2. Supposethat P and Q aresymmetriesofagivenobject.

1. Q ◦ P isasymmetryoftheobject.

2. P−1 isasymmetryoftheobject.

Demonstration. Suppose that theobject forwhich P and Q aresymmetries iscalled K. Bydefinitionofwhatitmeanstobeasymmetryofanobject, weknowthat P andQ areisometries,andthat P(K) = K and Q(K) = K.

(1). Because P and Q arebothisometries, weknowfromProposition 4.4.1 that Q ◦ P isanisometry. Wealsoobservethat (Q ◦ P)(K) = Q(P(K)) = Q(K) = K. Itfollowsthat Q ◦ P

isasymmetryof K.

(2). Because P isanisometry, weknowfromProposition 4.6.5 that P hasaninverseisometryP−1. Additionally, weknowthat P−1 ◦ P = I, whichmeansthat P−1(P(K)) = I(K). BecauseP(K) = K and I(K) = K (thelatterbecause I istheidentityisometry, whichtakeseveryobjectontoitself), itfollowsthat P−1(K) = K. Itfollowsthat P−1 isasymmetryof K.

Wenotethatitisthisabilitytocombinesymmetriesthatmakestheapproachtosymmetryviaisometriestheonethatisparticularlysuitedtoamathematicaltreatment, anditisthemathe-maticalanalysisofsymmetrythatleadstotheinterestingresultsaboutsymmetrythatwewillseelaterinthischapter. Ifwethinkoftheword“symmetry”inthecolloquialusageasanattributeofanobject, thereforebeinganadjectiveratherthananoun, thenwecouldnotmeaningfullycombinesymmetries.Ourgoalinthischapteristoexplorethesymmetriesofplanarobjects. Themostbasicthing

todoistolookatallpossiblesymmetriesofeachgivenobject, thatis, thesymmetrygroupoftheobject. Becausesymmetriesareisometries, wecanuseourknowledgeofisometriestolearnmoreabouttheobject. Inthissectionwehavediscussedsomegeneralideasaboutsymmetriesofobjects. Insubsequentsectionsinthischapter, wewillrestrictourattentiontovariousspecialtypesofplanarobjects, andineachrestrictedcase, wewillbeabletosaymoredefinitiveresults.Actually, ifallwecoulddowouldbetotakeaplanarobject, andfinditssymmetrygroup,

thatwouldbenice, butnotveryinteresting. Whatwouldbemoreinterestingwouldbetoknow

Page 161: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

154 5. SymmetryofPlanarObjectsandOrnamentalPatterns

whetherwecouldfindallpossibletypesofsymmetrygroupsthataplanarobjectcouldhave.Ananalogymightbewithbirdwatching. Wecannotlistallpossibleindividualbirdsfoundinagivenregion, butbirdwatchingguideslistallpossibletypesofbirdsthatcanbefoundintheregion, anddescribevariouscharacteristics(forexample, color, shapeofbeak, etc.) thatcanbeusedtoidentifythetypeofanybirdspottedinthewild. Similarly, wecertainlycannotlistallpossibleobjectsthatcouldeverbedrawnintheplane, becausethereareinfinitelymanydifferentthingsthatcanbepictoriallyrepresented. However, andthisisratherremarkable, inthreeimportantcategoriesofplanarornamentalpatterns(whichbetweenthemencompassmanyoftheornamentalpatternsofinterest), wecanlistallpossibletypesofsymmetrygroupsthatcanariseforeacheachcategory. Thethreecategoriesofplanarpatternswewilldiscussarerosettepatterns, friezepatterns, andwallpaperpatterns, whichwillbetreatedindetailinSections 5.4,5.5 and5.6 respectively. OurdiscussionofisometriesinChapter 4, andourgeneraldiscussionofsymmetrygroupsinthissection, isessentiallyaimedatprovidingusthetoolstounderstandtheclassificationofsymmetrygroupsofrosettepatterns, friezepatternsandwallpaperpatterns.(Itwouldbebeyondthescopeofthisbooktoprovideallthetechnicalmathematicaldetailsforvariousproofsneededfortheanalysisoffriezepatternsandwallpaperpatterns, butwewillbeabletogiveallthedetailsforrosettepatterns, andmanyofthekeyideasfortheothertwocases.)Inordertomakeheadwaywiththeideaofclassifyingobjectsbytheirsymmetries, weneed

toaskwhatitwouldtakeinordertobeabletosaythattwoobjects“havethesametypeofsymmetry”? Wesawanexampleearlierinthissection, namelytherectangleandtheletter H,wheretwodifferentobjectshavethesamesymmetrygroups. Ingeneral, wewillsaythattwoobjectshavethesame symmetrytype iftheyhavethesamesymmetrygroups. Thatis, ifwecanmatchupthetranslationsinonesymmetrygroupwiththetranslationsoftheother, therotationsinonesymmetrygroupwiththerotationsoftheother, andsimilarlyforreflectionsandforglidereflections. (Forthosefamiliarwiththetheoryofgroups, itisnotsufficientsimplytorequirethatthetwosymmetrygroupsbeisomorphic; itisnecessarytohaveanisomorphismbetweenthetwogroupsthattakestranslationstotranslations, rotationstorotations, reflectionstoreflectionsandglidereflectionstoglidereflections. Forthosenotfamiliarwiththetheoryofgroups, donotworryaboutthesetechnicalities.)

5.2 SymmetryofRegularPolygonsI

Inordertogetafeelforsymmetrygroups, westartwiththesymmetrygroupsofregularpolygons.Letusexaminethesymmetriesofanequilateraltriangle, asshowninFigure 5.2.1. NoticeinthefigurethatwelabeledtheverticesofthetrianglebyA, B and C. Theselabelsarenotpartofthetriangle, butaretheresimplytohelpusseetheeffectsofvarioussymmetriesonthetriangle.

Thefirst thingwewanttodois tolistallsymmetriesof theequilateral triangle, that is, allisometriesoftheplanethathavethetrianglelandonitself. Itispermissiblethattheseisometriesinterchangethelettersusedtolabelthevertices, becausetheselettersarenotactuallypartof

Page 162: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

5.2SymmetryofRegularPolygonsI 155

A

C B

Figure5.2.1

the triangle, andareonlyusedtohelpuskeeptrackofwhat isgoingon. Forexample, onepermissible isometry isreflectionin thevertical linethroughthemiddleof thetriangle. Thisreflectionleavesthetrianglelookingthesame, thoughitinterchangesvertices B and C (leavingA unmoved). Youmightfindithelpfulatthispointtocutanequilateraltriangleoutofpaper,labeltheverticesasinFigure 5.2.1, andperformtheisometrieswewilldiscuss. Unlessyouhavetransparentpaper, ithelpstowriteonbothsidesofthetrianglewhenyoufirstlabelthevertices.Thetrianglecannothaveanytranslationsymmetryorglidereflectionsymmetry, becauseany

translationorglidereflectionoftheplanewouldmovethetriangleoffitself. Thetrianglecanthereforehaveonlyrotationsymmetryandreflectionsymmetry. Whatweneedtofindarethevariouslinesofreflectionofthetriangle, andthevariouscentersofrotationandanglesofrotationof the triangle. InFigure 5.2.2 are indicated the three linesaboutwhich the trianglecanbereflectedwithoutchangingitsappearance; thesethreelinesaredenoted L1, L2 and L3. Thereflectionsthroughtheselinesaredenoted M1, M2 and M3 respectively. Forexample, ifweapplyM2 tothetriangleaspicturedinFigure 5.2.1, weseethatM2 leavesthevertexlabeled Bunmoved, andinterchangestheverticeslabeled A and C; seeFigure 5.2.3. NotethatthelinesL1, L2 and L3 arenotpartofthetriangle, butratherarefixedreferencelines; theynevermove.

L1

L3

L2

Figure5.2.2

Page 163: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

156 5. SymmetryofPlanarObjectsandOrnamentalPatterns

A

C B

C

A B

M2

Figure5.2.3

Theidentityisometry, denoted I, iscertainlyasymmetryofthetriangle. Thereareonlytwonon-identity rotations that leave the triangle lookingunchanged: rotationby 120◦ clockwiseaboutthecenterofthetriangle, androtationby 240◦ clockwiseaboutthecenterofthetriangle.Whataboutrotationby 120◦ or 240◦ counterclockwiseaboutthecenterofthetriangle? Thesearecertainlysymmetriesofthetriangle, butrotationby 120◦ counterclockwisehasthesameneteffectasrotationby 240◦ clockwise, andsimilarlyrotationby 240◦ counterclockwisehasthesameneteffectasrotationby 120◦ clockwise. Asalways, weareonlyinterestedintheneteffectofanisometry, andsoitwouldberedundanttousebothcounterclockwiseandclockwiserotations; wewillsticktotheclockwiseones. Itiseasiertothinkofrotationsbyfractionsofwholeturns, rather thandegrees, sowewillwrite R1/3 and R2/3 todenote theclockwiserotationsby 120◦ and 240◦ respectively. Forexample, ifweapply R1/3 to the triangleaspictured inFigure 5.2.1, weseethat R1/3 takesthevertexlabeledA towherevertex Bwas, takesthevertexlabeled B towherevertex C was, andtakesthevertexlabeled C towherevertex A was; seeFigure 5.2.4.

Wenowhaveacompletelistofallsymmetriesoftheequilateraltriangle, namely I, R1/3, R2/3,M1,M2 andM3. Thislististhesymmetrygroupoftheequilateraltriangle; weletG denotethislist. Ournextstepistoseehowthesymmetriesinthislistcanbecombinedviacomposition.UsingProposition 5.1.2 (1), weknowinprinciplethatifwetakeanytwosymmetriesinG, thentheircompositionwillalsobein G. Considerthefollowingexample. Weknowthat M1 andR1/3 aresymmetriesofthetriangle, andsoM1 ◦ R1/3 mustalsobeasymmetryofthetriangle.Hence M1 ◦ R1/3 mustbein G. Whichofthesixmembersof G isitequalto? Thekeypointisthat M1 ◦ R1/3, thoughformedintwostages, hasasingleneteffect, anditisthisneteffectthatequalstheneteffectofpreciselyoneofthesixmembersof G. RecallthatthecompositionM1 ◦ R1/3 meansfirstdoing R1/3 andthendoing M1. InFigure 5.2.5 weseetheneteffectofperforming the two isometries in thespecifiedorder. It is important to recognize that thetransformation M1 alwaysreferstoareflectionintheline L1 exactlyasshowninFigure 5.2.2,nomatterwhathadbeendonetothetrianglepreviously. (Thelines L1, L2 and L3 arenotparts

Page 164: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

5.2SymmetryofRegularPolygonsI 157

A

C B

C

B A

R1/3

Figure5.2.4

ofthetriangle, anddonotmovewhenwerotatetheplane; wealwayswantM1,M2 andM3 tomeanthesamethingsatalltimes.) AnexaminationofFigure 5.2.5 revealsthatM1 ◦ R1/3 leavesthevertexoriginallylabeled B unmoved, anditinterchangestheverticesoriginallylabeled A

and C. Hence, theneteffectof M1 ◦ R1/3 isexactlythesameastheneteffectof M2. Wethereforecanwritetheequation M1 ◦ R1/3 = M2.

M1R1/3

A

C B

C

A B

C

B A

M1 ° R1/3 = M2

Figure5.2.5

WecancomposeanymemberofGwithanymemberofG, andtheresultwillbeamemberofG. WecansummarizeallpossiblecompositionsofmembersofG byconstructinga“multiplica-

Page 165: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

158 5. SymmetryofPlanarObjectsandOrnamentalPatterns

tion”table forG, whichistheanalogofthemultiplicationtableswelearninelementaryschool;wewillcallsuchatablea compositiontable. ThecompositiontablefortheequilateraltriangleisshowninTable 5.2.1. If P and Q aremembersof G, wefind Q ◦ P inthetablebylookingattheentrylocatedintherowcontainingQ andthecolumncontaining P. Forexample, tofindR2/3 ◦ M3, welookattheentrylocatedintherowcontaining R2/3 andthecolumncontainingM3; thissquarecontains M1. Hence R2/3 ◦ M3 = M1. Thewayweobtainedthe 36 entriesinthetablewassimplybydirectlycalculatingeachone; thesecalculationscanbedoneeitherbymakingdrawingssimilartowhatisshowninFigure 5.2.5, orbyusingacut-outequilateraltriangle. (WewilllearnamoreefficientwaytoconstructthisoperationtableinSection 5.3.)

◦ I R1/3 R2/3 M1 M2 M3

I I R1/3 R2/3 M1 M2 M3

R1/3 R1/3 R2/3 I M3 M1 M2

R2/3 R2/3 I R1/3 M2 M3 M1

M1 M1 M2 M3 I R1/3 R2/3

M2 M2 M3 M1 R2/3 I R1/3

M3 M3 M1 M2 R1/3 R2/3 I

.

Table5.2.1

A numberofthingscanbeseeninTable 5.2.1. First, thetableisclearlysubdividedintofour3× 3 squares, twoofwhichonlyhaverotations(thinkingof I asarotation), andtheothertwohavingonlyreflections. Thereisanicediagonalpatternineachofthefoursquares. Also, notethateachof thesixmembersof G appearsonceandonlyonceineachrow, andonceandonlyonceineachcolumn. Wealsoseeinthetablethattheorderofcompositionofsymmetriesmatters. Forexample, itisseeninthetablethatM1 ◦ R1/3 = M2 , whereas R1/3 ◦ M1 = M3.Hence M1 ◦ R1/3 = R1/3 ◦ M1.Onefinalpointregardingthesymmetriesoftheequilateraltriangle. InSection 4.6 wedis-

cussedthenotionofaninverseisometry. ByProposition 5.1.2 (2), weknowthattheinverseisometryofeachsymmetryof theequilateral triangle isalsoasymmetryof the triangle. WecanstateveryexplicitlywhattheinverseofeachsymmetryofthetriangleisbyusingProposi-tion 4.6.5. Moreprecisely, wehave I−1 = I, R1/3

−1 = R2/3, R2/3−1 = R1/3 M1

−1 = M1,

M2−1 = M2 and M3

−1 = M3.Everythingthatwehavediscussedconcerningtheequilateraltriangleworkssimilarlyforany

regular n-gon. Justaswehavethreerotations(includingtheidentity)andthreereflectionsforthetriangle, yieldingatotalofsixsymmetries, similarlyaregular n-gonhas n rotationsand n

reflections, yieldingatotalof 2n symmetries. Thesmallestrotationofaregular n-gonis R1/n,andallotherrotationsaremultiplesofthisrotation. Forexample, thesquarewillhavesymmetrygroupwithmembers I, R1/4, R1/2, R3/4,M1,M2,M3 andM4, wherethefourreflectionshavelinesofreflectionasshowninFigure 5.2.6. Thesymmetriesofaregular n-gonare:

I, R1/n, R2/n, R3/n, . . . , R(n−1)/n,M1,M2,M3,M4, . . . ,Mn.

Page 166: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

5.2SymmetryofRegularPolygonsI 159

Itdoesnotmakeanysubstantialdifferencehowthelinesofreflectionforaregularpolygonarearranged, but, foruniformity(andlaterconvenience), wewillalwaysassumethattheyarearrangedasinFigure 5.2.6, namelywith L1 vertical, andtheothersincounterclockwiseorder(thisorderwillturnouttobeusefulinSection 5.3). Wecanformthecompositiontableforthesymmetrygroupofeachregular n-gon, analogouslytoTable 5.2.1. Thepatternsthatwesawinthetablefortheequilateraltrianglealsoholdforotherregular n-gons.

L1

L3

L4

L2

Figure5.2.6

Exercise 5.2.1. Listallthesymmetriesofaregularpentagon, andofaregularhexagon.

Exercise 5.2.2. Construct thecomposition table for thesymmetrygroupof thesquare.UselinesofreflectionlabeledasinFigure 5.2.6. Calculateeachentryinthetabledirectly;donotsimplycopy thepatternofTable 5.2.1. (Thepointof thisexerciseis toverifybyactualcalculationthatthecompositiontableforthesquarehasthesamepatternasfortheequilateraltriangle.)

Page 167: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

160 5. SymmetryofPlanarObjectsandOrnamentalPatterns

Exercise 5.2.3. Fortheregularoctagon, computethefollowingsymmetries(thatis, expresseachasasinglesymmetry).

(1) R1/8 ◦ R3/8;

(2) R1/4 ◦ R5/8;

(3) R1/8 ◦ M3;

(4) M1 ◦ M5;

(5) (M6)−1;

(6) (R3/8)−1.

5.3 SymmetryofRegularPolygonsII

Supposethatwewantedtocompute R1/3 ◦ M3 ◦ M2 ◦ R1/3 ◦ M1 foranequilateraltriangle.UsingthemethodofSection 5.2, wecouldeitherdoitdirectlybydrawingatriangleanddoingeachisometryoneata time, orwecoulduse thecomposition tablegiven inTable 5.2.1 tocomputethecompositionofthefirsttwoisometries, thenthecompositionoftheresultwiththenextisometry, andsoon. Eitherway, itwouldbeaslightlytediouscalculation, thoughwecoulddoit.Nowsupposewewantedtocompute R1/20 ◦ M17 ◦ M53 ◦ R3/100 ◦ M1 foraregular

100-gon. InprinciplewecouldusethemethodofSection 5.2, butinpracticeitwouldbesotediousthatnoonewouldwanttodoit, becausedrawinga 100-gonwouldbeverydifficult,andmakingacompositiontablefora 100-gonwouldtakealongtime.InthissectionwepresentanalternativeapproachtothematerialwediscussedinSection 5.2,

andthisalternativeapproachwillallowustodocalculationsforaregular 100-gonjustaseasilyaswedoforanequilateraltriangle. Insteadoffiguringoutcompositionsofsymmetriesdirectly,wedevelopan“algebra”ofsymmetriesofregularpolygons. NotonlywillitbeeasiertofillintablessimilartoTable 5.2.1 oncewehavethealgebraicapproach, butwewillseethatessentiallythesamerulesworkforallregular n-gons.Tostart, wewant toexpressall thesymmetriesofaregular n-gonintermsofa fewbasic

symmetries. Thesebasicsymmetrieswillbesortoflikeatoms, outofwhichallothersymmetriesarebuilt. Nomatterwhatthevalueof n is, wewillalwaysusethesamethreesymmetriesasourbuildingblocks. InordertodistinguishthealgebraicapproachofthissectionfromthegeometricapproachofSection 5.2, wewilladoptadifferentnotation, which looksmore likealgebra.(However, whatwearedoinghereisnotthesameasthealgebrawelearninschool—thatdealswithnumbers, whereasherewearedealingwithsymmetries. Numbersandsymmetriesdonotbehaveexactlythesame.)

Page 168: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

5.3SymmetryofRegularPolygonsII 161

Supposewehavearegular n-gonforsome n. First, welet 1 denotetheidentitysymmetry,previouslydenotedby I. Next, let r denotethesmallestpossiblenon-trivialclockwiserotationsymmetry, previouslydenoted R1/n. Forexample, in thecaseof theequilateral triangle, wewillhave r = R1/3; inthecaseofthesquare, wewillhave r = R1/4. Hence, thesymbol rdenotesrotationbyadifferentangleforeachdifferentregularpolygon. Inallcases, however,weknowthat r isthesmallestpossiblenon-trivialclockwiserotationsymmetry. Third, let mdenotereflectioninaverticalline, previouslydenoted M1. (Itwouldworkjustaswelltoletm beanyotherreflectionsymmetry, butwewillalwayschoosereflectioninavertical line,sothattherewillbenoambiguityaboutwhichreflectionisreferredtoby m.) Last, insteadofwritingcompositionusingthesymbol ◦, wewillsimplyusethestandardalgebraicnotationformultiplicationtodenotecomposition. Hence, whatweusedtowriteas M1 ◦ R1/n wenowdenote mr.Wecanusesome further standardalgebraicnotationaswell. Tostart, if k isanypositive

integer, wewill let rk meantheproductof r withitself k times. Notethat r1 = r. Wewilllet r−1 denote R−1/n, that is, the smallest possible counterclockwise rotationof the n-gon.

Forconvenience, againfollowingstandardalgebraicpractice, wewilllet r0 = 1, andforanypositiveinteger k, wewilllet r−k = (r−1)k. Thesamesortofnotationappliestoexpressionsoftheform mk.Itturnsoutthatwecanrewritealltheothersymmetriesofaregular n-gonusingthethree

symmetries 1, r and m. Letusstartwiththeequilateraltriangle, beforestatingtheresultmoregenerally. InthenotationweusedinSection 5.2, thesymmetriesoftheequilateraltriangleareI, R1/3, R2/3, M1, M2 and M3. (ItisimportantforwhatfollowsthatthelinesforthesethreereflectionsbeaspicturedinFigure 5.2.2.) Wehavealreadyseenthat I = 1, that R1/3 = r,

andthat M1 = m. Itisstraightforwardtoverifythat R2/3 = R1/32 = r2. Whatabout M2 and

M3? Weproceedasfollows. InTable 5.2.1 wesawthat M1 ◦ M2 = R1/3. HenceweobtainM1 ◦ M1 ◦ M2 = M1 ◦ R1/3. Weknowthat M1 ◦ M1 = I (byProposition 4.6.5 (4)),anditthereforefollowsthat M2 = M1 ◦ R1/3. Switchingtoournewnotation, weseethat

M2 = mr. A similarcalculationshowsthat M3 = mr2; thereaderisaskedtosupplythedetails. (Alternatively, wecouldhavetakenanequilateraltriangle, anddirectlyverifiedaswedidinSection 5.2 thatthecomposition mr hasthesameneteffectas M2, andsimilarlyformr2 and M3.) Wecouldalsohaveexpressed M2 as r2m, and M3 as rm, butforthesakeofuniformitywewillalwayskeeptheletterm ontheleftandtheletter r ontheright. Alltold, thesixsymmetriesoftheequilateraltrianglecanbewrittenas 1, r, r2, m,mr and mr2.A similarcalculationwouldshowthattheeightsymmetriesofthesquarecanbewrittenas

1, r, r2, r3, m, mr, mr2 and mr3. Thesamepatternholds fora regular n-gon, where thecompletelistofsymmetriesinournewnotationisasfollows:

Geometricnotation I R1/n R2/n · · · R(n−1)/n M1 M2 M3 · · · Mn

Algebraicnotation 1 r r2 · · · rn−1 m mr mr2 · · · mrn−1

Page 169: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

162 5. SymmetryofPlanarObjectsandOrnamentalPatterns

Onceagain, westressthattheaboveequalitiesholdexactlyaswrittenonlyifweassumethatthelinesorreflectionarearrangedasinFigure 5.2.6, namelywiththelinesofreflectionarrangedconsecutivelyincounterclockwiseorder.Now thatweknowhow towriteour symmetries in termsof 1, r and m, we turn to the

compositionofsymmetries. InSection 5.2, wecomputedthecompositionoftwosymmetriesgeometrically, byseeingtheeffectonthen-gonofeachofthetwoisometriesperformedoneaftertheother. Forexample, inthecaseoftheequilateraltriangle, wecomputed M1 ◦ R1/3 = M2

asshowninFigure 5.2.5, whereweseethetwoisometriesperformedinthespecifiedorder.Thoughstraightforward, suchgeometriccomputationsarequitetedious, andarealsopronetoerror. However, becauseallsymmetriesoftheregularn-gonhavenowbeenrewrittenintermsof1, r andm, oncewecanfigureouthowtocomposethesethreebasicsymmetries, wewillthenhaveaquickmethodforcomposinganytwosymmetriesofthen-gon. Thefollowingpropositionlistssomeofthemostofthebasicrulesforcombining 1, r and m.

Proposition 5.3.1. Let 1, r and m bedefinedasaboveforaregular n-gon.

1. r · 1 = r and r = 1 · r;2. m · 1 = m and m = 1 ·m;

3. rarb = ra+b;

4. mamb = ma+b;

5. meven = 1 and modd = m, where even denotesanyevennumber, and odd denotesanyoddnumber;

6. rn = 1.

Demonstration.

(1). Thesetwoequalitiesareclear, because 1 issimplyanothernotationfortheidentityisom-etry I, andwecanapplyProposition 4.4.2 (1).

(2). ThisissimilartoPart (1).

(3). Recall that ra means theproductof r with itself a times, andsimilarly rb means theproductof r withitself b times. Hence, weseethat rarb meanstheproductof r withitselfb+ a times, whichisthesameas a+ b times. Because ra+b alsomeanstheproductof r withitself a+ b times, wededucethat rarb = ra+b.

(4). ThisissimilartoPart (3).

(5). Recallthat m isareflectionoftheplane. Itthenmustbethecasethat m2 = 1, whichisjustarestatementinourcurrentnotationofProposition 4.6.3 (1). If even denotesapositiveevennumber, then meven = m2m2m2 · · ·m2 = 1. If odd denotesapositiveoddnumber,then modd = m2m2m2 · · ·m2m = m. A similarargumentholdsfornegativeevenandoddnumbers.

Page 170: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

5.3SymmetryofRegularPolygonsII 163

(6). Recallthat r isjustanothernotationfor R1/n. ItfollowsfromProposition 4.6.4 (1)thatcomposing R1/n withitself n timesisthesameasa 360◦ rotation, whichequalstheidentityisometry.

NoticethatRules (1)–(4)intheabovepropositionarejustlikestandardalgebraicrulesfornum-bers, whereasRules (5)–(6)arenotatalllikethestandardrulesfornumbers. Hence, althoughournotationusing 1, r and m isreminiscentofstandardalgebra, itisnotthesameasit. Weshouldalwayskeepinmindthatthesymbols 1, r andm asusedhereareshort-handnotationsforvariousisometriesoftheplane, anddonotdenotenumbers. NoticealsothatRules (1)–(5)holdidenticallyforallregularpolygons, whereasRule (6)variesfordifferentvaluesof n. Thatis, forasquareRule (6)is r4 = 1, whereasforaregularpentagonthesameruleis r5 = 1.

Exercise 5.3.1. [UsedinThisSection] Foraregular n-gon, showthat rn−a = r−a foranyinteger a. Inparticular, deducethat rn−1 = r−1.

InProposition 5.3.1 wesawtherulesforcombiningexpressionsinvolvingonly r oronly m.Wehavenotyetseentherulesforcombiningexpressionsinvolvingbothm and r together; wenowturntothismissingcase. Asbefore, letusstartwiththecaseoftheequilateraltriangle.Considerthecomposition rm. Becausethisisthecompositionoftwosymmetriesoftheequi-lateraltriangle, weknowitmustbeequaltoasinglesymmetryoftheequilateraltriangle. Inotherwords, itmustbethecasethat rm equalsoneof 1, r, r2,m,mr ormr2. Ifwecalculatetheneteffectof rm fortheequilateraltriangle, usingadrawingoracut-outtriangle(justaswedidinSection 5.2), wewillseethat rm = mr, andthatinfact rm = mr2 (thereadershouldverifythisequality). Ifwetrythesameresultforthesquare, itwillturnoutthat rm = mr3.Itappears, unfortunately, asifwedonothavethesameresultforthetwodifferentpolygons.However, everythingworksoutnicelyifwerewriteourformulas. Forthecaseoftheequilateraltriangle, observethat r2 = r−1 (useExercise 5.3.1 (2)with n = 3), andtherefore rm = mr−1.Inthecaseofthesquare, wehave r3 = r−1, andthereforewealsohave rm = mr−1. Wenowseeageneralpattern, asstatedinthefirstpartofthefollowingproposition; thesecondpartofthepropositiongeneralizestheresultevenfurther.

Proposition 5.3.2. Let 1, r and m bedefinedasaboveforaregular n-gon.

1. rm = mr−1;

2. ram = mr−a foranyinteger a.

Demonstration. Thefirstpartoftheproofisgeometric, whereasthesecondpartisalgebraic.

(1). Wewillshowthat rm = mr−1 byapplyingeachof rm and mr−1 toaregular n-gon,andwewillcompare the results. InFigure 5.3.1 weseea regular n-gon, with someof theverticeslabeled. InFigure 5.3.2 weseetheresultofapplyingfirst m andthen r, yieldingtheneteffectofdoing rm tothe n-gon. InFigure 5.3.3 weseetheresultofapplyingfirst r−1 and

Page 171: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

164 5. SymmetryofPlanarObjectsandOrnamentalPatterns

thenm, yieldingtheneteffectofdoingmr−1 tothe n-gon. Wethereforeseethattheneteffectofdoing rm and mr−1 isthesame, andthereforethesetwoisometriesareequal.

(2). If a isapositiveinteger, thenwecanapplyPart (1)ofthispropositiontocompute

ram = rr · · · r︸ ︷︷ ︸a times

m = rr · · · r︸ ︷︷ ︸a−1 times

mr−1 = rr · · · r︸ ︷︷ ︸a−2 times

mr−1r−1 = · · · = mr−1r−1 · · · r−1︸ ︷︷ ︸a times

= m(r−1)a = mr−a.

If a isnotpositive, thentheaboveargumentdoesn’twork, sowetakethefollowingapproach.Let a beanyinteger. Thenwenotethat mra isthecompositionof m and ra. Whatever a is,weknowthat ra issomerotation, andm isareflection. Hence ra isorientationpreserving, andm isorientationreversing. ByProposition 4.4.3 (2)weseethat mra isorientationreversing.Becauseallthesymmetriesofaregularpolygonarerotationsandreflections, wededucethatmra mustbeareflection. Hence, byProposition 4.6.3 (1)weknowthat (mra)(mra) = 1.Hence mramra = 1. Multiplyingbothsidesontheleftby m andontherightby r−a, weobtain mmramrar−a = m1r−a. Cancellingtheadjacentm’s, andcancelling ra and r−a, weobtain ram = mr−a. (ThisdemonstrationactuallymakesunnecessarythedemonstrationofPart(1), andthedemonstrationofPart(2)when a isapositiveinteger, butthosedemonstrationsareintuitivelymorestraightforward, andsowereworthkeeping.)

DA

B C

Figure5.3.1

Wenowhaveallthealgebraicrulesneededforworkingwith 1, r andm. Usingthesealgebraicrules, wecannoweasilyconstructcompositiontables forthesymmetriesofregular n-gons.Insteadoffiguringouteachentryinthesetablesgeometrically(thatis, bydrawingeachcase, orusingacut-out), aswedidinSection 5.2, wecansimplyuseouralgebraicrules, andessentiallyforgetaboutthegeometry. (Wearenotreallyforgettingthegeometry—thealgebraicrulesforcombining 1, r and m summarize thegeometryof the regularpolygons. Havingdevelopedtheserules, wenolongerneedtokeepgoingbacktothegeometry.) Asanexample, letuslookat thecomposition table for theequilateral triangle. Wehavealreadyseen thiscompositiontableinTable 5.2.1, butletusstartfromscratch. WestartoffwithTable 5.3.1, wherewesee

Page 172: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

5.3SymmetryofRegularPolygonsII 165

rm

rm

DA

B C

AD

C B

D

C

B A

Figure5.3.2

mr-1

mr-1

DA

B C

C

A B

DD

C

B A

Figure5.3.3

theoperationtablewithnoentriesfilledin(weputinextralinestomakeiteasiertoview). Wewishtocomputefoursampleentriesinthetable, whichwehavelabeled A, B, C and D.WecomputethefourdesiredentriesintheabovetableusingvariouspartsofProposition 5.3.1

andProposition 5.3.2. (Recallthat, asinSection 5.2, theentrylocatedintherowcontainingQ andthecolumncontaining P is Q ◦ P.) Letusstartwithentry A. Thisentryis theresultofthecomposition r · r, whichclearlyequals r2. Theentry B istheresultofthecompositionm ·mr, whichequals m2r = 1 · r = r. Theentry C istheresultofthecomposition mr · r2,whichequals mrr2 = mr1+2 = mr3 = m · 1 = m. Finally, theentry D istheresultofthecomposition mr2 ·mr, whichequals mr2mr; usingProposition 5.3.2 (2), thislastexpressionequals mmr−2r = m2r−2+1 = r−1, andbecauseweareworkingwithanequilateraltriangle,

Page 173: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

166 5. SymmetryofPlanarObjectsandOrnamentalPatterns

· 1 r r2 m mr mr2

1r A

r2

m B

mr C

mr2 D

Table5.3.1

weseethatentry D equals r2. WecanthereforestarttofillinourcompositiontableasshowninTable 5.3.2.

· 1 r r2 m mr mr2

1r r2

r2

m r

mr m

mr2 r2

Table5.3.2

Usingthesamesortsofcalculations, wecaneasilycompletetheentiretable, asshowninTable 5.3.3.

· 1 r r2 m mr mr2

1 1 r r2 m mr mr2

r r r2 1 mr2 m mr

r2 r2 1 r mr mr2 m

m m mr mr2 1 r r2

mr mr mr2 m r2 1 r

mr2 mr2 m mr r r2 1

Table5.3.3

WecannowcompareTable 5.3.3 withTable 5.2.1. Asexpected, thetwotablesareentirelyidentical, exceptforthechangeofnotation. Inotherwords, ifwetakeTable 5.3.3, andreplaceeveryinstanceof 1 with I, everyinstanceof r with R1/3, etc., wewillobtainTable 5.2.1 pre-cisely. Hence, thereisnoessentialdifferencebetweentheresultsofcomputingcompositionsofsymmetriesgeometricallyvs.algebraically, althougheachmethodismoreconvenientorintu-itivelyappealingindifferentsituations. Finally, wementionthatwhatwehavejustdoneforthe

Page 174: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

5.3SymmetryofRegularPolygonsII 167

equilateraltrianglecanalsobedoneforanyregular n-gon. Oneoftheadvantagesofthealge-braicapproachisthatthealgebraicrulesarethesameforallregular n-gons(withtheexceptionofProposition 5.3.1 (6)).

Exercise 5.3.2. Construct thecomposition table for thesymmetrygroupof thesquare,analogouslytoTable 5.3.3. Useonlyouralgebraicrules, withoutactuallydrawingasquare.(Calculateeachentryinthetabledirectly; donotsimplycopythepatternofTable 5.3.3.)

Oneuseofthealgebraicapproachtosymmetriesofregularpolygonsisthatitallowsustosimplifycomplicatedexpressionsinvolvingsuchsymmetries. Forexample, supposewearegiventheexpressionmr5m6r3mr forsomeregularpolygon. WecansimplifyitusingtherulesgiveninProposition 5.3.1 andProposition 5.3.2. Recallthat m and r arenotregularnumbers, andthereforewecanuseonlytherulesdiscussedinthissection, andnottheregularrulesforalgebra.Theideaistodothesimplificationonestepatatime. Weproceedasfollows, underscoring,andjustifying, eachsteptaken:

mr3m7r9mr = mr3mr9mr byProposition 5.3.1 (5)

mr3mr9mr = mmr−3r9mr byProposition 5.3.2 (2)

mmr−3r9mr = r−3r9mr byProposition 5.3.1 (5)

r−3r9mr = r6mr byProposition 5.3.1 (3)

r6mr = mr−6r byProposition 5.3.2 (2)

mr−6r = mr−6+1 byProposition 5.3.1 (3)

mr−6+1 = mr−5

Wecanobserveintheabovecalculationsomeideasthatcanbeusedinanysimilarsituation.First, wheneverwehavean m toapower, wecansimplifytheexpression. Second, ifwehaveadjacent letters m, or ifwehaveadjacentpowersof r, wecan simplify. Third, ourgeneralstrategyistomoveallthelettersm totheleft, andalltheletters r totheright, sothateventuallywewillhavearesultthatiseitheroftheform ra forsomeinteger a, oroftheform mra forsomeinteger a. Thewaywemovetheletters m totheleftandtheletters r totherightisbyusingProposition 5.3.2.Intheaboveexample, westoppedwhenweobtainedmr−5. Thereisnopossibilityofsimplify-

ingfurther, giventhatwedonotknowhowmanyedgestheregularpolygonhas. Wenowturntoanotherexample, thistimeforaspecifictypeofregularpolygon. Supposearegiventheexpres-sion mr10m7rm forthesquare. Wecansimplifythisexpressionasfollows, thistimeomittingthejustificationforeachstep(whichthereadershouldsupply), thoughwestillunderscoreeachsteptaken.

mr10m7rm = mr10mrm = mmr−10rm = r−9m = mr9 = mr4r4r = mr.

Page 175: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

168 5. SymmetryofPlanarObjectsandOrnamentalPatterns

Observethatitwasonlyintheverylaststepthatweusedthefactthatthepolygonwasasquare;uptillthatpoint, weproceededexactlyaswehaddoneforanarbitrarypolygon.

Exercise 5.3.3. Simplifyeachofthefollowingexpressionsforarbritraryregularpolygons.Ineachcase, theanswershouldbeoftheform 1 or ra or mra forsomeinteger a.

(1) mrmr2.

(2) r5mmrm.

(3) r7m3r2mr.

(4) mr3mr3mr4mr4.

(5) m4rm3rm2rm.

Exercise 5.3.4. Simplifyeachofthefollowingexpressionsfortheregularpolygonindi-cated. Ineachcase, theanswershouldbeoftheform 1 or ra ormra forsomenon-negativeinteger a, where a islessthanthenumberofedgesofthepolygon.

(1) rmr2m fortheequilateraltriangle.

(2) m3r6mrm fortheequilateraltriangle.

(3) mr9m2r forthesquare.

(4) mr4mr3mr2mr fortheregularpentagon.

(5) mr4mr3mr2mr fortheregularhexagon.

Intheaboveexamplesofsimplifyingexpressions, westartedwithanexpressioninalgebraicnotation, andusedouralgebraic rules inorder to simplify. Wecanalsouse thismethod tosimplifyanexpressionwritteninthegeometricnotationofSection 5.2, byfirstconvertingtoalgebraicnotation, thensimplifying, andthenconvertingback. Weconsidertheexamplegivenattheverybeginningofthissection, namelysimplifying R1/20 ◦ M17 ◦ M53 ◦ R3/100 ◦ M29

foraregular 100-gon.

R1/20 ◦ M17 ◦ M53 ◦ R3/100 ◦ M1 = r5 ·mr16 ·mr52 · r3 ·m = r5mr16mr52r3m

= r5mr16mr55m = mr−5r16mr55m = mr11mr55m

= mmr−11r55m = r44m = mr−44 = mr−44r100

= mr56 = M57.

ItwouldbeveryunpleasanttotrytosimplifytheaboveexpressiongeometricallyaswedidinSection 5.2.

Page 176: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

5.3SymmetryofRegularPolygonsII 169

Exercise 5.3.5. Simplifyeachofthefollowingexpressionsfortheregularpolygonindi-cated. Ineachcase, theanswershouldbeinthegeometricnotation.

(1) R1/3 ◦ M1 ◦ R2/3 ◦ M3 fortheequilateraltriangle.

(2) M2 ◦ R1/3 ◦ M3 ◦M1 fortheequilateraltriangle.

(3) R1/2 ◦ M1 ◦ M3 ◦ R3/4 forthesquare.

(4) R3/5 ◦ M1 ◦ M5 ◦ R2/5 ◦ M3 fortheregularpentagon.

(5) R1/2 ◦ M1 ◦ M3 ◦ R3/4 fortheregular 60-gon.

(6) R1/2 ◦ M1 ◦ M50 ◦ M3 ◦ R3/4 fortheregular 80-gon.

Wefinishthissectionbymentioningthealgebraicapproachtofindinginversesofsymmetriesofregularpolygons, assummarizedinthefollowingproposition. Part (4)ofthepropositionmightlookasifitwerebackwardsatfirstglance, butitiscorrect, andistheresultofthefactthatordermatterswhencombiningsymmetries.

Proposition 5.3.3. Let 1, r and m bedefinedasaboveforaregular n-gon.

1. (ra)−1 = r−a = (r−1)a foranyinteger a;

2. m−1 = m;

3. (mra)−1 = mra foranyinteger a.

4. (xy)−1 = y−1x−1 foranysymmetries x and y.

Demonstration.

(1). Recallthat r isanothernotationfor R1/n. Hence ra isanotherwayofwriting Ra/n. Using

Proposition 4.6.5 (3)weseethat(Ra/n

)−1= R−a/n, andthislastexpressionisseentobethe

sameas r−a, whichinturnisthesameas (r−1)a.

(2). Because m is a reflection, the equationweneed to show is simply a restatementofProposition 4.6.5 (4).

(3). AsdiscussedinthedemonstrationofProposition 5.3.2 (2), weknowthatmra isareflec-tion. ThisequationweneedtoshowissimplyarestatementofProposition 4.6.5 (4).

(4). Wecompute

(xy)(y−1x−1) = x(yy−1)x−1 = x · 1 · x−1 = 1.

Itfollowsthat (xy)−1 = y−1x−1.

WenotethatPart (4)of theabovepropositioncanbeextendedtoanynumberofsymme-tries, notjusttwo. Forexample, inthecaseoffoursymmetrieswewouldhave (xyzw)−1 =w−1z−1y−1x−1.

Page 177: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

170 5. SymmetryofPlanarObjectsandOrnamentalPatterns

5.4 RosettePatterns

Regularpolygons, thesymmetriesofwhichwestudiedinSections 5.2 and5.3, maybeinter-estingmathematically, buttheyarenotpatternsofgreataestheticinterest. Wewishtoturnourattentiontoaestheticallymoreinteresting—andmathematicallymorecomplicated—objects, of-tenreferredtoasornamentalpatterns. Westartwithrosettepatterns(orsimply, rosettes) whicharethesimplestofthethreetypesofornamentalpatternsthatwewilltreat. A rosettepatternisdefinedtobeanyplanarobjectthathasonlyfinitelymanysymmetries. SeeFigure 5.4.1 forsomeexamplesofrosettepatterns. (Weleaveittothereadertolistallthesymmetriesforeachoftheobjectsinthefigure, thusverifyingthattheyareindeedrosettepatterns.)Thename“rosette”comesfromrosewindowsincathedrals, althoughinfactthehumanfigures

portrayedinarosewindowoftenpreventthewindowfromhavingnon-trivialsymmetry.

(i) (ii) (iii) (iv)

Figure5.4.1

Someauthorsuse the term“finitefigure” insteadof rosettepattern, butwe feel thisnameissomewhatmisleading, becausewhatisfiniteaboutarosettepatternisonlythenumberofsymmetries, not thegeometricnatureof thefigure. Forexample, the infinitecrossshowninFigure 5.4.2 (i)isarosettepattern(ithaseightsymmetries), eventhoughitisnotgeometricallyfinite. Moreover, notallplanarfiguresthatarefiniteinsizearerosettepatterns, forexamplethecircleshowinFigure 5.4.2 (ii). Thecirclecanberotatedaboutitscenterbyanyangle, andsoithasinfinitelymanysymmetries.

Ourultimategoalforrosettepatternsistoclassifythemaccordingtotheirsymmetrygroups.Thatis, wewishtolistallsymmetrygroupsthatariseasthesymmetrygroupsofrosettepatterns,andtobeabletotakeanygivenrosettepattern, andidentifywhichsymmetrygrouponourlistcorrespondstoit—analogoustoacompletefieldguidetothebirdsofNorthAmericathatlistsalltypesofbirdsthatcanbefound, andgivesidentifyingcharacteristicsforeachtypeofbird. Remarkably, wecanmakeacompletefieldguideforrosettepatterns. (Ofcourse, justasthefieldguideforbirdslistsonlyeachtypeofbird, noteachindividualbird, sotooourlistofsymmetrygroupsofrosettepatternsdescribesonlythesymmetriesofrosettepatterns, nottheparticulardesignelements.) IncontrasttoourdiscussionoffriezepatternsandwallpaperpatternsinSections 5.5 and5.6, whereitwouldbebeyondthescopeofthisbooktogiveallthe

Page 178: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

5.4RosettePatterns 171

(i) (ii)

Figure5.4.2

mathematicaldetailsofthedemonstrationsofthemainresults, inthecaseofrosettepatternsweareabletodemonstrateallthepropositionsinthissection; thesedemonstrationsaresomewhatlengthy, andtheyarefoundinAppendices CandD.A symmetrygroupisacollectionofsymmetries. Tounderstandwhatcollectionsofsymmetries

ariseassymmetrygroupsofrosettepatterns, wewilllookateachofthefourtypesofisometriesasappliedtorosettepatterns. Westartwithtranslationsandglidereflections. Intuitively, ifarosettepatternhada translationsymmetry, thendoingthetranslationtwicewouldalsobeasymmetry, andthreetimes, fourtimes, etc. wouldallbesymmetries. Itwouldfollowthattheobjecthadinfinitelymanysymmetries, whichcannotbethecaseforarosettepattern. Hence,arosettepatterncannothavetranslationsymmetry. Similarlyforglidereflectionsymmetry. Wethereforehavethefollowingproposition.

Proposition 5.4.1. A rosettepatternhasnotranslationsymmetryandnoglidereflectionsym-metry.

A rosettepatterncanhavereflectionand/orrotationsymmetry. ThepatterninFigure 5.4.1 (i)hasrotationsymmetrybutnoreflectionsymmetry; thepatterninPart (ii)ofthefigurehasrotationandreflectionsymmetry; thepatterninPart (iv)ofthefigurehasnosymmetryotherthantheidentitysymmetry. Westartourdiscussionbyexaminingrotationsymmetryofrosettepatterns.

BEFORE YOU READ FURTHER:

Whatcanbesaidaboutcentersofrotationofrosettepatterns. Specificially, trytodecidewhetherarosettepatterncanhavemorethanonecenterofrotation. Ifyes, trytodrawsucharosettepattern; ifno, saywhynot.

Page 179: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

172 5. SymmetryofPlanarObjectsandOrnamentalPatterns

Ourfirstresultaboutrotationsymmetryofrosettepatternsisthefollowingproposition, whichanswerstheabovequestion.

Proposition 5.4.2. Ifarosettepatternhasrotationsymmetries, allsuchsymmetrieshavethesamecenterofrotation.

Wenowknowthatanyrosettepatternhasatmostonecenterofrotation. Ifthereisacenterofrotationinarosettepattern, canwesaysomethingaboutthepossibleanglesofrotationfortherotationsymmetriesaboutthiscenterofrotation. Itturnsoutthatwecansayagooddealaboutsuchangles. Becausewewillneedasimilaranalysis inour treatmentofwallpaperpatternsinSection 5.6, westateournextpropositioninageneralformthatisnotrestrictedtorosettepatterns.Supposewehaveaplanarobject(notnecessarilyarosettepattern)withacenterofrotation.

Hence, there is at least one rotation symmetryof theobjectwith thispoint as its centerofrotation. Theremightbemorethanonesuchrotationsymmetry; thatis, theremightberotationsymmetriesaboutthiscenterofrotationbyvariousangles. Amongalltheserotationsymmetriesaboutthiscenterofrotation, theremightormightnotbeasmallestclockwiserotationsymmetry(recallthattheterm“rotationsymmetry”alwaysmeansanon-trivialrotation). InFigure 5.4.2 (i)there is a smallest clockwise rotation symmetry, namelyby 90◦; in Figure 5.4.2 (ii) there isnosmallestclockwiserotationsymmetry(rotationsymmetriescanbeusedwitharbitrarilysmallangles). Wenotethatifthereisasmallestclockwiserotationsymmetry, thenrotationbynegativeoftheangleisthesmallestcounterclockwiserotationsymmetry, andvice-versa, soweneedonlyconsiderclockwiserotations.Thesituationswhereacenterofrotationdoesnothaveasmallestrotationsymmetryarecom-

plicatedmathematically, andarenotusefulforus. Bycontrast, thesituationwherecentersofrotationhavesmallestrotationsymmetriesisofgreatinterest. Thecrucialfactisthefollowingproposition, thedemonstrationofwhichisfoundinAppendix C.

Proposition 5.4.3. Let P beaplanarobject. Supposethat A isacenterofrotationof P, andsupposethatthereisasmallestclockwiserotationsymmetryabout A. Thenthereisapositiveinteger n suchthatthefollowingpropertieshold.

1. Thesmallestclockwiserotationsymmetryof P about A is RA1/n.

2. Anyrotationsymmetryof P about A isoftheform[RA1/n

]k= RA

k/n forsomeinteger k.

3. Thecollectionofalltherotationsymmetriesof P is {I, RA1/n, R

A2/n, R

A3/n, . . . R

A(n−1)/n}.

Wecannowdefinesomeveryusefulterminology. Supposethat P beaplanarobject, andsupposethat A isacenterofrotationof P. IfthereisasmallestclockwiserotationsymmetryaboutA, thenbytheabovepropositionweknowthatthesmallestclockwiserotationsymmetryabout A isbyanangleoftheform 360◦/n forsomewholenumber n. Thatis, thesmallestclockwiserotationsymmetryis RA

1/n. Wethensaythatthecenterofrotation A isof order n.(Itismoreconvenienttorefertothenumber n thantothefraction 1/n.) Additionally, if A is

Page 180: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

5.4RosettePatterns 173

acenterofrotationoforder n, andifthereisanotherrotationsymmetry RAβ about A forsome

angle β, thenProposition 5.4.3 (2) implies that β isan integermultipleof 360◦/n. That is,wehave β = (k · 360◦)/n forsomewholenumber k, whichmeansthat RA

β istheresultofcomposing RA

1/n withitself k times.Wenowreturntoourdiscussionofrosettepatterns. Supposethatarosettepatternhasrotation

symmetries. ByProposition 5.4.2, allsuchsymmetrieshavethesamecenterofrotation, say A.Becausetherosettepatternhasonlyfinitelymanysymmetries, thentheremustbeasmallestclockwiserotationsymmetryabout A. Therefore, asjustdiscussedinthepreviousparagraph,thecenterofrotation A hasorder n forsomewholenumber n. Wethensaythattherosettepatternisof order n. Ifarosettepatternhasnorotationsymmetrywesaythatitisof order 1.Forexample, therosettepatternsinFigure 5.4.1 areoforders 4, 3, 5 and 1 respectively. Everyrosettepatternhasanorder(whichisoneofthenumbers 1, 2, 3, 4, . . .).Wenowturntoreflectionsymmetryofrosettepatterns.

BEFORE YOU READ FURTHER:

Thinkaboutwhatcanbesaidabouttherelationbetweenlinesofreflectionandcentersofrotationofrosettepatterns.

Thefollowingpropositioncompletelycharacterizestherelationbetweenlinesofreflectionandcentersof rotationof rosettepatterns. Thedemonstrationof thisproposition is found inAppendix D.

Proposition 5.4.4.

1. Ifarosettepatternhasbothreflectionsymmetryandrotationsymmetry, thenalllinesofreflectiongothroughthesinglecenterofrotation.

2. Ifarosettepatternhasmorethanonereflectionsymmetry, thenalllinesofreflectionoftherosettepatterngothroughasinglepoint, andanyrotationsymmetryoftherosettepatternhasthispointasitscenterofrotation.

Putting togetherwhatwehaveseenso far, weknowthat thesymmetrygroupofa rosettepatternhasnotranslationsymmetryorglidereflectionsymmetry; ifithasrotationsymmetries,theyallhavethesamecenterofrotation; ifithasreflectionsymmetryandrotationsymmetry,then all lines of reflection go through the single center of rotation; if it hasmore thanonereflectionsymmetry, alllinesofreflectiongothroughasinglepoint, andthispointisalsothecenterofrotationforallrotationsymmetries. Weknowfurtherthateveryrosettepatternhasanorder, whichisoneof 1, 2, 3, 4, . . .. Onceweknowtheorderofarosettepattern, weknowallthereistoknowaboutitsrotations. Forexample, arosettepatternoforder 5 hasrotations I,R1/5, R2/5, R3/5 and R4/5. Theonlyquestionthatremainsis, therefore, whattypesofreflectionsymmetriesarosettepatterncanhave, onceweknowitsorder.

Page 181: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

174 5. SymmetryofPlanarObjectsandOrnamentalPatterns

BEFORE YOU READ FURTHER:

Supposearosettepatternhasorder n. Thinkabout thepossiblenumbersofreflectionsymmetriestherosettepatterncanhave.

Letuslookatsomeexamples. TherosettepatterninFigure 5.4.3 (i)hassymmetries I, R1/5,R2/5, R3/5 and R4/5; ithasnoreflections. TherosettepatterninFigure 5.4.3 (ii)hassymmetriesI, R1/4, R1/2, R3/4,M1,M2,M3 andM4; thefourlinesofreflectioncorrespondingtothefourreflectionsM1,M2,M3 andM4 aresimilartothefourlinesofreflectionshowninFigure 5.2.6.Notice that in thefirst case thereareno reflections, and in the secondcase thenumberofreflectionsisthesameastheorderoftherosettepattern. Itturnsout(aswillbemadepreciseinProposition 5.4.5 below), thateveryrosettepatternfallsintooneofthesetwopatterns.

(i) (ii)

Figure5.4.3

Tomakeourresultprecise, foreachpositiveinteger n, wedefinethesymmetrygroup Cn tobethecollectionofsymmetries

Cn ={I, R1/n, R2/n, R3/n, . . . R(n−1)/n

}.

Foreachpositiveintegern, wedefinethesymmetrygroupDn tobethecollectionofsymmetries

Dn ={I, R1/n, R2/n, R3/n, . . . R(n−1)/n,M1,M2,M3, . . . ,Mn

}.

(Theletters C andD standfor“cyclic”and“dihedral”respectively, thoughwewillnotbeusingtheseterms. Also, wenotethatthereisnocompletelystandardnotationforthesegroups, andsomeauthorsusenotationthatisdifferentfromours—thoughthenamescyclicanddihedralarequitestandard.) Forexample, wehave

C4 ={I, R1/4, R1/2, R3/4

},

andD3 =

{I, R1/3, R2/3,M1,M2,M3

}.

UsingthealgebraicnotationofSection 5.3, wecanalsowrite Cn as

Cn ={1, r, r2, r3, . . . rn−1

},

Page 182: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

5.4RosettePatterns 175

and Dn asDn =

{1, r, r2, r3, . . . rn−1,m,mr,mr2,mr3, . . .mrn−1

}.

Wenotethatallthegroups Cn aredifferentfromoneanother, allthegroupsDn aredifferentfromoneanother, andallthegroups Cn aredifferentfromallthegroups Dn.Usingournewnotation, weseethattherosettepatternsinFigure 5.4.3 havesymmetrygroups

oftype C5 and D4 respectively. Itcanbeseen, usingtheideasofSections 5.2 and5.3, thataregular n-gonhassymmetrygroupoftypeDn, andthatDn hassametypeofcompositiontablewesawforaregular n-gon. Thecompositiontablefor Cn issimplytheupperlefthandquarterofthemultiplicationtableforaregular n-gon. Forexample, thecompositiontableforC8, usingthenotationofSections 5.3, isgiveninTable 5.4.1.

· 1 r r2 r3 r4 r5 r6 r7

1 1 r r2 r3 r4 r5 r6 r7

r r r2 r3 r4 r5 r6 r7 1r2 r2 r3 r4 r5 r6 r7 1 r

r3 r3 r4 r5 r6 r7 1 r r2

r4 r4 r5 r6 r7 1 r r2 r3

r5 r5 r6 r7 1 r r2 r3 r4

r6 r6 r7 1 r r2 r3 r4 r5

r7 r7 1 r r2 r3 r4 r5 r6

Table5.4.1

Wecannowstate thecompleteclassificationof symmetrygroupsof rosettepatterns. ThedemonstrationofthispropositionisgiveninAppendix D.

Proposition 5.4.5 (Leonardo’sTheorem). Thesymmetrygroupofarosettepatterniseither Cn

forsomepositiveinteger n, or Dn forsomepositiveinteger n.

Itfollowsthatthecompletelistofallpossiblecollectionsofsymmetriesofrosettespatternsare

C1, C2, C3, C4, . . . , Cn, . . .

D1, D2, D3, D4, . . . , Dn, . . . .

Thereareinfinitelymanysuchgroups, a Cn andaDn foreachinteger n ≥ 1. Thesesymmetrygroupsareknownasthe rosettegroups.TheabovepropositioniscommonlyreferredtoasLeonardo’sTheoreminhonorofLeonardo

daVinci, whoappearstohaveknownthisfact, thoughhedidnothavethemathematicaltoolstoexpressthisknowledgerigorously, nortoprovethattheseareindeedtheonlypossiblecollec-tionsofsymmetriesofrosettepatterns. Leonardo’sinterestinrosettepatternsmayhaveoriginatedinhisinterestinthepossiblesymmetriesofchurcheswithcircularfloorplans. SeeFigure 5.4.4forsomepicturesfromLeonardo’snotebooks.

Page 183: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

176 5. SymmetryofPlanarObjectsandOrnamentalPatterns

Figure5.4.4

Leonardo’sTheoremisreallyquiteremarkable, inthatitrulesoutallsortsofcombinationsofsymmetriesasarisingfromrosettepatterns. Forexample, thereisnorosettepatternthesymmetrygroupofwhichhas 5 rotations(includingtheidentity)and 3 reflections; thereisalsonorosettepatternthathasrotationby 1/3 ofawholeturnandby 1/4 ofawholeturn, butbynosmallerrotation.Supposeyouaregivenarosettepattern, forexampletheoneshowninFigure 5.4.5. Howdo

youdetermineitssymmetrygroup? First, figureoutitsorder(order 4 inthecaseofFigure 5.4.5).Thendetermineifithasreflectionsymmetryornot(thereisreflectionsymmetryinthecaseofFigure 5.4.5). Ifthereisreflectionsymmetry, younecessarilyhavethegroup Dn, where n istheorder; ifthereisnoreflectionsymmetry, younecessarilyhavegroup Cn. HencetherosettepatternshowninFigure 5.4.5 hasgroup D4.

Figure5.4.5

Exercise 5.4.1. ForeachoftherosettepatternsshowninFigure 5.4.6, listthesymmetries,andstatewhattypeofsymmetrygroupithas.

Page 184: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

5.4RosettePatterns 177

(i) (ii) (iii)

(iv) (v) (vi)

(vii) (viii) (ix)

Figure5.4.6

Exercise 5.4.2. Foreachofthefollowingcollectionsofsymmetries, statewhetherornotitisthesymmetrygroupofsomeplanarobject. Ifyes, giveanexampleofanobjectwiththatsymmetrygroup; ifno, explainwhynot.

(1) {I, R1/3, R2/3,M1,M2}.

(2) {I, R1/3, R2/3}.

(3) {I, R1/2, R3/4}.

(4) {I,M1,M2}.

(5) {I,M1}.

(6) {I, R1/2,M1,M2}.

Page 185: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

178 5. SymmetryofPlanarObjectsandOrnamentalPatterns

5.5 FriezePatterns

Wenowturntofriezepatterns(orsimply, friezes), anothertypeofornamentalpattern, whichareslightlymorecomplicatedthanrosettepatterns, butwhicharecorrespondinglymoreinterestingaswell. Aswasthecaseforrosettepatterns, inthecaseoffriezepatternswewillalsobeabletostateacompleteclassificationofthesymmetrygroups, analogoustoLeonardo’sTheoremforrosettepatterns, thoughinthepresentcaseitwouldbebeyondthescopeofthisbooktoincludeallthedetailsofthedemonstrationoftheclassificationforfriezepatterns.A friezepattern (alsoknownasa strippattern) isanyplanarobjectthathastranslationsymme-

try, butsuchthatitstranslationsymmetrysatisfiestwoconditions: (1)alltranslationsymmetriesareinparalleldirections; and(2)thereisasmallesttranslationsymmetry(recallthattheterm“translationsymmetry”alwaysmeansanon-trivialtranslation). InFigure 5.5.1, Parts (i)and(ii)arefriezepatterns(notethatinPart (ii)thebasicunitoftranslationistwopeople). Part (iii)isnotafriezepatternbecauseithastranslationsymmetryinnon-paralleldirections(forexample,horizontalandvertical), andPart (iv)isnotafriezepatternbecauseithasnosmallesttranslationsymmetry.

Figure5.5.1

Itisimportanttorecognizethatanyfriezepatternwill“goonforever.” Forexample, thepattern. . . TTTTT . . ., whichweassumeisgoingonforeverinbothdirections, isafriezepattern. Thepattern TTTTT, whichconsistsofpreciselyfive letters T, isnot a friezepattern (though it isarosettepattern, withsymmetrygroup D1). Ifaplanarobjectdoesnotgoonforever, thenitcannotpossiblyhavetranslationsymmetry, andthereforeitcannotbeafriezepattern. However,noteverythingthatgoesonforeverisafriezepattern. Forexample, anon-repeatinginfinitestripofletters, orastraightline, bothgoonforever, butneitherisafriezepattern. Ofcourse, we

Page 186: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

5.5FriezePatterns 179

cannotphysicallydrawsomethingthatgoesonforever. Wewillunderstand, however, thateventhoughourpicturesoffriezepatternsdonotgoonforever, weshouldthinkoffriezepatternsasextendingbeyondjustwhatisdrawn, andgoingonforever. Anobjectthatgoesonforeverisnecessarilyamentalconstruct—butsoaremanyotherthingsinbothmathematicsandoutsideofit. Beingamentalconstructisnoliability, atleastfromamathematicalviewpoint. Indeed, itwouldbeapitytolimitourimaginationtoonlythosethingswecanphysicallyconstruct.Foreaseofdiscussion, wewillassumethatallfriezepatternshavebeenpositionedsothatthe

directioninwhichtheycanbetranslatedishorizontal. (ThisisthecaseinFigure 5.5.1.) Anyfriezepattern, nomatterhowitisoriginallydrawn, canberotatedtomakeit“horizontal,” sowearenotlosinganythingbyourassumption.Ourultimategoalforfriezepatternsissimilartoourgoalforrosettepatterns, namelytoclas-

sifyfriezepatternsaccordingtotheirsymmetrygroups. Whatwemeanbythis, attheriskofrepetition, is tolistallsymmetrygroupsthatariseasthesymmetrygroupsof friezepatterns,andtobeabletotakeanygivenfriezepattern, andidentifywhichsymmetrygrouponourlistcorrespondstoit. Asforrosettepatterns, wewillbeginbylookingateachofthefourtypesofisometriesasappliedtofriezepatterns.Westartbylookingat translationsymmetryof friezepatterns. Actually, thereisnothingto

sayhere. Bydefinition, everyfriezepatternmusthavetranslationsymmetry, subjecttocertainrestrictions. Hence, wecannotdistinguishbetweenvarioussymmetrygroups thatarise fromfriezepatternsbyaskingwhetherornottheyhavetranslationsymmetry—theyalldo.Wenextturntorotationsymmetryoffriezepatterns. ThefriezepatterninFigure 5.5.2 (i)hasno

rotationsymmetry. ThefriezepatterninFigure 5.5.2 (ii)hasrotationsymmetryby 180◦ aboutthepointlabeled A, andalsoaboutallpointspointsthatarehalfwaybetweentwoadjacentletters Z inthepattern, andallpointsthatareatthecenterofaletter Z. (AsinSection 4.2, wewillrefertoa 180◦ asahalfturnrotation, orsimplyhalfturn.) Itisnothardtoseethatafriezepatterncannothaverotationsymmetrybyanyangleotherthan 180◦ (oranintegermultipleof180◦), becausethefriezepatternwouldnotlandonitselfifitwererotatedbyanyotherangle.ConsiderthefriezepatternshowninfriezepatterninFigure 5.5.3. Althoughitistruethateachsquareinthefriezepatterncanberotatedby 90◦ aboutitscenter, anditwilllandonitself, sucharotationisnotasymmetryofthefriezepattern, becausewealwaysrotatethewholeplane,notjustonelittlepieceoftheplane, andifwerotatethewholeplaneby 90◦ thenthefriezepatternwillnotlandonitself. Whenitcomestorotationsymmetryforafriezepattern, itiseitherhalfturnsymmetryornothing.Wenotethatifafriezepatternhashalfturnsymmetryaboutonecenterofrotation, thenithas

infinitelymanycentersofhalfturnrotation, obtainedbyapplyingthetranslationsymmetrytotheoriginalcenterofrotation. Further, allcentersofhalfturnrotationmustbeverticallyinthemiddleofthefriezepattern(assumingthefriezepatternishorizontal).

Next, weturntoreflectionsymmetry. ThefriezepatterninFigure 5.5.4 (i)hasnoreflectionsymmetry; thefriezepatterninFigure 5.5.4 (ii)hasreflectionsymmetryintheverticallinein-dicated(andinotherverticallinesaswell); thefriezepatterninFigure 5.5.4 (iii)hasreflection

Page 187: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

180 5. SymmetryofPlanarObjectsandOrnamentalPatterns

(i) (ii)

A

Z Z Z Z Z Z

Figure5.5.2

Figure5.5.3

symmetryinthehorizontallineindicated; thefriezepatterninFigure 5.5.4 (iv)hasreflectionsymmetryinbothverticalandhorizontallines. Itisnothardtoseethatafriezepatterncannothavereflectionsymmetryinalinethatisneitherverticalnorhorizontal, becausethefriezepat-ternwouldnotlandonitselfifitwerereflectedinalinethatisneitherverticalnorhorizontal.Wenotethat ifafriezepatternhasreflectionsymmetryinavertical line, thenitnecessarilyhasreflectionsymmetryininfinitelymanyverticallines, obtainedbyapplyingthetranslationsymmetrytotheoriginalverticallineofreflection. Ontheotherhand, ifafriezepatternhasreflectionsymmetry inahorizontal line, thenthere isonlyonehorizontal lineof reflection,namelythehorizontallinethatisverticallyinthemiddleofthefriezepattern(assumingthefriezepatternishorizontal).

(i) (ii)

H H H H H HD D D D D D(iii) (iv)

F F F F F F A A A A A A

Figure5.5.4

Finally, weconsiderglidereflectionsymmetry. ThefriezepatterninFigure 5.5.5 (i)hasnoglidereflectionsymmetry; thefriezepatterninFigure 5.5.5 (ii)hasglidereflectionsymmetry, wherethelineofglidereflectionishorizontal, andthetranslationinvolvedtakesa ∪ andmovesitontoanadjacent ∩. Ifafriezepatternhasglidereflectionsymmetry, thenthelineofglidereflection

Page 188: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

5.5FriezePatterns 181

mustbethehorizontallinethatisverticallyinthemiddleofthefriezepattern(assumingthefriezepatternishorizontal).

F F F F F F ∩ ∪ ∩ ∪ ∩ ∪ (i) (ii)

H H H H H H(iii)

Figure5.5.5

ThefriezepatterninFigure 5.5.5 (iii)hasglidereflectionsymmetry, butitisfundamentallydifferentfromtheglidereflectionsymmetryofthefriezepatterninFigure 5.5.5 (ii). Anyglidereflectionistheresultofcombiningatranslationandareflection. ForthefriezepatterninFig-ure 5.5.5 (iii), weseethateachofthetranslationandthereflection, thattogetherconstitutetheglidereflectionsymmetry, isitselfasymmetryofthefriezepattern. Bycontrast, thefriezepatterninFigure 5.5.5 (ii)hasnoreflectionsymmetryinahorizontalline, andneitherthetranslationnorthereflection, thattogetherconstitutetheglidereflectionsymmetry, isaloneasymmetryofthefriezepattern. Wecallaglidereflectionsymmetry non-trivial ifneitherthetranslationnorthereflectionthattogetherconstitutetheglidereflectionsymmetry, isaloneasymmetryofthefriezepattern. Wenotethatifafriezepatternhasglidereflectionsymmetry, andhasreflectionsymmetryinahorizontalline, thentheglidereflectionsymmetrymustbetrivial; thereaderisaskedtosupplythedetailsinExercise 5.5.1. Inotherwords, ifafriezepatternhasnon-trivialglidereflectionsymmetry, thenitcannothavereflectionsymmetryinahorizontal line; con-versely, ifafriezepatternhasreflectionsymmetryinahorizontalline, thenithasonlytrivialglidereflectionsymmetry. So, theonlytimetolookfornon-trivialglidereflectionsymmetryiswhenthereisnoreflectionsymmetryinahorizontalline.

Exercise 5.5.1. [UsedinThisSection] Supposethatafriezepatternhasglidereflectionsymmetry, andhasreflectionsymmetryinahorizontalline. Showthattheglidereflectionsymmetrymustbetrivial.

Inthecaseofrosettepatterns, wecouldlistthesymmetrieseachpatternhad, becauseeachlistofsymmetrieswasfinite(bydefinitionofwhatitmeanstobearosettepattern). Wecannotmakesuchlistseasilyforfriezepatterns, becausefriezepatternshaveinfinitelymanysymmetrieseach.However, eventhoughwecannotconvenientlylistsymmetriesinthecaseoffriezepatterns, we

Page 189: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

182 5. SymmetryofPlanarObjectsandOrnamentalPatterns

canstillaskwhichtypesofsymmetriescanbecombinedwitheachother. Todoso, weaskthefollowingfourquestionsaboutanygivenfriezepattern.

QuestionA: Istherehalfturnsymmetry?

QuestionB: Istherereflectionsymmetryinaverticalline?

QuestionC: Istherereflectionsymmetryinahorizontalline?

QuestionD: Istherenon-trivialglidereflectionsymmetry?

Giventhateachoftheabovequestionshaseitheryesornoastheanswer, thereare 2·2·2·2 =16 possiblecombinationsofanswerstothesequestions. These 16 casesarelistedinTable 5.5.1.

QuestionsA B C D

1 N N N N2 N N N Y3 N N Y N4 N N Y Y5 N Y N N6 N Y N Y7 N Y Y N8 N Y Y Y9 Y N N N10 Y N N Y11 Y N Y N12 Y N Y Y13 Y Y N N14 Y Y N Y15 Y Y Y N16 Y Y Y Y

Table5.5.1

WhatisinterestingisthatnoteverycombinationlistedinTable 5.5.1 canactuallyoccur. Inotherwords, noteverypossibletypeofsymmetryofafriezepatterncanexistincombinationwitheveryothertypeofsymmetry. Usingsomeofthefactsaboutisometriesthatwehavealreadydiscussed, wewillinfacteliminatethemajorityofthelistedcombinationsofanswerstothefourquestions. Ineachcasethatiseliminated, wewillseethattheanswerstothefourquestionscontradicteachother.

Page 190: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

5.5FriezePatterns 183

BEFORE YOU READ FURTHER:

TrytoeliminateasmanyofthecasesinTable 5.5.1 asyoucan; foreachcasethatyoueliminate, statewhynofriezepatterncansatisfythatcombinationofsymmetries. Foreachcasethatyoudonoteliminate, trytofindafriezepatternthathasthatcombinationofsymmetries.

ThecasesthatcanbeeliminatedfromTable 5.5.1 arethefollowing:

(4)NNYY. Thereisreflectionsymmetryinahorizontalline, whichimpliesthattheonlyglidereflectionsymmetryistrivial(asmentionedinourdiscussionofglidereflectionsymmetriesoffriezepatterns). Becausethiscasedoeshaveanon-trivialglidereflectionsymmetry, wehaveacontradiction.

(6)NYNY. There is reflectionsymmetry inavertical lineandaglidereflectionsymmetry. Ifthefirstof these isometries is followedby the second, thenbyExercise 4.6.7 weknow theresultingisometryisahalfturnsymmetry. Becausethiscasehasnohalfturnsymmetry, wehaveacontradiction.

(7)NYYN. Thereisreflectionsymmetryverticallineandreflectionsymmetryinahorizontalline. Ifthefirstofthesereflectionsisfollowedbythesecond, thenbyProposition 4.6.3 (3)weknowtheresultingisometryisahalfturnsymmetry. Becausethiscasehasnohalfturnsymmetry,wehaveacontradiction.

(8)NYYY. ThiscaseisjustlikeCase (7).

(10)YNNY. Thereisahalfturnsymmetryandaglidereflectionsymmetry. Thecenterofrotationofthehalfturnsymmetrymustbeonthelineofglidereflection. Ifthehalfturnisfollowedbytheglidereflection, thenbyExercise 4.6.6 wededucethattheresultingisometryisareflectionsymmetryinaverticalline. Becausethiscasehasnoreflectionsymmetryinaverticalline, wehaveacontradiction.

(11)YNYN. There isahalfturn symmetryand reflection symmetry inahorizontal line. Thecenterofrotationofthehalfturnsymmetrymustbeonthehorizontallineofreflection. Ifthehalfturnisfollowedbythereflectioninthehorizontalline, thenbyExercise 4.6.4 wededucethattheresultingisometryisreflectionsymmetryinaverticalline. Becausethiscasehasnoreflectionsymmetryinaverticalline, wehaveacontradiction.

(12)YNYY. ThiscaseisjustlikeCase (4).

(13)YYNN. Thereisahalfturnsymmetryandreflectionsymmetryinaverticalline. Ifthehalfturnisfollowedbythereflectioninaverticalline, thenbyExercises 4.6.4 and4.6.5 wededucethattheresultingisometryiseitherareflectionsymmetryinahorizontallineoraglidereflectionsymmetry. Becausethiscasehasneitherofthesesymmetries, wehaveacontradiction.

(16)YYYY. ThiscaseisjustlikeCase (4).

Page 191: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

184 5. SymmetryofPlanarObjectsandOrnamentalPatterns

Therearesevencombinationsofanswersthatwehavenoteliminated, namelyCases (1), (2),(3), (5), (9), (14)and(15). Infact, eachofthesecombinationsdoesarisefromafriezepattern,aswillbeseenveryshortly. Moreover, all friezepatterns thathave thesameanswers to thefourquestionshavethesamesymmetrygroups, andeachofthesesevencombinationsofan-swerscorrespondstoadifferentsymmetrygroup. (Theproofofthesefactsusessomeadvancedmathematicsthatisbeyondthescopeofthisbook.) Insum, therearepreciselysevensymmetrygroupsoffriezepatterns. Thesesevensymmetrygroups, knownasthe friezegroups, areoftendenotedwiththesymbols f11, f12, f1m, f1g, fm1, fmm and fmg. (Therationaleforthesesymbolsisasfollows: the f standsforfrieze; thefirstsymbolafterthe f is 1 ifthereisnore-flectionsymmetryinaverticalline, andis m ifthereis; thesecondsymbolafterthe f is 1 ifthereisnoothersymmetry, ism ifthereisreflectionsymmetryinahorizontalline, is g ifthereisnon-trivialglidereflectionsymmetry, andis 2 ifthereishalfturnsymmetry.) Wesummarizetheclassificationofthesymmetrygroupsoffriezepatterns, andgiveanexampleofeachoftheseventypes, inthefollowingproposition.

Proposition 5.5.1 (ClassificationofFriezePatterns). ThesymmetrygroupofanyfriezepatternisoneofthesevengroupslistedinTable 5.5.2.

QuestionsName A B C D Example

f11 N N N N F F F F F F F F

f1g N N N Y D ∪ D ∩ D ∪ D ∩f1m N N Y N D D D D D D D D

fm1 N Y N N T T T T T T T T

f12 Y N N N S S S S S S S S

fmg Y Y N Y ∪ ∩ ∪ ∩ ∪ ∩ ∪ ∩fmm Y Y Y N O O O O O O O O

Table5.5.2

InSection 5.4 wenotonlystatedthetypesofsymmetrygroupsthatcouldariseforrosettepatterns, namelythe Cn and Dn groups, butweexplicitlylistedallthemembersofeachofthesegroups; forexample, westatedthat

Cn ={1, r, r2, r3, . . . rn−1

}.

Canwegiveasimilarexplicitdescriptionofeachofthesevenfriezegroups? Intheorywecoulddoso, thoughitismorecomplicatedthaninthecaseoftherosettegroups, becauseeachrosettegroupisfinite, whereaseachfriezegroupisinfinite. Consider, forexample, thefriezegroup f11,whichisthesymmetrygroupoffriezepatternsthathavenosymmetryotherthantranslation, forexample · · · FFFFF · · · . Let t denotethesmallestpossibletranslationsymmetrytotherightof

Page 192: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

5.5FriezePatterns 185

thisfriezepattern. Thenthecollection f11 ofallsymmetriesofthisfriezepatternis

f11 ={· · · t−3, t−2, t−1, 1, t, t2, t3, · · ·

}.

Wecanthinkof t as t1, and 1 as t0. Althoughwewillnotwriteacompositiontablefor f11,becausesuchatablewouldbeinfinite, wecanexplicitlydescribehowtocombineanytwosymmetriesin f11 bytherule tatb = ta+b.

Exercise 5.5.2. Listthesymmetriesinthefriezegroup f1m, similarlytothewaywelistedthesymmetriesin f11. Onceagainlet t denotethesmallestpossibletranslationsymmetrytotherightofthisfriezepattern, andlet h denotereflectioninahorizontalline.

LetusnowuseTable 5.5.2 toanalyzethesymmetriesofthefriezepatterninFigure 5.5.6.Wefirstaskifthefriezepatternhashalfturnsymmetry. Inthiscasetheanswerisyes; thereadershouldfindacenterofrotationforahalfturnsymmetry. Thenextquestioniswhetherthereisreflectionsymmetryinverticallines. Theanswerisyes; thereadershouldfindaverticallineofreflection. Next, weaskwhetherthereisreflectionsymmetryinahorizontalline. Theanswerisno. Finally, weaskifthefriezepatternhasnon-trivialglidereflectionsymmetry. Theanswerisyes; thereadershouldfindthenon-trivialglidereflection. WethereforehaveanswersYYNYtoQuestionsA,B,C,D.Itfollowsthatthefriezepatternhassymmetrygroup fmg.

Figure5.5.6

Observethatthesituationforfriezepatternsisverydifferentfromrosettepatternsinthefollow-ingcrucialway: thereareinfinitelymanydistinctrosettegroups, butonlysevenfriezegroups.Thisisanamazingfact. Inasense, thegreatergeometriccomplexityoffriezepatternsrestrictshowtheycanbeconstructed. Theredoesnotseemtobeanysimpleintuitivereasonforthenumberoffriezegroups, namelyseven; itsimplycomesoutofthemathematicaldetails.

Exercise 5.5.3. ForeachofthefriezepatternsshowninFigure 5.5.7, statetheanswerstoQuestionsA–D,andstatewhatsymmetrygroupithas.

Page 193: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

186 5. SymmetryofPlanarObjectsandOrnamentalPatterns

Figure5.5.7

Exercise 5.5.4. Findandphotocopy 7 friezepatterns, allwithdifferentsymmetrygroups.Foreachofthefriezepatternsyoufind, statetheanswerstoQuestionsA–E,andstatewhatsymmetrygroupithas.

Page 194: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

5.6WallpaperPatterns 187

Exercise 5.5.5. ThemathematicianJohnH.Conwayhascomeupwiththefollowingde-scriptivenamesforthesevenfriezegroups, eachonebasedonaformofbodilymotion:hop, jump, step, sidle, spinninghop, spinningjumpandspinningsidle. Performeachtypeofmotion(partoftheproblemisfiguringoutwhateachmotionis), andlookatyourfoot-prints. Thefootprintsfromeachmotionformafriezepattern. MatchupthesefootprintfriezepatternswiththesevenlistedinTable 5.5.2.

5.6 WallpaperPatterns

Thelast, andmostinteresting, ofourthreetypesofornamentalpatternsarewallpaperpatterns.Thoughwallpaperpatternsaremorecomplicatedtechnicallythanfriezepatterns, heretoowewillbeabletostateacompleteclassificationofthesymmetrygroupsthatarise. Onceagainitwouldbebeyondthescopeofthisbooktoincludeallthedetailsofthedemonstrations.A wallpaperpattern isanyplanarobjectthathastranslationsymmetrysubjecttotwocondi-

tions: (1)thetranslationsymmetriesarenotallinparalleldirections; and(2)thereisasmallesttranslationsymmetryinanypossibledirectionforwhichthereistranslationsymmetry. Addi-tionally, weassumethatateverycenterofrotationofthewallpaperpatternthereisasmallestclockwiserotationsymmetry. InFigure 5.6.1, Parts (i)and(ii)arewallpaperpatterns. Part (iii)isnotawallpaperpatternbecausealltranslationsymmetriesareinparalleldirections, andPart (iv)isnotawallpaperpatternbecauseithasnosmallesttranslationsymmetryintheverticaldirec-tion. Thislastexampleshowsthatnoteverythingyoumightputonawalliscalleda“wallpaperpattern”inthetechnicalsense.

Justasafriezepatternhadto“goonforever”inordertohavetranslationsymmetry, thesameholdsforawallpaperpattern, exceptthatwallpaperpatternsgoonforeverinalldirections, notjustone. Ofcourse, anypicturewedrawofawallpaperpatternwillnotgoonforever, butthatissimplytheresultofourhumanlimitations. Wewillunderstand, however, thateventhoughourpicturesofwallpaperpatternsdonotgoonforever, weshouldthinkofwallpaperpatternsasextendingbeyondjustwhatisdrawn, andgoingonforever.Onecontrastbetweenhowwedrawwallpaperpatternsandfriezepatternsisthatfriezepat-

ternswerealwaysdrawnhorizontally(forconvenience), whereasforawallpaperpatternthereisnooneparticulardirectionthatcanbesingledoutandmadehorizontal.Ourultimategoal forwallpaperpatterns is just likeourgoal for friezepatterns, namelyto

classifywallpaperpatternsaccordingtotheirsymmetrygroups. Weproceedverymuchaswedidwithfriezepatterns, namelyfirstexaminingeachofthefourtypesofisometriesasappliedtowallpaperpatterns. Aswithfriezepatterns, wedonotneedtosayanythingabouttransla-tionsymmetryofwallpaperpatterns, becauseeverywallpaperpatternmusthave translationsymmetry, subjecttocertainrestrictions.

Page 195: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

188 5. SymmetryofPlanarObjectsandOrnamentalPatterns

Figure5.6.1

Letusstartbyexaminingrotationsymmetryofwallpaperpatterns. Aswith friezepatterns,awallpaperpatternmightormightnothaverotationsymmetry. ThewallpaperpatterninFig-ure 5.6.2 (i)hasnorotationsymmetry(otherthantheidentity); thewallpaperpatterninFig-ure 5.6.2 (ii)hasrotationsymmetryby 120◦ orby 240◦ aboutthepointslabeled A, B and C

(andaboutallsimilarpoints); thewallpaperpatterninFigure 5.6.2 (iii)hasrotationsymmetryby 90◦, 180◦ or 270◦ aboutthepointslabeled X and Y (andallsimilarpoints), androtationsymmetryby 180◦ aboutthepointlabeled Z (andallsimilarpoints). Wethereforeseethatincontrasttofriezepatterns, whererotationsymmetrycanonlybeby 180◦, forwallpaperpatternsrotationsymmetrycanbebyavarietyofangles; moreover, differentcentersofrotationinthesamewallpaperpatterncanhavedifferentanglesofrotation.

IfwelookatthewallpaperpatternshowninFigure 5.6.2 (iii), weseethreecentersofrotation,labeled X, Y and Z respectively. Ofcourse, thewallpaperpatternhasothercentersof rota-tion, besidesthethreethatarelabeled. Indeed, becausewallpaperpatternsrepeatthemselvesinfinitely, ifawallpaperpatternhasonecenterofrotation, thenithasinfinitelymanycentersofrotation. Itwould, therefore, besillyforustoattempttofindliterallyallthecentersofrotation

Page 196: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

5.6WallpaperPatterns 189

AB

C

X

Y Z

(i) (ii)

(iii)

Figure5.6.2

ofagivenwallpaperpattern. Whatwecanhopetofindareallthe“genericallydifferent”typesofcentersofrotationofawallpaperpattern. Wemakethisconceptpreciseasfollows.Supposewearegivenawallpaperthathascentersofrotation. Wesaythat twocentersof

rotationofthewallpaperpatternare equivalent ifthereisasymmetryofthewallpaperpatternthattakesonecenterofrotationtotheother(thesymmetrycouldbeanyofthefourtypesofisometries). InFigure 5.6.3, weseefourcentersofrotationlabeledA,B,C, andD. ThepointsAand B areequivalentcentersofrotation, becausereflectionintheverticallinehalfwaybetweenthemisasymmetryofthewallpaperpatternthattakes A to B. Ontheotherhand, notwoofthepointsA, C andD areequivalent, becausenosymmetryofthewallpaperpatterntakesoneofthemtoanother.

Ingeneral, foranycenterofrotationofawallpaperpattern, wecanlookforallthecentersofrotationthatareequivalenttoit; allsuchcentersofrotationwillinfactbeequivalenttoeachotheraswell. Wecallsuchacollectionofequivalentcentersofrotationan equivalenceclass of

Page 197: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

190 5. SymmetryofPlanarObjectsandOrnamentalPatterns

A B

DC

Figure5.6.3

centersofrotation. Forexample, inFigure 5.6.3, theequivalenceclassofthecenterofrotationC consistsofallpointsthatareinthemiddlesofallthe“bricks”outofwhichthepatternisbuilt. Foranywallpaperpattern, itcanbeshownthatthecollectionofallitscentersofrotationcanbebrokenupintoafinitenumberofequivalenceclasses, whichwillbedisjointfromeachother. Now, withthisnotionofequivalenceclasses, wecanstatemorepreciselywhatitmeanstofindallthe“genericallydifferent”typesofcentersofrotationofawallpaperpattern. Givenawallpaperpattern, whatwewanttofindispreciselyonecenterofrotationperequivalenceclass. Forexample, thecentersofrotationlabeled X, Y and Z inFigure 5.6.2 (iii)areexactlyonerepresentativefromeachequivalenceclassofcentersofrotationforthiswallpaperpattern.Assuch, wecansayinformallythatwehavefound“allthecentersofrotation”ofthepattern.

Exercise 5.6.1. Foreachwallpaperpatterns shown inFigure 5.6.4, findand labelonecenterofrotationperequivalenceclass(ifthereareany).

Tomakesenseofrotationsymmetryofwallpaperpatterns, weneedtorecallfromSection 5.4thenotionofacenterofrotationofanobjecthavingorder n. Becauseweareassumingthatateverycenterofrotationofawallpaperpatternthereisasmallestclockwiserotationsymmetry,theneverycenterofrotationofawallpaperpatternhassomeorder n, thoughdifferentcentersofrotationofagivenwallpaperpatterncanhavedifferentorders. Forexample, thepoints A,B and C inFigure 5.6.2 (ii)areallcentersofrotationoforder 3, andthepoints X, Y and Z inFigure 5.6.2 (iii)arecentersofrotationoforders 4, 4 and 2 respectively.Foragivenwallpaperpattern, wecanfinditscentersof rotation(that is, wecanfindone

centerofrotationperequivalenceclass). Eachofthesecentersofrotationhasanorder.

Page 198: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

5.6WallpaperPatterns 191

(i) (ii)

(iii) (iv)

Figure5.6.4

BEFORE YOU READ FURTHER:

Trytofigureoutwhichnumberscanoccurasordersofcentersofrotationofwallpaperpatterns. Areallnumberspossible, oronlysome? Ifthelatter, whichnumbersoccur?

WeknowfromtheexamplesinFigure 5.6.2 that 2, 3 and 4 canoccurasordersofcentersofrotationofwallpaperpatterns. Arethereanyothernumberspossible? Forinstance, isitpossibletohaveawallpaperpatternwithacenterofrotationoforder 5? Howabout 7, or 583? Itturnsout, quiteremarkably, thatthereareveryfewpossibleordersforcentersofrotationofwallpaperpatterns, aswenowstate.

Proposition 5.6.1. Everycenterofrotationofawallpaperpatternhasorder 2, 3, 4 or 6.

A rigorousproofoftheabovepropositionusesgrouptheory, andisbeyondthescopeofthisbook. Aninformaldiscussionofwhythisresultistruecanbefoundin[Wey52, pp.101–103]. ToseehowremarkableProposition 5.6.1 is, noteinparticularthatitmeansthattherecannotbeawallpaperpatternwithacenterofrotationoforder 5. Simplyarrangingpentagonsinaninfinite

Page 199: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

192 5. SymmetryofPlanarObjectsandOrnamentalPatterns

grid, asshowninFigure 5.6.5 (i)willnotyieldawallpaperpatternwithcenterofrotationoforder5, becauseweneedtorotatetheentireplane, notjustonepentagonatatime. InFigure 5.6.5 (ii)weseeanexampleofacleverIslamicdesignthatincorporatespentagons, andmightthereforegiveanillusionoforder 5 centersofrotation, butitisonlyanillusion.

Figure5.6.5

Givenawallpaperpattern, wecanlookforthedifferentcentersofrotationthatithas. Eachcenterofrotation, ifthereareany, hasanorderthatis 2, 3, 4 or 6. Wenowwanttodefinetheorderforthewholewallpaperpattern. Ifthewallpaperpatternhasnocentersofrotation, thenwesaythatthewallpaperpatternisof order 1. Ifthewallpaperpatternhascentersofrotation, wesaythatthewallpaperpatternisof order n if n isthehighestorderfoundamongthecentersofrotationofthewallpaperpattern. Forexample, thewallpaperpatterninFigure 5.6.2 (i)isoforder1; thewallpaperpatterninFigure 5.6.2 (ii)isoforder 3; thewallpaperpatterninFigure 5.6.2 (iii)isoforder 4.

Page 200: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

5.6WallpaperPatterns 193

Exercise 5.6.2. FindtheorderofeachwallpaperpatternshowninFigure 5.6.4.

Exercise 5.6.3. Supposewearegivenawallpaperpattern. Supposefurtherthat, amongitscentersofrotation, thewallpaperpatternhasanorder 2 centerofrotationandanor-der 3 centerofrotation. Fromthispartialinformation, canyoudeterminetheorderofthewallpaperpattern? Ifyes, whatistheorder, andwhy?

Weturnnexttoreflectionsymmetry. Aspreviouslymentioned, incontrasttofriezepatterns,wherewedistinguishedbetweenverticalandhorizontallinesofreflection, forwallpaperpat-ternsthereisnosuchdistinction, becauseawallpaperpatterngoesonforeverinalldirections,sowecannotisolateonedirectionas“horizontal.” ThewallpaperpatterninFigure 5.6.6 (i)hasnoreflectionsymmetry; thewallpaperpatternsinFigure 5.6.6 (ii)and(iii)bothhavereflectionsymmetry, inthelinesindicated(andinallsimilarlines). Ifawallpaperpatternhasreflectionsymmetryinsomelineofreflection, thenitwillnecessarilyhaveinfinitelymanylines, obtainedbyapplyingthetranslationsymmetryofthewallpaperpatterntotheoriginallineofreflection.AlthoughthewallpaperpatternsinFigure 5.6.6 (ii)and(iii)bothhavereflectionsymmetry, thereisonemajordifferencebetweenthereflectionsymmetryofthesetwopatterns, namelythatallthelinesofreflectionforPart (ii)areparallel, whereasthelinesofreflectionarenotallparallelforPart (iii).

Ifawallpaperpatternhasonelineofreflection, thenithasinfinitelymanylinesofreflection. Aswasthecasewithcentersofrotation, wewouldliketofindallthe“genericallydifferent”typesoflinesofreflectionofawallpaperpattern; onceagain, weusetheconceptofequivalence.Supposewearegivenawallpaperthathaslinesofreflection. Wesaythattwolinesofreflectionofthewallpaperpatternare equivalent ifthereisasymmetryofthewallpaperpatternthattakesonelineofreflectiontotheother. InFigure 5.6.7, weseethreelinesofreflectionlabeledm, nand k. Thelines m and n areequivalentlinesofreflection, becauserotationinthecenterofrotation A showninFigure 5.6.3 isasymmetryofthewallpaperpatternthattakes m to n. Ontheotherhand, thelines m and k arenotequivalent, becausenosymmetryofthewallpaperpatterntakes m to k.

Givenawallpaperpattern, andalineofreflectionforthiswallpaperpatterns, wecanlookforallthelinesofreflectionthatareequivalenttoit. Wecallsuchacollectionofequivalentlinesofreflectionan equivalenceclass oflinesofreflection. Forexample, inFigure 5.6.7, theequivalenceclassof the lineof reflection m consistsofallvertical linesof reflectionof thewallpaperpattern(thatis, allverticallinesthatareboundariesbetweenthe“bricks”). Givenawallpaperpattern, whatwewanttofindispreciselyonelineofreflectionperequivalenceclass.Forexample, thelinesofreflectionshowninFigure 5.6.6 (iii)areexactlyonerepresentative

Page 201: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

194 5. SymmetryofPlanarObjectsandOrnamentalPatterns

(i) (ii)

(iii)

Figure5.6.6

m n

k

Figure5.6.7

fromeachequivalenceclassoflinesofreflectionforthiswallpaperpattern. Assuch, wecansayinformallythatwehavefound“allthelinesofreflection”ofthepattern.

Page 202: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

5.6WallpaperPatterns 195

Exercise 5.6.4. ForeachwallpaperpatternshowninFigure 5.6.4, findandlabelonelineofreflectionperequivalenceclass(ifthereareany).

Wenowlookatglidereflectionsymmetryforwallpaperpatterns. Asforfriezepatterns, weareinterestedonlyinnon-trivialglidereflectionsymmetry, that is, glidereflectionsymmetrysuchthatneitherthetranslationnorthereflection, thattogetherconstitutetheglidereflectionsymmetry, isaloneasymmetryofthewallpaperpattern. Justaswasthecaseforfriezepatterns,ifawallpaperpatternhasalineofglidereflectionthatisalsoalineofreflection, thentheglidereflectionsymmetryinthatlineistrivial. Moreover, itturnsoutthatinawallpaperpattern, anylineofreflectionisautomaticallyalineofglidereflection(foratrivialglidereflectionsymmetry);thereaderisaskedtosupplythedetailsinExercise 5.6.5. Puttingtheseobservationstogether,weseethattofindanon-trivialglidereflectionsymmetry, weneedtofindalineofglidere-flectionthatisnotalineofreflection. Wecallsuchlinesofglidereflection non-triviallinesofglidereflection. ThewallpaperpatterninFigure 5.6.8 (i)hasnoglidereflectionsymmetry; thewallpaperpatterninFigure 5.6.8 (ii)hasnon-triviallinesofglidereflectionasindicated(notethattheverticallinesthroughthemiddleoftheletters M aretriviallinesofglidereflection).

(i) (ii)

Figure5.6.8

Exercise 5.6.5. [Used inThis Section] Suppose that awallpaperpatternhas a lineofreflection. Show that this lineof reflectionmustalsobea lineofglide reflection (foratrivialglidereflectionsymmetry). ThisexerciseusesideasfromAppendix C.

Itissometimestrickyinpracticetofindnon-triviallinesofglidereflectioninwallpaperpat-terns, certainlytrickierthanitistofindcentersofrotationandlinesofreflection. Linesofglidereflectionoftentendtobe“inbetween”featuresof thewallpaperpattern, forexampleasin

Page 203: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

196 5. SymmetryofPlanarObjectsandOrnamentalPatterns

Figure 5.6.8 (ii). Moreprecisely, ifalineofglidereflectionisparalleltolinesofreflection, thenitmustbehalfwaybetweenthelinesofreflection. SeeExercise 5.6.6 fordetails. Exercise 5.6.7discussestherelationbetweenalineofglidereflectionandcentersofrotationnotonit. Note,however, thatlinesofglidereflectionneednotbeparalleltoanylinesofreflection, andcaninfactintersectlinesofreflection; thereaderisaskedtosupplyanexampleinExercise 5.6.8.

Exercise 5.6.6. [UsedinThisSection] Supposethatawallpaperpatternhasanon-triviallineofglidereflectionthatisparalleltolinesofreflection. Showthatthelineofglidereflec-tionishalfwaybetweenthelinesofreflection. ThisexerciseusesideasfromAppendix C.

Exercise 5.6.7. [UsedinThisSection] Supposethatawallpaperpatternshasanon-triviallineofglidereflection, andithasacenterofrotationthatisnotonthelineofglidereflection.Showthatthereisanothercenterofrotationatthesamedistancefromthelineofglidereflection, buton theother side (thoughnotdirectly across from theoriginal centerofrotation). ThisexerciseusesideasfromAppendix C.

Exercise 5.6.8. [UsedinThisSection] Findanexampleofawallpaperpatternthathasnon-triviallinesofglidereflectionandhaslinesofreflection, andsuchthatthenon-triviallinesofreflectionintersectsomelinesofreflection. Thereissuchanexampleamongthewallpaperpatternsshownsofarinthissection, thoughitslinesofreflectionandlinesofglidereflectionarenotshown.

Justaswehavethenotionofequivalentcentersofrotation, andequivalentlinesofreflec-tion, wehavethesamenotionfornon-triviallinesofglidereflection. Supposewearegivenawallpaperthathasnon-triviallinesofglidereflection. Wesaythattwonon-triviallinesofglidereflectionofthewallpaperpatternare equivalent ifthereisasymmetryofthewallpaperpatternthattakesonelineofglidereflectiontotheother. InFigure 5.6.9, weseethreenon-triviallinesofglidereflectionlabeled a, b and c. Thelines a and b areequivalentlinesofglidereflection,becausereflectionintheverticallinehalfwaybetween a and b isasymmetryofthewallpaperpatternthattakes a to b. Ontheotherhand, thelines a and c arenotequivalent, becausenosymmetryofthewallpaperpatterntakes a to c.

Givenawallpaperpattern, andanon-triviallineofglidereflectionforthiswallpaperpatterns,wecanlookforallthenon-triviallinesofglidereflectionthatareequivalenttoit. Wecallsuchacollectionofequivalentnon-triviallinesofglidereflectionan equivalenceclass ofnon-triviallinesofglidereflection. Forexample, inFigure 5.6.9, theequivalenceclassofthelineofglidereflection a consistsofallverticalnon-triviallinesofglidereflectionofthewallpaperpattern

Page 204: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

5.6WallpaperPatterns 197

a b

c

Figure5.6.9

(thatis, allverticallinesthatarehalfwaybetweentheverticallinesthroughtheedgesofthe“bricks”). Foragivenwallpaperpattern, wewanttofindpreciselyonenon-triviallineofglidereflectionperequivalenceclass.

Exercise 5.6.9. For eachwallpaper pattern shown in Figure 5.6.4, find and label onenon-triviallineofglidereflectionperequivalenceclass(ifthereareany).

Inthecaseoffriezepatterns, afterdiscussingthedifferenttypesofsymmetriesthatcouldoccur,wewereledtofourquestionsconcerningthesetypesofsymmetries. Wefollowasimilarplanforwallpaperpatterns, thoughwithoneadditionalquestionthatdoesnothaveananalogamongthefourquestionswehadforfriezepatterns. Uptillnowwehavelookedseparatelyateachofthefourtypesofisometriesastheycanoccurassymmetriesofwallpaperpatterns. Wenowneedtoaskonequestionconcerninghowthesedifferenttypesofsymmetriesinteract. Supposeawallpaperpatternhasbothrotationsymmetryandreflectionsymmetry. Thewallpaperpatternmustthereforehavebothcentersofrotationandlinesofreflection.

BEFORE YOU READ FURTHER:

Supposethatawallpaperpatternhasbothcentersofrotationandlinesofreflection. Mustallthehighestordercentersofrotationbeonlinesofreflection?

Theanswertotheabovequestionisthatinsomewallpaperpatternsthehighestordercentersofrotationareallonlinesofreflection, andinotherwallpaperpatternstheyarenot. (Centersofrotationthatarenotthehighestorderarenotofusetousforourpresentpurpose.) Forexample,inthewallpaperpatterninFigure 5.6.2 (iii), thehighestordercentersofrotationarethepoints

Page 205: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

198 5. SymmetryofPlanarObjectsandOrnamentalPatterns

labeledX and Y (theyareorder 4), andboththesepointsareonlinesofreflection. Bycontrast, inthewallpaperpatterninFigure 5.6.3, thehighestordercentersofrotationarethepointslabeledA, C and D (theyareallorder 2); wedonotneedthepoint B, becauseitisequivalentto A.Thepoints C and D areonlinesofreflection, butthepoint A isnotonalineofreflection.Itturnsoutthatwenowhaveeverythingweneedtoclassifywallpaperpatternsaccordingto

theirsymmetries. Aswasthecasewithfriezepatterns, wecannotconvenientlylistallthesym-metriesofwallpaperpatterns, butwecanstillaskwhichtypesofsymmetriescanbecombinedwitheachother. Inparticular, weaskthefollowingfivequestionsaboutanygivenwallpaperpattern.

QuestionA: Whatistheorderofthewallpaperpattern? (Answer: 1, 2, 3, 4, or6.)

QuestionB: Istherereflectionsymmetry? (Answer: YesorNo.)

QuestionC: Istherereflectionsymmetryinnon-parallellines? (Answer: YesorNo.)

QuestionD: Areallhighestordercentersofrotationonlinesofreflection? (Answer: YesorNo.)

QuestionE: Isthereglidereflectioninnon-triviallinesofglidereflection? (Answer: YesorNo.)

Itcanbeseenthatthereare 5 · 2 · 2 · 2 · 2 = 80 possiblecombinationsofanswerstothesequestions. Wewillnotlistall 80 here. Aswithfriezepatterns, itturnsoutthatmostofthese 80casescannotactuallyoccur. Hence, noteverypossibletypeofsymmetryofawallpaperpatterncanexistincombinationwitheveryothertypeofsymmetry. Wewillnotgooverthedetailsofhowtoeliminatethecasesthatcannotoccur; todosowouldbebeyondthescopeofthisbook.Somecasesaresimpletoeliminate, however, andarelefttothereaderinExercises 5.6.10 and5.6.11.

Exercise 5.6.10. [UsedinThisSection] Showthatnowallpaperpatterncanhaveanswers1, yesandyestoQuestionsA–C,regardlessofwhattheanswerstoQuestionsD andE are.(Wecanthereforeeliminatethecombinationsofanswers 1YYNNN, 1YYNNY, 1YYNYN,1YYNYY, 1YYYNN, 1YYYNY, 1YYYYN, 1YYYYY.)

Exercise 5.6.11. [UsedinThisSection] Showthatnowallpaperpatterncanhaveanswers3, yesandnotoQuestionsA–C,regardlessofwhattheanswerstoQuestionsD andE are.Similarly, showthatnowallpaperpatterncanhaveanswers 4, yesandno, oranswers 6,yesandno, toQuestionsA–C.ListallthecombinationsofanswerstoQuestionsA–E thatcanthereforebeeliminated.

AfteralltheimpossiblecombinationsofanswerstoQuestionsA–E areeliminated, itturnsoutthatthereare 17 combinationsofanswersthatdooccur. Moreover, allwallpaperpatternsthat

Page 206: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

5.6WallpaperPatterns 199

havethesameanswershavethesamesymmetrygroups, andeachofthese 17 combinationsofanswerscorrespondstoadifferentsymmetrygroup. (Theproofofthesefactsusessomeadvancedmathematicsthatisbeyondthescopeofthisbook.) Insum, thereareprecisely 17 symmetrygroupsofwallpaperpatterns, knownasthe wallpapergroups. Thewallpapergroupsareoftendenotedwiththesymbols p1, pg, pm, cm, p2, pgg, pmg, cmm, pmm, p3, p31m, p3m1,p4, p4g, p4m, p6 and p6m. (Thereareothersetsofsymbolsthatvariousauthorsuse, butthesymbolswehaveusedseemtobethemostcommon; asforthesymbolsusedtodenotethefriezegroups, thereisarationaleforthewallpapergroupsymbols, butitisnotworthdwellingupon.) Thereasonforthenumber 17 isnomoreintuitivelyobviousthanthereasonthattherearepreciselysevenfriezegroups; inbothcasesitcomesoutofthemathematicalanalysis. Wesummarizetheclassificationofthesymmetrygroupsofwallpaperpatternsasfollows.

Proposition 5.6.2 (ClassificationofWallpaperPatterns). Thesymmetrygroupofanywallpaperpatternisoneofthe 17 groupslistedinTable 5.6.1.

QuestionsName A B C D Ep1 1 N N N Npg 1 N N N Ypm 1 Y N N Ncm 1 Y N N Yp2 2 N N N Npgg 2 N N N Ypmg 2 Y N N Ycmm 2 Y Y N Ypmm 2 Y Y Y Np3 3 N N N Np31m 3 Y Y N Yp3m1 3 Y Y Y Yp4 4 N N N Np4g 4 Y Y N Yp4m 4 Y Y Y Yp6 6 N N N Np6m 6 Y Y Y Y

Table5.6.1

Anexampleofeachofthe 17 typesofwallpaperpatternsisgiveninFigures 5.6.10 and5.6.11(thefirstofthesefiguresshowsallthewallpaperpatternsoforders 1 and 2, andthesecondofthefiguresshowsallthewallpaperpatternsoforders 3, 4 and 6).

Page 207: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

200 5. SymmetryofPlanarObjectsandOrnamentalPatterns

p1 pg pm

cm p2 pgg

pmg cmm pmm

Figure5.6.10

Thoughthe 17 wallpapergroupsweretreatedmathematicallyonlyinthelate19thcentury,theyseemtohavebeenknownonsomeintuitivelevelearlier. Forexample, wallpaperpatternsforallthesegroupscanbefoundintheAlhambra inGranada, Spain, whichwasbuiltduringthe9th–14thcenturies. SeeFigure 5.6.12 foronesuchpattern. TheAlhambrawasbuiltbytheArabrulerswhocontrolledpartofSpainatthetime. BecauseIslam forbidstheuseofrepresen-tationalpictures, Muslimartistsexcelledatgeometricdesigns. (ItshouldbenotedthatArabicculture wasgenerallymoreadvancedmathematicallythantheEuropeancultureduringtheMid-dleAges. Moreover, duringtheRenaissance, theEuropeanslearnedmuchGreekmathematicsthroughArabictranslations. TheArabicculturehasnotalwaysbeengiventhecredititdeservesinthesematters. Itisnotclear(totheauthor, anyway)whetherthedesignersoftheAlhambraac-tuallyknewexplicitlythattherewereseventeendifferenttypesofsymmetryconfigurationsthatawallpaperpatterncouldhave, orwhethertheyweresimplysogoodatdesigninggeometricpatternsthattheymanagedtofindallofthembyaccident. Asasidenote, theDutchartistM.C.Escher wasinspiredtomakehisownrepeating, interlockingfiguresaftervisitingtheAlhambra,ashisnotebooksshow. Itisclaimedin[Wey52]thattheancientEgyptianshadfoundwallpaperpatternsofall 17 types; manyothercultures, includingChinaandvariouspeoplesinAfrica,alsoexcelatgeometricdesign.

LetusnowuseTable 5.6.1 toanalyzethesymmetriesofthewallpaperpatterninFigure 5.6.13.First, wefindthecentersofrotation. ThepointsA, B and C inFigure 5.6.13 arethreecentersof

Page 208: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

5.6WallpaperPatterns 201

p3 p31m p3m1

p4 p4g p4m

p6 p6m

Figure5.6.11

rotation, andallothersareequivalenttothese. Allthesecentersofrotationhaveorder 2, sothewallpaperhasorder 2. Next, weaskifthepatternhasreflectionsymmetry. Theanswerisyes.Thenextquestioniswhetherthereisreflectionsymmetryinnon-parallellines. Becausetherearebothhorizontalandverticallinesofreflection, theanswerisyes. Fourth, weaskifallhighestordercentersofrotationareonlinesofreflection. Allthreeof A, B and C arehighestorder(inthiscaseorder 2), butbecause C isnotonalineofreflection, theanswertothisquestionisno.Finally, weaskwhetherthewallpaperpatternhasglidereflectionsymmetryinnon-triviallinesofglidereflection. Theanswerisyes, asthereadershouldverify. LookingatTable 5.6.1 leadsustoconcludethatthewallpaperpatternhassymmetrygroup cmm.

Exercise 5.6.12. ForeachofthewallpaperpatternsshowninFigure 5.6.14, statethean-swerstoQuestionsA–E,andstatewhatsymmetrygroupithas.

Page 209: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

202 5. SymmetryofPlanarObjectsandOrnamentalPatterns

Figure5.6.12

Figure5.6.13

Page 210: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

5.6WallpaperPatterns 203

Figure5.6.14

Page 211: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

204 5. SymmetryofPlanarObjectsandOrnamentalPatterns

Exercise 5.6.13. Findandphotocopy 4 wallpaperpatterns, allwithdifferent symmetrygroups. Foreachofthewallpaperpatternsyoufind, statetheanswerstoQuestionsA–E,andstatewhatsymmetrygroupithas.

Exercise 5.6.14. Draw 4 wallpaperpatterns, allwithdifferentsymmetrygroups. (IfyouarealsodoingExercise 5.6.13, thenmakesurethewallpaperpatternsyoudrawhavedifferentsymmetrygroupsthantheonesyoufoundandphotocopied.) Foreachofthewallpaperpatternsyoudraw, statetheanswerstoQuestionsA–E,andstatewhatsymmetrygroupithas.

5.7 ThreeDimensionalSymmetry

Havingsofardiscussedthesymmetryofplanarobjectsinthischapter, weturnbrieflytoalookatsymmetryofthreedimensional objects(thatis, spatialobjects). Thestudyofsymmetryofthreedimensionalobjectsisinmanywayssimilartothestudyofsymmetrywehaveseenforplanarobjects, thoughitismorecomplicated, andwewillmentiononlyafewideas, andwillnotgiveathoroughtreatmentaswedidforplanarobjects. Forsomeinterestingissuesconcerningspatialobjects, see[Wey52].Justas thestudyofsymmetryofplanarobjects isbasedonthenotionof isometriesof the

plane, thestudyofthesymmetryofthreedimensionalobjects(whichwewillrefertoas“threedimensionalsymmetry”)isbasedonisometriesofthreedimensionalspace. Assuch, athoroughtreatmentof threedimensionalsymmetrywouldcommencewithanexaminationofallpos-sibletypesofisometriesofthreedimensionalspace. Ratherthangivingacompletetreatmentofisometriesinthreedimensionalspace, whichwouldbeverylengthy, wewilllookatafewexamplesofsymmetriesofthreedimensionalobjects, startingwiththesymmetriesofthecube,analogouslytowhatwedidinSection 5.2, wherewelookedatthesymmetriesoftheregularpolygons. Wepointout, withoutgoingintothedetails, thatallthebasicideasaboutisometriesandsymmetriesthatholdfor theplanehaveanalogsforthreedimensionalspace; forexam-ple, thecompositionoftwosymmetriesofathreedimensionalobjectisstillasymmetryoftheobject, etc.InFigure 5.7.1 weseeacube, withitsverticeslabeled(justaswelabeledtheverticesofregular

polygonsinSection 5.2). Aswithregularpolygons, therearenotranslationorglidereflectionssymmetriesof thecube(thoughother threedimensionalobjectscanhavesuchsymmetries).Clearlytheidentityisometryofthreedimensionalspace, denoted I asintheplanarcase, isasymmetryofthecube. Letusnowtrytofindallthenon-trivialrotationsymmetriesofthecube.Intheplane, eachrotationisperformedaboutapoint, calledthecenterofrotation, whichisfixedbytherotation. Inthreedimensionalspace, bycontrast, eachrotationisperformedaround

Page 212: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

5.7ThreeDimensionalSymmetry 205

aline, calledthe axisofrotation. Thereisoneslightcomplicationinvolvingrotationinthreedimensionalspace, however. Intheplane, weusedtheconventionthatrotationbyapositiveangleistakentobeclockwise. Wecouldadoptthisconventionbecausewecanalldistinguishbetweenclockwiseandcounterclockwiserotations. Inthreedimensionalspace, supposewewanttorotateaboutagivenaxisofrotationbyagivenpositiveangle. Inwhichdirectionshouldwerotate? Therearetwopossibilitiesforrotatingbythegivenpositiveangleaboutthegivenaxisofrotation, andweneedtofindawaytospecifywhichoneistobeused. Themethodforsolvingthisproblemisthateveryaxisofrotationwillbegivenadirection, specifiedbyanarrowhead, asseenforexampleonline a inFigure 5.7.2. Wethenadopttheconventionthatwewillconsiderclockwiserotationaboutthelinetobethedirectionofrotationthatappearsclockwisewhenwelookfromthetailofthearrowtowardtheheadofthearrow. Wesaythatsuchrotationfollowstherighthandrule. Thatis, weconsiderclockwiserotationaboutalinewithanarrowheadtobethedirectiongivenbycurlingthefingersofyourrighthand, whenyouplaceyourthumbparalleltotheaxisofrotation, andinthedirectionofthearrowhead. Thisrighthandruleisusedregularlyinphysics.Using theaboveconsiderations in thecaseof thecube, wesee inFigure 5.7.2 a rotation

symmetryof thecube, namelyrotationby 1/4 turnaround the line labeled a, which is theverticallinethroughthecenterofthecube. Noticethattherotationisclockwisewhenviewedfromabove thecube, which is looking in thedirectionof thearrowhead shownon line a.Rotationby 1/2 and 3/4 around line a are also symmetriesof the cube. Wedenote thesesymmetriesby Ra

1/4, Ra1/2 and R

a3/4 respectively. Theseareallthenon-trivialrotationsymmetries

aroundline a.

B C

DAF G

HE

Figure5.7.1

BEFORE YOU READ FURTHER:

Trytofindasmanyrotationsymmetriesofthecubeaspossible.

Whataretheotheraxesofrotationofthecube? Therearetwomorethatareverysimilarto a,namelythe“front-to-back”horizontalline b throughthecenterofthecubethatisperpendiculartothesquare ADHE, andthe“left-to-right”horizontalline c throughthecenterofthecube

Page 213: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

206 5. SymmetryofPlanarObjectsandOrnamentalPatterns

B C

DA

a

F G

HE

A B

CDE F

GH

R1/4a

Figure5.7.2

thatisperpendiculartothesquare ABFE. Then Rb1/4, R

b1/2, R

b3/4, R

c1/4, R

c1/2 and Rc

3/4 areallnon-trivialrotationsymmetriesofthecube.Therearealsoothertypesofaxesofrotationofthecube. Thelines a, b and cwerethroughthe

centersofopposingsquarefaces. Therearealsoaxesofrotationthroughmidpointsofopposingedges. Forexample, inFigure 5.7.3 (i)weseethelinethatgoesthroughthemidpointsof AB

and HG, pointinginthedirectionofthemidpointof HG; thislineisdenoted d. Then Rd1/2

isasymmetryofthecube. (Observethat Rd1/4 and Rd

3/4 arenotsymmetriesofthecube.) There

arefiveothersimilaraxesofrotation: theline e thatgoesthroughthemidpointsof BC andEH; theline f thatgoesthroughthemidpointsof CD and E F; theline g thatgoesthroughthemidpointsofAD and FG; theline h thatgoesthroughthemidpointsofAE and CG; andtheline i thatgoesthroughthemidpointsof DH and BF; inallcasesthelinespointinthedirectionofthemidpointofthesecondlistededge. Hence Re

1/2, Rf1/2, R

g

1/2, Rh1/2 and Ri

1/2 aresymmetriesofthecube.

B C

DA

d j

F G

HE

B C

DAF G

HE

(i) (ii)

Figure5.7.3

Page 214: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

5.7ThreeDimensionalSymmetry 207

Therearealsoaxesofrotationthroughopposingverticesofthecube. Forexample, inFig-ure 5.7.3 (ii)weseethelinethatgoesthroughtheverticesA andG, pointinginthedirectionofG; thislineisdenoted j. Then Rj

1/3 and Rj

2/3 aresymmetriesofthecube. Therearethreeothersimilaraxesofrotation: theline k thatgoesthrough B and H; theline l thatgoesthrough C

and E; andtheline m thatgoesthrough D and F; inallcasesthelinespointinthedirectionofthesecondlistedvertex. Hence Rk

1/3, Rk2/3, R

l1/3, R

l2/3, R

m1/3 and Rm

2/3 aresymmetriesofthecube. Wenowhaveacompletelistofrotationsymmetriesofthecube.Next, weturntoreflectionsymmetriesofthecube. Intheplane, wereflectedinaline, called

thelineofreflection. Inthreedimensionalspace, wereflectinaplane, calledthe planeofre-flection. Thatreflectionofthreedimensionalspaceisinaplaneisquitereasonableintuitively—mirrorsareplanes!

BEFORE YOU READ FURTHER:

Trytofindasmanyreflectionsymmetriesofthecubeaspossible.

ReferringtothecubeshowninFigure 5.7.1, itisevidentthatthecubehasreflectionsymmetryintheplanethatgoesthroughthecenterofthecubeandisparalleltothetop(ABCD)andthebottom(EFGH). Callthisplane p, anddenotereflectioninthisplaneby Mp. Therearetwoothersimilarplanesofreflection: theplane q thatgoesthroughthecenterofthecubeandisparalleltotheleftside(ABFE)andtherightside(DCGH); andtheplane r thatgoesthroughthecenterofthecubeandisparalleltothefront(ADHE)andtheback(BCGF). ThenMq andMr aresymmetriesofthecube.Thereisanothercollectionofplanesofreflectionofthecube. Forexample, let s denotethe

planecontainingtheedges AB and GH. ThenMs isareflectionsymmetryofthecube. Therearefiveothersimilarplanesofreflection: theplane t containingtheedges BC and EH; theplane u containingtheedges CD and E F; theplane v containingtheedges AD and FG;theplane w containingtheedges AE and CG; andtheplane x containingtheedges BF andDH. HenceMt,Mu,Mv,Mw andMx aresymmetriesofthecube. Wenowhaveacompletelistofreflectionsymmetriesofthecube.Havewenowfoundallthesymmetriesofthecube? Itmightatfirstappearasifwedoknow

allthesymmetriesofthecube, giventhatweknowallthereflectionandrotationsymmetriesofthecube, andweknowthattherearenotranslationorglidereflectionsymmetries. However, inthreedimensionalspace, thecompletelistoftypesofisometriesisnotjusttranslations, rotations,reflectionsandglidereflections. Itturnsoutthattherearetwoadditionaltypesofisometriesinthreedimensionalspace, called rotaryreflections and screws. Bothofthesetypesofisometriesaresimilartoglidereflections, inthattheyaresingleisometriesthataredescribedintermsoftwo-stepprocesses. A rotaryreflectionistheresultoffirstrotatingaroundanaxisofrotation,andthenreflectinginaplanethatisperpendiculartotheaxisofrotation; ascrewistheresultoffirst rotatingaroundanaxisof rotation, and then translating inadirectionparallel to theaxisofrotation. (See[Mar82, Section16.1]forathoroughdiscussionoftheisometriesofthreedimensionalspace, includingthethreedimensionalanalogofProposition 4.6.1.)

Page 215: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

208 5. SymmetryofPlanarObjectsandOrnamentalPatterns

Thecubedoesnothaveanyscrewsymmetries, butitdoeshaverotaryreflectionsymmetries.Forexample, considerthecomposition Mp ◦ Ra

1/4. Thiscompositioniscertainlyasymmetryof thecube, being thecompositionof twosymmetries. However, byusingdrawings similartoFigure 5.7.2, itcanbeverifiedthatthiscompositionisnotequaltoanyoftherotationorreflectionsymmetrieswehavelistedforthecube(suchaverificationwouldentailcomparingtheneteffectofMp ◦ Ra

1/4 withtheneteffectsofeachoftherotationsandreflectionsthatwehavefound; weleavethedetailstothereader). Hence, thecomposition Mp ◦ Ra

1/4 isasymmetryofthecube, andisnotequaltoanyothertheothersymmetriesthatwehaveseensofar. Forconvenience, weusethefollowingnotation: If α isanangle, if a isalineinthreedimensionalspace, andif p isaplanethatisperpendicularspace, welet Ca

α,m denotetherotaryreflectionthatconsistsoffirstdoingtherotation Ra

α, andthendoingthereflection Mm. Hence, wewriteCa

1/4,p asanabbreviationforMp ◦ Ra1/4. Therearesixothersimilarrotaryreflectionsymmetries

ofthecubethatcanbeobtainedbycompositionsofrotationandreflectionssymmetriesofthecube, andtheseare Ca

1/2,p, Ca3/4,p, C

b1/4,r, C

b3/4,r, C

c1/4,q, C

c3/4,q.

Thereadermighthavenoticedthatwedidnot include Cb1/2,r and Cc

1/2,q in theabovelistof rotary reflectionsymmetriesof thecube. These twocompositionsare indeedvalid rotaryreflectionsymmetriesofthecube, butitturnsoutthattheyarebothequalto Ca

1/2,p. (Again, thereadercanverifythatthesethreecompositionshavethesameneteffects.) Actually, theneteffectofthesethreecompositionsisaparticularlynicesymmetryofthecube. SeeFigure 5.7.4 forthecomposition Ca

1/2,p. Observethattheneteffecttakeseachvertex, andmovesittothelocationdiametricallyoppositeitwithrespecttothecenterofthecube. Let O denotethecenterofthecube. TheisometrythattakeseverypointinthreedimensionalspaceandsendsittothepointdiametricallyoppositeitwithrespecttoO iscalled inversion inO. Let JO denotethisisometry.Fromnowon, insteadofwriting Ca

1/2,p wewillwrite JO. Itturnsoutthat JO canbeobtained

in sixadditionalwaysas rotary reflections; eachof Mu ◦ Rd1/2, Mv ◦ Re

1/2, Ms ◦ Rf1/2,

Mt ◦ Rg

1/2, Mx ◦ Rh1/2 and Mw ◦ Ri

1/2 isequalto JO.

Wearestillnotfinishedlookingforrotaryreflectionsymmetriesofthecube. Certainly, onecanobtainarotaryreflectionsymmetryofthecubebycomposingarotationsymmetryofthecubewithareflectionsymmetryofthecube(aslongastheplaneofreflectionisperpendiculartotheaxisofrotation). However, notallrotaryreflectionsymmetriesofthecubeareobtainedthatway. Itisalsopossibletoformarotaryreflectionsymmetryofthecubewheretherotaryre-flectionisthecompositionofarotationandareflection, neitherofwhichaloneisasymmetryofthecube, buttheircompositionis. (A similarphenomemonoccurredwhenwestudiedglidere-flectionsymmetryoffriezepatternsandwallpaperpatterns.) Forexample, let j denotetheplanecontainingthecenterofthecubethatisperpendiculartotheline j (showninFigure 5.7.3 (ii)).Thenneither Rj

1/6 nor Mj isasymmetryofthecube, butthecomposition Mj ◦ Rj

1/6, abbre-

viatedasbeforeby Cj

1/6,j, isinfactasymmetryofthecube. Theneteffectofthissymmetryis

showninFigure 5.7.5. Therearesevenothersimilarrotaryreflectionsymmetriesofthecube,andtheseare Cj

5/6,j, Ck

1/6,k, Ck

5/6,k, Cl

1/6,l, Cl

5/6,l, Cm

1/6,m, Cm5/6,m.

Page 216: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

5.7ThreeDimensionalSymmetry 209

B C

DAF G

HE

D A

BCH E

FG

H E

FGD A

BC

R1/2

Mp

R1/2

aMp C

1/2, p° =

a

a

Figure5.7.4

B C

DAF G

HE

F B

CGE A

DH

R1/6

jM j C

1/6, j° =j

Figure5.7.5

Wenow, finally, haveacompletelistofsymmetriesofthecube:

I, Ra1/4, R

a1/2, R

a3/4, R

b1/4, R

b1/2, R

b3/4, R

c1/4, R

c1/2, R

c3/4, R

d1/2, R

e1/2,

Rf1/2, R

g

1/2, Rh1/2, R

i1/2, R

j

1/3Rj

2/3, Rk1/3, R

k2/3, R

l1/3, R

l2/3, R

m1/3, R

m2/3,

Mp,Mq,Mr,Ms,Mt,Mu,Mv,Mw,Mx, JO, Ca1/4,p, C

a3/4,p,

Cb1/4,r, C

b3/4,r, C

c1/4,q, C

c3/4,q, C

j

1/6,j, C

j

5/6,j, Ck

1/6,k, Ck5/6,k, C

l1/6,l, C

l5/6,l, C

m1/6,m, C

m5/6,m.

Page 217: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

210 5. SymmetryofPlanarObjectsandOrnamentalPatterns

Clearly, thislistofsymmetriesismuchlarger, andmorecomplicated, thanthelistofsymmetriesofthesquare, whichisthetwodimensionalanalogofthecube(thecubehas 48 symmetries,versus 8 forthesquare). Nonetheless, weseethatforthreedimensionalobjectsitispossibletoformcompletelistsofsymmetries; inotherwords, wecanformthesymmetrygroups ofthreedimensionalobjectsjustaswedidforplanarobjects. Moreover, wecanformthecompositionsofsymmetriesofanobjectinthreedimensionalspace, andinprinciplewecouldformcompositiontables forthreedimensionalobjectsjustaswedidforregularpolygonsinSections 5.2 and5.3. Inpracticeformingsuchanoperationtablewouldbeverytimeconsuming—forthecubewewouldhavea 48×48 table, whichwouldhave 2304 entries—andsowewillnotactuallyconstructsuchtables. InExercise 5.7.1 thereaderisaskedtocomputethecompositionsofvarioussymmetriesofthecube; thesecalculationscomputesomeoftheentriesofthecompositiontableforthecube. Thebottomlineisthatsymmetryofthreedimensionalobjectscanbestudiedsimilarlytothestudyofplanarobjects, butthreedimensionalobjectsareagoodbitmorecomplicated.

Exercise 5.7.1. Forthecube, computethefollowingsymmetries(thatis, expresseachasasinglesymmetry).

(1) Rj

1/3 ◦ Ra1/4.

(2) Mp ◦ Rc1/4.

(3) Ms ◦ Mp.

(4) Mq ◦ Ca1/4,p.

Exercise 5.7.2. Foreachofthefollowingpolyhedra, listallofitssymmetries. Usepicturesorwordstodescribetheaxesofrotationandplanesofsymmetry.

(1) A pyramidoverasquare.

(2) A prismoveranequilateraltriangle, wherethesidesarerectangles, butnotsquares.

(3) A regulartetrahedron.

(4) A regularoctahedron.

Exercise 5.7.3. Howmanysymmetriesdoestheprismoveraregular n-gonhave? Assumethat the sidesof theprismare rectangles, butnot squares. (Youdonotneed to list thesymmetries, justcountthem.)

Page 218: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

5.7ThreeDimensionalSymmetry 211

Exercise 5.7.4. Whatistherelationbetweenthesymmetriesofaconvexpolygonandthesymmetriesofitsdual?

Intheplane, westudiedthesymmetryofvariousclassesofobjects: regularpolygons, rosettepatterns, friezepatternsandwallpaperpatterns. Arethereanalogsforsuchclassesofobjectsinthreedimensionalspace? Theanswerisdefinitelyyes. A particularlyinterestingclassofob-jectsinthreedimensionalspaceistheanalogofwallpaperpatterns, thatis, patternsinthreedimensionalspacethathavetranslationsymmetryinatleastthreedifferentdirections(wherenotalldirectionsareinasingleplane). Suchpatternsarecalled crystals, becauseofthefactthatthemoleculesinchemicalcrystals, suchassalt(NaCl), alignthemselvesinalattice-likeformthatcorrespondsexactlytothenotionofhavingtranslationsymmetryinthreedifferentdirectionsinthreedimensionalspace. Thestudyofchemicalcrystalsiscalledcrystallography,andthesymmetrygroupsofmathematicalcrystalsarecalledthe crystallographicgroups (alsoknownasthe spacegroups). Thecrystallographicgroupscanbeclassifiedanalogouslytotheclassificationoffriezegroupsandwallpapergroups, althoughtheclassificationismuchmorecomplicated. Thereare 230 crystallographicgroups(incontrastto 17 wallpapergroups). Thecrystallographicgroupswerefirstcompletelyclassifiedin1891byEvgrafStepanovichFedorov(1853-1919)andArthurSchoenflies (1853-1928), eachworkingindependentlyoftheother. See[Sen90]formoredetailsaboutthecrystallographicgroups.Although the symmetrygroupof thecube ismuch largerandmorecomplicated than the

symmetrygroupofthesquare, thereisonesimilaritybetweenthesetwosymmetrygroupsthatwecanobserve. Inthesymmetrygroupof thesquare, half thesymmetriesarerotations(weconsider I tobeatrivialrotation), andhalfarereflections. AswesawinSection 5.4, thisequalsplitbetweenrotationsandreflectionsholdsforallrosettegroupsthathavereflectionsymme-try. Noticeinparticularthatrotationspreserveorientation andreflectionsreverseorientation.Hence, foranyrosettegroup, halfthesymmetriesareorientationpreservingandhalfareorien-tationreversing. Now, inthecaseofthecube, thesymmetrygroupcontainsnotonlyrotationsandreflections, butalsorotaryreflections. However, itstillisthecaseforthecubethathalfofitssymmetriesareorientationpreserving(therotations), andhalfareorientationreversing(thereflectionsandtherotaryreflections). Infact, itturnsoutthatanyfinitesymmetrygroupforanobjectinthreedimensionalspace(andactuallyinanydimensionalspace), eitherconsistsofallorientationpreservingsymmetries, orhalfitssymmetriesareorientationpreservingandhalfareorientationreversing. ThedemonstrationofthisfactisoutlinedinExercise 5.7.5.

Page 219: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

212 5. SymmetryofPlanarObjectsandOrnamentalPatterns

Exercise 5.7.5. [UsedinThisSection] Ourgoalistoshowthatforanyfinitesymmetrygroupforanobjectinthreedimensionalspace, preciselyoneofthefollowingsituationsholds:eitherallthesymmetriesareorientationpreserving, orhalfthesymmetriesareorientationpreservingandhalfareorientationreversing. Wewillmakeuseofthefollowingtwofactsaboutisometriesthatwehaveseenfortheplane, andwhichinfactholdtrueinthree(orhigher)dimensionalspace; wewillnotbeabletodemonstratethesetwofacts—thatwouldrequiremoretechnicalitiesthanweareusing. First, theanalogofProposition 4.4.3 holdsinthreedimensions. Second, everyisometryhasaninverse.Suppose G isafinitesymmetrygroupforanobjectinthreedimensionalspace. Theargu-menthasanumberofsteps, mostofwhichhavesomethingforthereadertodo.

(1) Supposethat A, B and C aresymmetriesin G, andthat A = B. Showthat C ◦A = C ◦ B.

(2) If G hasallorientationpreservingsymmetries, thenthereisnothingtodemonstrate,soassumefromnowonthatnotallsymmetriesinG areorientationpreserving. Showthat G hasbothorientationpreservingandorientationreversingsymmetries.

(3) Let {A1, A2, . . . , An} denotetheorientationpreservingsymmetries in G, andlet{B1, B2, . . . , Bm} denotetheorientationreversingsymmetriesin G, where n andm aresomepositiveintegers. Ourgoalistoshowthat n = m, whichwillimplythat G hasthesamenumberoforientationpreservingsymmetriesandorientationreversingsymmetries.

(4) Considerthecollectionofsymmetries {B1 ◦ A1, B1 ◦ A2, . . . , B1 ◦ An}. Showthatthesesymmetriesarealldistinct.

(5) Showthatallthesymmetries {B1 ◦ A1, B1 ◦ A2, . . . , B1 ◦ An} areorientationreversing.

(6) Deduce that every oneof {B1 ◦ A1, B1 ◦ A2, . . . , B1 ◦ An} is contained in{B1, B2, . . . , Bm}.

(7) Deducethat n ≤ m.

(8) Usesimilarideastoshowthatallthesymmetries {B1 ◦ B1, B1 ◦ B2, . . . , B1 ◦ Bm}

aredistinct, andallarecontainedin {A1, A2, . . . , An}. Deducethat m ≤ n.

(9) Becausewehaveseenthat n ≤ m andthat m ≤ n, itfollowsthat n = m, whichiswhatweneededtoshow.

Finally, wearenowinapositiontoclarifysomethingleftunfinishedinSection 3.3, wherewediscussedthesemi-regularpolyhedra. Inparticular, welistedallsuchpolyhedra(inPropo-sition 3.3.1), andwementionedthatallexceptoneofthem(thepseudorhombicuboctahedron)satisfiedastrongerpropertycalledvertextransitivity. WecouldnotdefinethispropertyinSec-

Page 220: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

5.7ThreeDimensionalSymmetry 213

tion 3.3, butwenowhavethenecessarytoolforthedefinition, namelysymmetry. A polyhedronissaidtobe vertextransitive if, givenanytwovertices v and w ofthepolyhedron, thereisasymmetryofthepolyhedronthattakes v to w.For example, we claim that theprismover a regular pentagon is vertex transitive. In Fig-

ure 5.7.6 weseeaprismoveraregularpentagon. Toshowthatthisprismisvertextransitive, weneedtoshowthatforanytwoverticesoftheprism, thereisasymmetryoftheprismtakingonevertextotheother. ConsidertheverticeslabeledA and B, asseeninFigure 5.7.6. Observethatrotationby 1/5 ofaturnaroundtheverticallinethroughthecenteroftheprismisasymmetryoftheprism, andthissymmetrytakesvertex A tovertex B. Rotationby −1/5 ofaturntakes B toA. TotakevertexA tovertex C, asseeninthefigure, weneedtherotaryreflectionobtainedbyfirstrotatingby 2/5 ofaturnaroundtheverticallinethroughthecenteroftheprism, andthenreflectingintheplanethatisparalleltothetopandbottompentagons, andishalfwaybetweenthem. Usingtheseideas, itisseenthatforanytwoverticesoftheprism, thereisasymmetryoftheprismtakingonevertextotheother. Hencethisprismisvertextransitive.

A B

C

Figure5.7.6

Itcanbeshownthatallofthesemi-regularpolyhedraotherthanthepseudorhombicubocta-hedronarevertextransitive; weomitthedetails. Bycontrast, thepseudorhombicuboctahedronisnotvertextransitive. InFigure 5.7.7 (i)weseethepseudorhombicuboctahedron, withthreeofitsverticeslabeled. Thereis, forexample, nosymmetryofthepseudorhombicuboctahedronthat takesvertex A tovertex B. Hence, thepseudorhombicuboctahedron isnotvertex tran-sitive. (Thatdoesnot, however, meanthatnovertexofthepseudorhombicuboctahedroncanbetakenbyasymmetrytoanothervertex; forexample, rotationby 1/4 turnaroundtheverti-callinethroughthecenterofthepseudorhombicuboctahedroninFigure 5.7.7 (i)takesvertexA tovertex C.) Bywayofcomparison, observethat fortherhombicuboctahedronshowninFigure 5.7.7 (ii), reflectionin thehorizontalplanethroughthecenterof thepolyhedronisasymmetryoftherhombicuboctahedronthattakesvertex A tovertex B.

Some textsadd thepropertyof vertex transitivity to thedefinitionof semi-regular (thoughwedonot), andiftheydo, thentheydonotconsiderthepseudorhombicuboctahedrontobesemi-regular, andtheyhaveonly13Archimedeansolids.

Page 221: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

214 5. SymmetryofPlanarObjectsandOrnamentalPatterns

AA

B B

CC

(i) (ii)

Figure5.7.7

Page 222: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

6Groups

6.1 Thebasicidea

AtthestartofChapter 4 wereadaquotebyHermanWeyl whichended:

Toacertaindegreethisschemeistypicalforalltheoreticknowledge: Webeginwithsomegeneralbutvagueprinciple(symmetryinthefirstsense), thenfindanimportantcasewherewecangivethatnotionaconcreteprecisemeaning(bilateralsymmetry), andfromthatcasewegraduallyriseagaintogenerality, guidedmorebymathematicalconstructionandabstractionthanbythemiragesofphilosophy; andifweareluckyweendupwithanideanolessuniversalthantheonefromwhichwestarted. Gonemaybemuchofitsemotionalappeal, butithasthesameorevengreaterunifyingpowerintherealmofthoughtandisexactinsteadofvague.”

Inthepresentchapter, thelastinourbook, wenowindeedrisetothelevelofmathematicalgenerality, andunifyingpower, towhichWeylwasreferring. Atfirstitmightnotbeapparentwhatthematerialinthischapterhastodowithsymmetry, butwewillmaketheconnectionclearinourverylastsection, Section 6.6.Inthischapterwewilldiscussthemathematicalconceptofagroup. Unlikethecolloquialus-

ageofthisword, toamathematicianagroupisaverypreciselydefinedconcept, aswillbeseenbelow. Thoughatfirstglancegroupsappeartobeveryabstract, likeallworthwhileabstractiontheyarebasedonconcreteexamples. Indeed, itistheextremelybroadrangeofexamplesofgroupsthathaveledthegroupconcepttobeconsideredverycentraltomodernmathematics.Thetheoryofgroups, thoughlessthan200yearsold, ishighlydeveloped, withnewdiscoveriesbeingmadeallthetime. Groupsareextremelyusefulineverythingfromgeometrytochemistry;inparticular, groupsarevital to thestudyof symmetry, and it is for this reason thatwedis-cussthemhere. Further, themethodologyofgrouptheoryepitomizestheabstractapproachof

Page 223: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

216 6. Groups

modernmathematics(asspearheadedearlierinthiscenturybythegreatmathematicianEmmyNoether), andthischapter’sexcursionintotheabstractshouldbeseenasatasteofwhatmanymathematiciansdotoday.Considertheintegers −3,−2,−1, 0, 1, 2, 3 . . .. Wewillusethestandardabbreviation Z to

denote the setof integers. Theword“set” is simply thecommonlyusedmathematical termtomeana“collection”of things, in thiscasenumbers, thoughasetcouldcontainanytypeofobject, not justnumbers. (The letterZ,by theway, stands for theGermanwordZahlen,whichmeansnumbers.) Ifallwecoulddowith the integerswouldbe towrite themdown,theywouldbeentirelyuseless. Whatmakestheintegerssousefulisthatwecancombinethem,viaaddition, subtraction, multiplicationanddivision. Actually, subtractionisjustdoingaddition“backwards,” anddivisionisjustmultiplication“backwards,” sowereallyneedtoconsideronlyadditionandmultiplication. (Whatdoes 5 − 3 mean? Itmeansthenumberthatyouaddto 3toget 5, namely 2.) Wewillconsidereachofthetwooperations, additionandmultiplication,separately. Eachoftheseoperationsisreferredtoasa binaryoperation,inthatittakestwothings(inthiscasenumbers)asinputs, andgivesoneoutput(inthiscase

alsoanumber).Whatpropertiescanweascribetotheoperationofadditionasappliedtotheintegers? Some

ofthesepropertiesmayseemsoobviousastobehardlyworthmention, buttheirvaluewillbeapparentlateron. (Itmightbethesimplicityofthesepropertiesthatcausedmathematicianstotakesolongtofocusinonthem.) First, wenotethatifwetakeanytwointegersandaddthem,wegetanotherinteger. Wecallthispropertythe closure propertyoftheintegerswithrespecttoaddition. Toappreciatetheworthofthisproperty, notethatifyoutakeanytwointegersanddivideonebytheother, youwillmostlikelynotgetaninteger, forexample 3 dividedby 2.Next, supposeyouwanttoaddanythreeintegers, forexample 2, 3 and 7. Becausewecan

formallyaddonlytwointegersatatime, wehavetogrouptheintegers 2, 3 and 7 withparen-thesestoprescribetheorderofaddition. Ifwekeepthesethreeintegersinthegivenorder, weseethattherearetwowaysofgroupingthem, namely (2 + 3)+ 7 and 2+ (3+ 7). Theformersaystoadd 2 and 3 first, andthentoadd 7 totheresult; thelattersaystoadd 3 and 7 first,andthentoadd 2 totheresult. Ofcourse, wegetthesamefinalanswerinbothcases, inthat(2 + 3) + 7 = 5 + 7 = 12 and 2 + (3 + 7) = 2 + 10 = 12. Indeed, becausewegetthesameanswerbothways, itissafetodroptheparenthesesandsimplywrite 2 + 3 + 7, lettingeachpersondotheadditionanywayshechooses. Wecanstatethispropertymoregenerallybysayingthatforanythreeintegers a, b and c, wealwayshave (a+ b) + c = a+ (b+ c).Wecallthispropertythe associative propertyfortheintegerswithrespecttoaddition.Ifyouwereaskedtochosethesinglemostimportantinteger, whichwouldyouchoose? Al-

though each personmay have a personal favorite number, mathematically the uncontestedleader of the pack is the number zero. Of itsmany properties, 0 is the only number that,whenaddedtoanyothernumber, leavestheothernumberunchanged. Forexample, wehave5 + 0 = 5. Toputthismoregenerally, foranyinteger a, wehave a + 0 = a and 0 + a = a.Wecallthispropertyof 0 the identity propertyfortheintegerswithrespecttoaddition.

Page 224: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

6.1Thebasicidea 217

Onewayofobtaining 0 isbyaddingany integer and itsnegative. For example, wehave5 + (−5) = 0. Moregenerally, foranyinteger a, wehave a+ (−a) = 0 and (−a) + a = 0.Notethattheseequationsholdwhether a ispositive, negativeor 0. Theessentialpointhereisthatforanyinteger a, thereisanotherinteger, namely −a, that“cancels a out.” Wecallthispropertythe inverses propertyoftheintegerswithrespecttoaddition.Althoughtheabovefourpropertiesoftheintegersandadditionarethemostcrucialonesfor

ourpurpose, there isonemorepropertywewillmention, which, thoughwellknown, turnsouttobelesscentralthanthepropertiesmentionedsofar. Thisadditionalproperty, calledthecommutative property, saysthattheorderofadditiondoesnotmatter. Forexample, wehave5 + 3 = 3 + 5. Ingeneral, foranytwointegers a and b, wealwayshave a+ b = b+ a.To summarize, we see that the integers togetherwith the operation addition, symbolized

(Z,+), satisfythefourfundamentalpropertiesofclosure, associativity, identityandinverses, aswellastheadditionalpropertyofcommutativity. Theintegerswithadditionsatisfyanumberofotherpropertiesaswell, butafterlookingatmanyothermathematicalsystems, mathematiciansfoundthatthesefourpropertiesareextremelyprevalentinmanyseeminglyunrelatedfields, fromgeometrytoquantummechanics, andhavethereforechosentofocusonthesefourproperties.Letuslookatsomeothermathematicalsystems, toseeiftheysatisfythesamepropertiesas

theintegerswithaddition. Thenextmostobviousexampletoconsideristheintegerswiththeoperationmultiplication, abbreviated (Z, ·). Weneedtocheckwhetherthefourpropertiesofclosure, associativity, identityandinverses, aswellasthecommutativeproperty, holdfor (Z, ·).Letusstartwithclosure. Itiscertainlythecasethatifwemultiplyanytwointegerswegetaninteger, so theclosurepropertyholds. It isalsonothard tosee that theassociativepropertyholds, thatis, foranythreeintegers a, b and c, itisalwaystruethat (a · b) · c = a · (b · c).Whatabouttheidentityproperty? Weneedtofindaspecialmemberoftheintegersthatplaysthesamerolewithrespecttomultiplicationthat 0 doesforaddition; inotherwords, weneedanumberso thatmultiplyingby itdoesnotchangeanything. Certainly thenumber 1 is theintegerwewant. If a isanyinteger, then 1 · a = a and a · 1 = a. Hence 1 istheidentityfortheintegerswithmultiplication, andsotheidentitypropertyholdsfor (Z, ·). Next, weneedtoverifywhethertheinversespropertyholdsfor (Z, ·). Thismeansthatforeveryinteger, weneedtofindanotherintegerthatcancelsitoutbymultiplication, yielding 1. Letustrythisfortheinteger 2. Thereiscertainlyanumberthatcancels 2 outwithrespecttomultiplication, namely1/2, because 2 ·(1/2) = 1 and (1/2) ·2 = 1. Thereisamajorproblemhere, however, becausewearedealingwiththeintegers, and 1/2 isnotaninteger. Thereiscertainlynoothernumberthatcancels 2 outwithrespecttomultiplication, sowehavetoconcludethat 2 doesnothaveamultiplicativeinverseintheintegers. (Thenumber 2 doeshaveanadditiveinverse, namely−2,butthatdoesnothelpushere.) Hence, weseethat (Z, ·) doesnothavetheinversesproperty.Therefore, eventhough (Z, ·) satisfiesthefirstthreepropertiesthat (Z,+) satisfies, itdoesnotsatisfythefourthproperty. Itisnothardtoseethatthecommutativepropertyholdsfor (Z, ·),thatis, foranytwointegers a and b, itisalwaystruethat a · b = b · a.Theproblem thatoccuredwith (Z, ·) might suggest toyouwherewecanfindsomething

thatdoessatisfyallfiveproperieswithrespecttomultiplication. Thenumber 1/2 isnotinthe

Page 225: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

218 6. Groups

integers, butitisafraction, sowhydon’twelookatthesetofallfractions, denoted Q. (Theletter Q standsforquotient.)

BEFORE YOU READ FURTHER:

Trytofigureoutwhether (Q, ·) satisfytheclosure, associative, identity, inversesandcom-mutativeproperties.

Justaswith (Z, ·), itisnothardtoseethat (Q, ·) satisfiestheclosure, associativityandidentityproperties(onceagain 1 istheidentitywithrespecttomultiplication). Butthistime, unliketheintegers, itseemsthattherearemultiplicativeinverses. Foranyfraction, thefractionthatcancelsitoutbymultiplicationisjustthereciprocaloftheoriginalfraction. Forexample, thereciprocalof 5/3 is 3/5, andsureenough (5/3) · (3/5) = 1 and (3/5) · (5/3) = 1. Soitappearsasif(Q, ·) hastheinversesproperty. Almost, butthereisstillonelittleglitch. Thenumber 0 canbeconsideredasafraction, say 0/1. Unfortunately, thefraction 0/1 hasnoreciprocal, becausewewouldwanttouse 1/0, butthatisnotallowedbecausewecannotdivideby 0. Itfollowsthatthefraction 0/1 doesnothaveamultiplicativeinverse. However, thenumber 0 istheonlyproblem, becauseanyfractionthatdoesnotequal 0 doeshaveareciprocal. Wewillbypasssthisproblemcausedby 0 asfollows. LetususethesymbolQ∗ todenotethesetoffractionswiththenumber 0 removed. Then, ifweputalltheabovereasoningtogether, weseethat (Q∗, ·) doessatisfythefourpropertiesofclosure, associativity, identityandinverses. Moreover, becausetheorderofmultiplicationoftwonumbersdoesnotmatter, forexample 4 · 7 = 7 · 4, weseethat(Q∗, ·) alsosatisfiesthecommutativeproperty.

Exercise 6.1.1. Determinewhichofthefivepropertiesofclosure, associativity, identity,inversesandcommutativityaresatisfiedbyeachofthefollowingsystems.

(1) Theevenintegerswithaddition.

(2) Theoddintegerswithaddition.

(3) Allrealnumberswithaddition.

(4) Allrealnumberswithmultiplication.

6.2 Clockarithmetic

Sofarwehavebeenconcernedwithvarioussetsofnumbers, suchasintegersandfractions. Allthesesetshavebeeninfinite. Wenowwishtoexamineamathematicalsystemthatisfiniteinsize. Thismathematicalsystemisbasedontheideaof“clockarithmetic,” whichyoumayhaveseen; ifyouhavenot, itwillbesufficientthatyouhaveseenaclock. Allourreferencestotime

Page 226: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

6.2Clockarithmetic 219

willbebasedontheAmerican 12 hoursystem(thoughwewillignorea.m.vs.p.m.), asopposedtothe 24 hoursystemusedmanyotherplacesaroundtheworld(andtheU.S.military); eithertimesystemwouldworkforourpurpose, andwehavesimplychosenoneofthemonceandforalltoavoidanyambiguity.Sayitis 2 o’clock, andyouwanttoknowwhattimeitwillbein 3 hours. A sillyquestion, you

maybethinking, becausethetimeinthreehoursissimply 2 + 3 = 5 o’clock. Right, butnowsupposeitis 7 o’clock, andyouwanttoknowwhatthetimewillbein 6 hours. Youcouldgo7 + 6 = 13, butyouwouldn’tsay 13 o’clock, becausethereisnosuchthing; youwouldsay1 o’clock, ofcourse, andyouwouldberight. Howdidyouget 1 o’clock? Yousubtracted 12from 13, because 13wasgreaterthan 12, andthereforetoolarge. Now, supposeitis 11 o’clock,andyouwanttoknowwhattimeitwillbeafter 30 hours(again, ignoringa.m.andp.m.). Youwouldstartbygoing 11 + 30 = 41, butonceagainthisistoolarge, becauseyoucannothave41 o’clock. Theonly“o’clocks”youcanhavearefrom 1 to 12 (roundingofftowholehours,aswearedoing). Therefore, youwanttotake 41 and“bringitdown”tobetween 1 and 12. Todothis, youwanttosubtractfrom 41 asmanycopiesof 12 asyoucan. Thebestyoucandoissubtract 3 times 12, whichis 36. Now, wecompute 41 − 36 = 5, soifyoustartat 11 o’clockandgoanother 30 hours, youendupat 5 o’clock.

Exercise 6.2.1. Ifyoustartat 7 o’clock, andgoanother 20 hours, whattimewillitbe?

Letusnowlookmorecarefullyatwhatwejustdid; wewilldropthe“o’clocks”forconve-nience. Thereweretwothingswewantedtoaccomplish, whichseemedsomewhatatoddswitheachother: ontheonehand, wewantedtorestrictourselvestotheintegers 1 through 12. Ontheotherhand, wewantedtobeabletoaddnumbers, whichtookusoutsideofthe 1 to 12range. Toresolvetheproblem, wetookanynumberthatwasoutsideofthe 1 to 12 range, andreduceditrepeatedlyby 12 untilwewerebackinthedesiredrange. Forexample, wereduced13 to 1 bysubtracting 12, andwereduced 41 to 5 bysubtracting 3 times 12. Inotherwords,weareessentiallyconsidering 13 and 1 asequivalent(fromthepointofviewofclocks), and 41and 5 areconsideredequivalent.Wearethereforeledtoanewnotion, called congruencemod 12. Wesaythattwointegers

are congruentmod 12 iftheydifferbyanintegermultipleof 12. Therefore, wesaythat 13 and1 arecongruentmod 12, andthat 41 and 5 arecongruentmod 12. Ontheotherhand, thenumbers 17 and 3 arenotcongruentmod 12 becausetheirdifferenceis 14, whichisnotanintegermultipleof 12. Thenumbers 5 and 29 arecongruentmod 12, becausetheirdifferenceis 5− 29 = −24 = (−2) · 12.

Page 227: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

220 6. Groups

Exercise 6.2.2. Whichofthefollowingpairsofnumbersarecongruentmod 12?

(1) 15 and 3;

(2) 9 and 57;

(3) 7 and −5;

(4) 11 and 1;

(5) 0 and 12.

Forthesakeofbrevity, weintroducethefollowingnotation. Ifintegers a and b arecongruentmod 12, wewritethis a ≡ b (mod 12). Forexample, wehave 41 ≡ 5 (mod 12). If a and b

arenotcongruentmod 12, wewrite a ≡ b (mod 12). Forexample, wehave 3 ≡ 7 (mod 12).Fromtheclockexample, wenoticedthatanyintegerwhatsoevercouldbereducedbymulti-

plesof 12 untilwhatisleftissomewherefrom 1 through 12. Hence, ifweareinterestedonlyinintegersmod 12, thenweneedtoconsideronly 1 through 12, becauseanythingelsecanbereducedtooneofthesenumbers. Foreaseofuselateron, wewillmakeonesmallchangeatthispoint. Insteadofconsideringtheintegersfrom 1 to 12, wewillswitchtotheintegersfrom 0 to11. Thischangehasnosubstantialeffect, because 0 ≡ 12 (mod 12). Anyintegerwhatsoevercanbereducedbymultiplesof 12 untilwhatisleftisanintegerfrom 0 through 11. Inotherwords, forany integerwhatsoever, there isanother integer, this time from 0 to 11, which iscongruentmod 12 totheoriginalinteger; moreover, thereisonlyonesuchintegerfrom 0 to 11.Insymbols, foranyinteger a, thereisauniqueinteger x from 0 to 11 sothat x ≡ a (mod 12).Forexample, ifwelet a = 13, then x = 1, because 1 ≡ 13 (mod 12). If a = 35, then x = 11,because 11 ≡ 35 (mod 12). If a = 12, then x = 0, because 0 ≡ 12 (mod 12). Notethatthenumber a neednotbepositive. If a = −4, then x = 8, because 8 ≡ (−4) (mod 12).Additionally, notethatif a = 7, then x = 7 aswell, because 7 isalreadybetween 0 to 11.

Exercise 6.2.3. Foreachinteger a givenbelow, findtheinteger x from 0 to 11 sothatx ≡ a (mod 12).

(1) a = 18;

(2) a = 41;

(3) a = −17;

(4) a = 3.

Wearenowledtothefollowingmethodforconstructinganewmathematicalsystem, whichsimplyencapsulateswhatwedowhenwetelltime. Oursystemwillhavetwelveobjects, de-

Page 228: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

6.2Clockarithmetic 221

noted 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11. ThecollectionofthesetwelveobjectswillbedenotedZ12. Weputthe“hat”ontheseobjectstoindicatethat, althoughtheycorrespondtotheintegersfrom 0 through 11, theydonotbehaveexactlyliketheintegerstowhichtheycorrespond. Thedifferenceisinhowweaddtheelementsin Z12. Letusstartwithsomeexamples. Toadd 3 and4 iseasy; itissimply 3+4 = 7. Ontheotherhand, wecannotsaythat 6+8 is 14, becausethereisnosuchthingas 14 in Z12. So, asonaclock, whatwedoistoreduce 14 byintegermultiplesof 12. Moreconcisely, wewanttofindanintegerfrom 0 to 11 thatiscongruentmod 12 to 14.Thenumberisclearly 2, andsowesay 6+8 = 2. Ingeneral, if a and b aretwonumbersin Z12,tofind a+ b wefirstfind a+b asusual; if a+b isfrom 0 to 11, weputahatoverit, andthatisouranswer; if a+ b islargerthan 11, wefindaninteger x from 0 to 11 sothat x ≡ (a+ b)

(mod 12), andthenlet a + b = x. Forexample, wehave 3 + 7 = 10, and 7 + 9 = 4, and2 + 0 = 2. Itshouldbeclearthatalthoughweusetheusual“+”signtodenote“addition”inZ12, thisoperationisnotthesameasstandardadditionofintegers, becausewereducemod 12.(Itwouldbesensibletoputa“hat”onthe + signthatweusefor Z12, similarlytothehatweputon 0, 1, 2, . . ., 11, butitisnotstandardtodoso, andwewillstickwithstandardnotation.)

Exercise 6.2.4. Calculatethefollowing.

(1) 4 + 5;

(2) 7 + 8;

(3) 5 + 11;

(4) 0 + 3.

Weareinterestedinthesystem (Z12,+). Onehelpfultoolforunderstandingthissystemisadevicethathelpeduslearnmultiplicationaschildren, namelymultiplicationtables, suchasTable 6.2.1, whichshowsmultiplicationupto 10.Thistablesummarizesexplicitlyallpossiblemultiplicationsbetweenintegersfrom 1 to 10.

Forexample, tofind 3 · 7, lookintherowlabeled 3, andthecolumnlabeled 7, andintheintersectionofthisrowandthiscolumnwefind 21, justasexpected.Wecan, similarly, makeanadditiontablefor (Z12,+), showninTable 6.2.2. Forexample,

tofind 4 + 9, lookintherowlabeled 4, andthecolumnlabeled 9, andintheintersectionofthisrowandthiscolumnwefind 1, whichis 4 + 9. Noticethecyclicpatterninthetable.Wenowaskwhether (Z12,+) thesamefiveproperties(discussedinSection 6.1)that (Z,+)

satisfies. Theclosurepropertyholdsfor (Z12,+), becausetheway+wasdefinedforZ12 insuresthataddinganytwoelementsinZ12 yieldsanotherelementinZ12. Asforassociativity, withabitofthoughtitisnothardtoseethatbecausethestandardadditionfortheintegersisassociative,theadditionof Z12 isalsoassociative; wewillomitthedetails.Toseethattheidentitypropertyholds, wenotethat 0 playstheroleofanidentityelement,

becauseforany a in Z12, itisseenthat a+ 0 = a and 0 + a = a.

Page 229: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

222 6. Groups

· 1 2 3 4 5 6 7 8 9 101 1 2 3 4 5 6 7 8 9 102 2 4 6 8 10 12 14 16 18 203 3 6 9 12 15 18 21 24 27 304 4 8 12 16 20 24 28 32 36 405 5 10 15 20 25 30 35 40 45 506 6 12 18 24 30 36 42 48 54 607 7 14 21 28 35 42 49 56 63 708 8 16 24 32 40 48 56 64 72 809 9 18 27 36 45 54 63 72 81 9010 10 20 30 40 50 60 70 80 90 100

Table6.2.1

Whatabout inverses? Youmight thinkatfirst that therecannotbe inverses, because therearenonegativenumbersin Z12. Butnegativeisarelativeterm(dependingonyourset, youroperationandyourzero), andinfactthereareinversesin (Z12,+). Letusstartwith 1. What,ifanything, is its inverse in (Z12,+)? Inotherwords, is thereanelement in Z12 that, whenaddedto 1, yields 0. Recallingthat 0 ≡ 12 (mod 12), weseethatthenumberthatcancels1 outisprecisely 11, because 1 + 11 = 12, andtherefore 1 + 11 = 0. Itisnothardtoseethateveryelementin Z12 hasaninversewithrespecttoaddition. Forexample, theinverseof5 is 7, because 5 + 7 = 12, andtherefore 5 + 7 = 0. Hence, theinversespropertyholdsfor(Z12,+). Itisnothardtoseethatthecommutativepropertyalsoholdsfor (Z12,+), forexample5 + 6 = 6 + 5. Wehavethereforeverifiedthat (Z12,+) satisfiesthesamefivepropertiesas(Z,+).

Exercise 6.2.5. Findtheinverseswithrespecttoadditionof 3, 6, 8 and 0 in Z12.

Wecanalsomakeamultiplicationtablefor Z12, showninTable 6.2.3.Notice that themultiplication table for Z12 doesnot have the same simplepattern along

upward-slopinglinesasdidtheadditiontablefor Z12. Moreover, notethatintheadditiontable,eachof 0, 1, . . . , 11 appearsonceandonlyonceineachrowandineachcolumn; thispropertydoesnotholdforthemultiplicationtable. Alltold, multiplicationfor Z12 isnotaswellbehavedasaddition. SeeExercise 6.2.6 fordetails.

Exercise 6.2.6. Whichofthefiveproperties(closure, associativity, identity, inverses, com-mutativity)holdsfor (Z12, ·)? Forthoseelementsof Z12 thathaveinverseswithrespecttomultiplication, statewhattheirinversesare.

Page 230: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

6.3TheIntegersMod n 223

+ 0 1 2 3 4 5 6 7 8 9 10 11

0 0 1 2 3 4 5 6 7 8 9 10 11

1 1 2 3 4 5 6 7 8 9 10 11 0

2 2 3 4 5 6 7 8 9 10 11 0 1

3 3 4 5 6 7 8 9 10 11 0 1 2

4 4 5 6 7 8 9 10 11 0 1 2 3

5 5 6 7 8 9 10 11 0 1 2 3 4

6 6 7 8 9 10 11 0 1 2 3 4 5

7 7 8 9 10 11 0 1 2 3 4 5 6

8 8 9 10 11 0 1 2 3 4 5 6 7

9 9 10 11 0 1 2 3 4 5 6 7 8

10 10 11 0 1 2 3 4 5 6 7 8 9

11 11 0 1 2 3 4 5 6 7 8 9 10

Table6.2.2

6.3 TheIntegersMod n

InSection 6.2 webasedourdiscussiononthenumbertwelvebecauseofourfamiliaritywithclocks. Wecan, however, repeatthewholeprocedurewithanyotherpositiveintegerreplacing12. Chooseanypositiveinteger n. Wesaythatanytwointegersare congruentmod n iftheydifferbysomeintegermultipleof n. Insymbols, suppose a and b areintegers. Wesaythat aand b arecongruentmod n, written a ≡ b (mod n), if a−b = kn forsomeinteger k (whichcouldbepositive, negativeorzero). If a and b arenotcongruentmod n, wewrite a ≡ b

(mod n). Forexample, saywechoose n = 5. Then 17 and 2 arecongruentmod 5, written17 ≡ 2 (mod 5), because 17 − 2 = 15 = 3 · 5, whichisanintegermultipleof 5. Also, wehave 3 ≡ 11 (mod 4) because 3−11 = −8 = (−2) ·4. However, wehave 13 ≡ 2 (mod 9),because 13− 2 = 11, whichisnotamultipleof 9.

Exercise 6.3.1. Whichofthefollowingaretrue, andwhicharefalse?

(1) 3 ≡ 9 (mod 2);

(2) 7 ≡ (−1) (mod 8);

(3) 4 ≡ 11 (mod 3);

(4) 0 ≡ 24 (mod 6).

(5) 9 ≡ 9 (mod 5).

Page 231: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

224 6. Groups

· 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7 8 9 10 11

2 0 2 4 6 8 10 0 2 4 6 8 10

3 0 3 6 9 0 3 6 9 0 3 6 9

4 0 4 8 0 4 8 0 4 8 0 4 8

5 0 5 10 3 8 1 6 11 4 9 2 7

6 0 6 0 6 0 6 0 6 0 6 0 6

7 0 7 2 9 4 11 6 1 8 3 10 5

8 0 8 4 0 8 4 0 8 4 0 8 4

9 0 9 6 3 0 9 6 3 0 9 6 3

10 0 10 8 6 4 2 0 10 8 6 4 2

11 0 11 10 9 8 7 6 5 4 3 2 1

Table6.2.3

Foreachpositiveinteger n greaterthanorequalto 2, wecanformasystemcalled Zn com-pletelyanalogouslytothewayweformed Z12. Wewillobtainonesuchsystemforeachinteger2, 3, 4, . . . (Weskipover thecase n = 1, becausethat turnsout tobeuseless.) Letusstartwiththeexampleof n = 8. Analogouslytowhatwedidwith 12, weseethatfor n = 8, anyintegercanbereducedbymultiplesof 8 untilwhatisleftissomewherefrom 0 through 7. Inotherwords, foranyinteger, thereisauniqueintegerfrom 0 to 7 thatiscongruentmod 8 totheoriginalinteger. Insymbols, foranyinteger a, thereisauniqueintegerfrom 0 to 7, denoted x,sothat x ≡ a (mod 8). Forexample, ifwelet a = 10, then x = 2, because 2 ≡ 10 (mod 8).Nowsupposewestartwith a = 1950. Inthiscase, wecouldproceedbysubtracting 8, andthenanother 8, andthenagainandagain, asmanytimesasareneeded, untilweareleftwithsomenumberfrom 0 to 7. Thatwouldwork, butwouldbeverytedious. A bettermethodwouldbetodivide 1950 by 8. Wewouldthenseethatthequotientis 243, andtheremainderis 6;thatis, weseethat 1950/8 = 243 + (6/8). Itfollowsthat 1950 = 243 · 8 + 6, andhencethat6 − 1950 = (−243) · 8. Wethereforeseethat 6 ≡ 1950 (mod 8), andthereforewecanusex = 6. Wenote, asbefore, thatifwestartwithanumber a thatisalreadyfrom 0 to 7, then x

isjust a itself.

Page 232: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

6.3TheIntegersMod n 225

Exercise 6.3.2. Foreachinteger a givenbelow, findtheinteger x from 0 to 7 sothat x ≡ a

(mod 8).

(1) a = 15;

(2) a = 54;

(3) a = 1381;

(4) a = −2;

(5) a = 3;

(6) a = 8.

Asbefore, theset Z8 andwillhave 8 members, denoted 0, 1, 2, 3, 4, 5, 6 and 7. Weaddelementsof Z8 asbefore, exceptthatthistimewereducebymultiplesof 8. Forexample, in Z8

wehave 2 + 3 = 5 andwehave 5 + 4 = 1, wherethelatterholdsbecause 5 + 4 = 9, and1 ≡ 9 (mod 8).

Exercise 6.3.3. Calculatethefollowingin Z8.

(1) 4 + 1;

(2) 3 + 7;

(3) 0 + 3.

Justaswedidfor (Z12,+), wecanformanadditiontablefor (Z8,+), showninTable 6.3.1.Noticethesamediagonalpatternasbefore.

+ 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7 0

2 2 3 4 5 6 7 0 1

3 3 4 5 6 7 0 1 2

4 4 5 6 7 0 1 2 3

5 5 6 7 0 1 2 3 4

6 6 7 0 1 2 3 4 5

7 7 0 1 2 3 4 5 6

Table6.3.1

Page 233: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

226 6. Groups

Weaskwhether (Z8,+) satisfiesthesamefivepropertiesas (Z,+), andtheanswerisyes.Theclosure, associativeandidentitypropertiesholdfor (Z8,+) justastheydidfor (Z12,+).Weobservethat 0 isonceagaintheidentityelement. Theinversepropertyalsoholds, althoughalittlecautionmustbetaken, becausetheinversesin Z8 arenotthesameasin Z12. Forexample,theinverseof 1 in Z8 is 7, because 1+7 = 8, andso 1 + 7 = 0. Thiscontrastswiththeinverseof 1 in Z12, whichis 11. Thecommutativepropertyalsoholdsfor (Z8,+).

Exercise 6.3.4. Findtheinverseswithrespecttoadditionof 2, 4, 5 and 0 in Z8.

Justas (Z8,+) satisfiesthefivepropertiesofclosure, associativity, identity, inversesandcom-mutativity, sodoes (Zn,+) foranypositiveinteger n, where n ≥ 2. Thesystem (Zn,+) iscalledthe groupofintegersmod n withtheoperationaddition. Noticethat (Zn,+) haspre-cisely n members.

Exercise 6.3.5. Considerthesystem (Z6,+).

(1) Listtheelementsofthissystem.

(2) In (Z6,+), whatare 5 + 2 and 4 + 1?

(3) Constructtheadditiontablefor (Z6,+).

(4) Findtheinverseswithrespecttoadditionof 2, 4, 5 and 0 in Z6.

Exercise 6.3.6. Observethatintheadditiontablefor (Z8,+), showninTable 6.3.1, alltheentriesonthedownwardsslopingdiagonalareevennumbers. Willthesamefactholdintheadditiontableforany (Zn,+)? Ifyes, explainwhy. Ifnot, describewhatdoeshappenonthedownwardsslopingdiagonalfor (Zn,+) ingeneral, andexplainyouranswer.

Havinglookedat (Zn,+), letusnowturnto (Zn, ·). Considerthecaseof (Z5, ·). Themulti-plicationtablefor (Z5, ·) isshowninTable 6.3.2.NoticethatTable 6.3.2 doesnotsatisfythesimplepatternalongupward-slopinglinesasin

Tables 6.2.2 and6.3.1.Itisseenthat (Z5, ·) doessatisfytheclosure, associative, andidentityproperties(with 1 as

identity), andthecommutativepropertyaswell. However, theinversespropertyisnotsatisfied,because 0 hasnoinversewithrespecttomultiplication. Toseethisfact, wenotethataninversefor 0 wouldbesome x in Z5 suchthat 0 · x = 1 and x · 0 = 1. A lookatthetableshowsthatnosuch x exists. Wecanremedythisproblemjustaswedidfor Q inSection 6.1, bydropping

Page 234: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

6.3TheIntegersMod n 227

· 0 1 2 3 4

0 0 0 0 0 0

1 0 1 2 3 4

2 0 2 4 1 3

3 0 3 1 4 2

4 0 4 3 2 1

Table6.3.2

theproblematic 0. Letususethesymbol Z∗5 todenote Z5 with 0 removed. Wethenobtainthe

multiplicationtablefor (Z∗5, ·), shown inTable 6.3.3. Weleaveittothereadertoverifythat

(Z∗5, ·) satisfiesallofourproperties.

· 1 2 3 4

1 1 2 3 4

2 2 4 1 3

3 3 1 4 2

4 4 3 2 1

Table6.3.3

Unfortunately, whatworksfor (Z∗5, ·) doesnotworkforall (Z∗

n, ·). Forexample, weseeinTable 6.3.4 themultiplication table for Z∗

6. Notallfivepropertieshold for (Z∗6, ·). First, the

closurepropertydoesnothold; forexample, weseethat 2 · 3 = 0, but 0 isnotin Z∗6. The

associativepropertyholds, asdoestheidentityproperty(withidentity 1), andthecommutativepropertyholds. Theinversespropertydoesnothold; forexample, itisseenthat 2 doesnothaveaninversewithrespecttomultiplication.

· 1 2 3 4 5

1 1 2 3 4 5

2 2 4 0 2 4

3 3 0 3 0 3

4 4 2 0 4 2

5 5 4 3 2 1

Table6.3.4

Page 235: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

228 6. Groups

BEFORE YOU READ FURTHER:

Istheresomethingaboutthenumber 5 thatmakes (Z∗5, ·) satisfyallourproperties, and

aboutthenumber 6 thatmakes (Z∗6, ·) failtosatisfytheclosureandidentityproperties?

Ingeneral, what is itaboutan integer n thatwoulddeterminewhetherornot (Z∗n, ·)

satisifiesallfiveproperties? (Youwillmostlikelynotbeabletodemonstrateyouranswerrigorously, unlessyouknowmoreaboutnumbersthanweareassuming, buttrytomakeaneducatedguess.)

Itturnsoutthattherelevantdifferencebetween 5 and 6 thatleadsto (Z∗5, ·) satisfyingourfive

propertiesbut (Z∗6, ·) notsatisfyingallfiveistheissueofprimenumbers vs.compositenumbers.

A positiveintegerisa primenumber ifitsonlypositivefactorsare 1 anditself. A positiveintegerthatisnotprimeiscalledcomposite. Forexample, thenumbers 2, 3, 5 and 7 areprime, whereas6 iscomposite, havingfactors 1, 2, 3, and 6. Itturnsout, thoughthisisfarfromobvious, that(Z∗

n, ·) satisfiesallfivepropertiesifandonlyif n isaprimenumber. Theproofusesfactsaboutprimenumbers.

Exercise 6.3.7. Constructthemultiplicationtablefor (Z8, ·).

6.4 Groups

Intheprevioussectionsofthischapter, wesawanumberofmathematicalsystemsthatsatisfiedthesamepropertiesofclosure, associativity, identityandinverses. (Allthesystemsdiscusseduptillnowalsosatisfiedthecommutativityproperty, butwewillseesystemsthatdonotsatisfythispropertyinalittlewhile.) Mathematicianshaveinfactfoundsomanysystemsthatsatisfythesesamefourfundamentalproperties(thoughnotnecessarilycommutativity), thattheydecidedtogiveallsuchsystemsanamesothattheycouldbestudiedtogether, andcommonpropertiescouldbefound. Wewillcallanysystemsatisfyingthesefourpropertiesagroup.Letusphrasethisconceptmoreprecisely. Firstofall, agroupisasetofobjects, whichmay

benumbers(asinthecaseoftheintegers), butwhichcouldbeotherthingsaswell. Supposethat G isasetofobjects. Themembersof G willbereferredtoas elements of G. Next, thissetofobjects G needsa binaryoperation, whichcombineselementsof G bytakinganytwoelementsof G asinputs, andfortheseinputsgivesauniqueoutput. Now, supposethat ∗ isabinaryoperation. Thatmeansthatforanytwoelements g and h inG, wecancombinethemtogetasinglethingdenoted g ∗ h. Thenotation g ∗ h ismeanttobesimilartothenotationsforadditionandmultiplication, ourtwomostfamiliarbinaryoperations. Wewilldenoteaset Gtogetherwithanoperation ∗ bythepair (G, ∗). Oneexampleofsuchapair (G, ∗) isthepair(Z,+). A pair (G, ∗) iscalleda group ifitsatisfiestheabovementionedfourproperties, whichwenowstateintheirmostgeneralform:

Page 236: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

6.4Groups 229

Closureproperty: If g and h arein G, then g ∗ h isin G.

Associativeproperty: If g, h and k arein G, then (g ∗ h) ∗ k = g ∗ (h ∗ k).Identityproperty: ThereisadistinguishedelementinG, calledan identityelement anddenotede, sothatif g isin G, then e ∗ g = g and g ∗ e = g.

Inversesproperty: If g is in G, there isanelement g ′ in G, calledan inverse of g, so thatg ∗ g ′ = e and g ′ ∗ g = e.

Some, thoughnotall, groupsalsosatisfythefollowingproperty:

Commutativeproperty: If g and h arein G, then g ∗ h = h ∗ g.A groupthatalsosatisfiesthecommutativepropertyiscalledan abelian group. (Itwouldbe

entirelyreasonabletocallsuchagroupa“commutativegroup;” however, thatisnotstandardterminology. ThetermabeliangroupisinhonoroftheNorwegianmathematicianNielsAbel.Thischoiceofnamehasgivenrisetothefollowingwellknownjoke(wellknownamongmath-ematicians, atleast). Question: whatispurpleandcommutative? Answer: anabeliangrape.)

Ifwegobackandconsidertheexampleswehaveseensofar, nowusingtheterminologyofgroups, weseethat (Z,+) isanabeliangroup, asis (Zn,+) foreachpositiveinteger n, wheren ≥ 2. Ontheotherhand, thesystem (Z, ·) isnotagroup, becausewesawthatitdidnotsatisfytheinversesproperty. Wealsosawthat (Z∗

n, ·) isagrouppreciselyif n isaprimenumber.

Exercise 6.4.1. Whichofthefollowingsystemsisagroup? Whichisanabeliangroup?

(1) Theevenintegerswithaddition.

(2) Theoddintegerswithaddition.

(3) Allrealnumberswithaddition.

(4) Allrealnumberswithmultiplication.

Thereisonematterweneedtoclarifyrightawayaboutthedefinitionofgroups. Inthestate-mentoftheidentityproperty, wementioned“anidentityelement,” andinthestatementoftheinversesproperty, wementioned“aninverse.” Coulditbethecasethatagrouphasmorethanoneidentityelement, orthatanelementinagrouphasmorethanoneinverse? Intuitivelythatsoundsunlikely, andthefollowingpropositionshowsthatourintuitioniscorrect.

Proposition 6.4.1. Supposethat (G, ∗) isagroup.

1. Thegroup G hasauniqueidentityelement.

2. If g isanelementof G, then g hasauniqueinverse.

Demonstration. WeshowPart (1), leavingPart (2)tothereaderinExercise 6.4.2.

Page 237: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

230 6. Groups

(1). Wefollowthestandardmathematicalapproach toshowing thatsomething isunique,whichistosupposethattherearetwoofthething, andthenshowthatthetwothingsareinfactequal. Inparticular, supposethat e and c arebothidentityelementsof G. Then

e = e ∗ c = c,

whereinthefirstequalitywearethinkingof c asanidentityelement, andinthesecondequalitywearethinkingof e asanidentityelement. Itfollowsthat e = c, andthereforetheidentityelementof (G, ∗) isunique.

Bytheaboveproposition, wecannowreferto“theidentityelement”ofagroup, and“theinverse”ofeachelementofthegroup.

Exercise 6.4.2. [UsedinThisSection] DemonstrateProposition 6.4.1 (2).

Groupscomeintwobasicvarieties, infinite orfinite, dependingonhowmanyelementsareinthegroup. Forexample, thegroup (Z,+) isaninfinitegroup, andeach (Zn,+) isafinitegroup.Althoughtheinfinitegroupswehavedealtwithsofarmayseemmorenatural(forexample, theintegers), finitegroupsareofteneasiertoworkwithmathematically. Letuslookatsomefurtherexamplesoffinitegroups.Recall that thegroup (Zn,+) hasprecisely n elements in it. Because thisworks foreach

positiveinteger n with n ≥ 2, weseethatthereisagroupofeachpossiblefinitesize. (Thereisalsoagroupwithoneelement, namelythesetwiththesingleelement 0, andwiththeoperationaddition.) However, therearemanyotherfinitegroupsbesidesthegroups (Zn,+), thoughmanyofthemaremorecomplicatedtoconstruct. Someofthefollowingexamplesoffinitegroupsmayappearsomewhatarbitrary. Wheredidthesegroupscomefrom? Sometimestrialanderrorwasused, thoughifthatweretheonlymethod, notonlywouldthatberathertedious, butitwouldberatherunappealing. Therearevarioussystematicwaysofconstructingfinitegroups,someofwhichareextremelycomplex, yieldinghugegroupswithnicknamessuchas“monster”(seriously).To see someexamplesoffinitegroups, recall thatagroup ingeneral is a setof elements

G, togetherwithanoperation ∗, subject to fourproperties. Whendealingwith the familiaroperationsofadditionandmultiplication, allwehadtodowasnametheseoperations, andeveryoneknewexactlywhatweweretalkingabout. Inunfamiliarsituation, whenwecannotrefertoanoperationbysimplygivinganamewithwhicheveryonewouldbefamiliar, wewillreturntotheideaofthemultiplicationtablementionedpreviously. Todescribeagroup, wewillfirstdescribeasetG, andthendescribeanoperation ∗ usinga“multiplication”table, whichwewillcallan operationtable fromnowon.Weuseoperationtablesjustasweusedadditiontablesfor (Z,+) and (Z,+) previously. Whatwillbenewnowisthatinsteadofusinganoperationtabletogiveapictorial representation ofabinaryoperationwithwhichwearealreadyfamiliar,nowwewill define newbinaryoperationsbygivingoperation tables for them. Ifwedefine

Page 238: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

6.4Groups 231

defineabinaryoperation ∗ bygivingitsoperationtable, thentofind a ∗ b, wesimplylookattheentryintheoperationtableintherowcontaining a andthecolumncontaining b.Letusconstructatwo-elementgroupviaanoperationtable. Westartwithaset, labeled T ,

whichcontainstwoelements, called r and s; wecanabbreviatethisbywriting T = {r, s}. Wethenspecifyabinaryoperation ∗ bygivingTable 6.4.1.

∗ r s

r r s

s s r

Table6.4.1

FromTable 6.4.1 wesee, forexample, that r ∗ s = s and s ∗ s = r. Wewant toverifywhether (T, ∗) isagroup. Now, wedonotknowwhether r and s aremeanttodenotenumbers,orperhapshouses, orsomethingelse; wealsodonotknowthat ∗ “means,” inthewaythatweknowwhatadditionandmultiplicationofnumbersmeans. So, isitpossibletoverifywhether(T, ∗) isagroupusingonlytheoperationtablegivenfor ∗? Theanswerisyes—everythingthatcanbeknownabout ∗ iscontainedinitsoperationtable.Theclosurepropertycertainlyholdsfor (T, ∗), becauseanytwoelementsintheset T yieldan

elementof T whencombinedby ∗; thisfactisevidentbecausealltheentriesinTable 6.4.1 arethemselvesin T . Ingeneral, aslongasallentriesinanoperationtablearethemselveselementsoftheoriginalset, thentheclosurepropertywillnecessarilyhold.Tochecktheassociativityof ∗ weneedtocheckmanycases. Inprinciple, onewouldhave

tocheckeverypossiblewaytocombine threeelementsof T (repeatsallowed), tosee if theassociativityruleholds. Forexample, does (r ∗ s) ∗ s equal r ∗ (s ∗ s)? Usingtheoperationtable, weseethat (r ∗ s) ∗ s = s ∗ s = r, and r ∗ (s ∗ s) = r ∗ r = r, whichiswhatwehadhopedfor. Tocheckwhetherassociativityholdsfor (T, ∗), wehavetodoallotherpossiblecases, whichwouldbequitetedious. A casebycasecheckdoesshowthatassociativityholdsinthisexample; wewillnotgothroughthedetails. Becausecheckingforassociativityissotedious(andnotveryenlightening), thereadercanassumetheassociativepropertyforanyoperationtablesweusefromnowon(noteverypossibleoperationtablesatisfiestheassociativeproperty,butwearenotinterestedinthosethatdonot).Wedefinitelycannotassumethetwootherpropertiesofgroups, however, andsoweneedto

verifywhethertheidentityandinversespropertiesholdfor (T, ∗). Toverifywhethertheidentitypropertyholds, weneedtofindanelementof T thatisanidentityelementwithrespectto ∗.Thatis, wewanttofindanelementof T thatbehaveswithrespectto ∗ justasthenumber 0behaveswithrespecttoadditionofnumbers. Lookingatthetable, weseethat r ispreciselysuchanelement, because r ∗ r = r, and r ∗ s = s and s ∗ r = s. Hence, theidentitypropertyholdswithidentityelement r.Toverifytheinversesproperty, wehavetofindaninverseforeachelementof T , wherean

inverseofanelementissomethingthatcancelsitout, whichmeansthattheelementanditsinversecombinetoyieldtheidentityelement. (Ofcourse, ifasetandbinaryoperationdonot

Page 239: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

232 6. Groups

haveanidentityelement, thequestionofinversesismoot.) Bylookingatthetable, weseethatr ∗ r = r and s ∗ s = r. Inotherwords, theelements r and s areeachtheirowninverses.Itmayseemsomewhatstrangethatsomethingisitsowninverse, thatis, itcancelsitselfout,butthereisnothinginvalidhere. Consequently, theinversespropertyholdsfor (T, ∗). Puttingthisalltogether, weseethat (T, ∗) isagroup. Doesthecommutativepropertyhold? Notethatr ∗ s = s and s ∗ r = s, andso r ∗ s = s ∗ r. Becausethisistheonlypossiblepairofelementstocheckforcommutativity, anditworks, weseethat (T, ∗) satisfiesthecommutativeproperty,andhenceisanabeliangroup.Thatwasafairbitofefforttoverifythat (T, ∗) wasagroup, butifwewanttobesurethat ∗

asgiveninTable 6.4.1 yieldsagroup, wecannotavoidthateffort, becausenoteveryoperationtableyieldsagroup. Infact, ifyourandomlywritedownanoperationtable, itishighlyunlikelythatitwillyieldagroup. Asanexample, letustakethesameset T = {r, s} asbefore, butletusdefineadifferentbinaryoperation, denoted • thistime, givenbyTable 6.4.2.

• r s

r r s

s s s

Table6.4.2

Wewanttoverifywhetherornot (T, •) isagroup. Thereadermayverifythat (T, •) onceagainsatisfiestheclosure, associativityandidentityproperties, with r againplayingtheroleoftheidentity. Butwhataboutinverses? Fromthetableweseethat r•r = r, so r isitsowninverse.Ontheotherhand, lookingatthetabledoesnotyieldaninversefor s. Weseethat r • s = s

and s • s = s, soneither r nor s canbetheinverseof s. Itfollowsthat (T, •) doesnotsatisfytheinversesproperty, andisthereforenotagroup. So, notalloperationtableswork.Letustryafewmoreoperationtables. ConsiderthesetV = {x, y, z,w}withbinaryoperation

⊕ givenbyTable 6.4.3.

⊕ x y z w

x w z y x

y z w x y

z y x w z

w x y z w

Table6.4.3

Is (V,⊕) agroup? Becausealltheentriesinthetableareintheset V , theclosurepropertyholds. Asmentioned, wecanassume theassociativityproperty. As for the identityproperty,noticethat w playstheroleofanidentityelement, because w combinedwithanythingisthatsamething. Observethatthecolumnunderw intheoperationtableisthesameasthecolumnattheleftendofthetable; similarly, therowtotherightof w isthesameastherowatthetopofthetable. Thisphenomenonholdspreciselybecause w istheidentityelement, andthis

Page 240: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

6.4Groups 233

methodcanbeusedtofindidentityelements(iftheyexist)quicklyinanyoperationtable. Forinverses, itisseenthateachelementisitsowninverse(thiswillnotbethecaseforallfinitegroups, sodon’tjumptoanyconclusionshere). Hence, allthepropertiesofagrouphold, and(V,⊕) isindeedagroup. Itisalsothecasethatthecommutativepropertyholdsfor (V,⊕), Toseethis, youcouldtryallpossibilities. Forexample, weseethat x ⊕ y = z and y ⊕ x = z,sothat x ⊕ y = y ⊕ x; similarlyfortheothercases. Hence (V,⊕) isanabeliangroup. Thereisaneasierwaytoseethatcommutativityholdsfor (V,⊕). Noticethattheoperationtablefor(V,⊕) issymmetricaboutitsdownwardslopingdiagonal. Ifyouthinkaboutit, youwillseethatingeneral, foranygroup, thistypeofsymmetryoftheoperationtablewillholdpreciselyifagroupsatisfiesthecommutativeproperty.

Exercise 6.4.3. Foreachcollectionofobjectsandoperationtableindicatedbelow, answerthefollowingquestion:

(a) Istheclosurepropertysatisfied?

(b) Isthereanidentityelement? Ifso, whatisit?

(c) Whichelementshaveinverses? Forthosethathaveinverses, statetheirinverses? (Ifthereisnoidentityelement, thisquestionismoot.)

(d) Isthecommutativepropertysatisfied?

(e) Assumingthattheassociativepropertyholds, dothecollectionofobjectsandgivenoperationformagroup? Iftheyareagroup, isitanabeliangroup?

(1) Theset V = {x, y, z,w} withbinaryoperation ⋄ givenbyTable 6.4.4.

(2) Theset K = {m,n, p, q, r} withbinaryoperation ⋆ givenbyTable 6.4.5.

(3) Theset M = {1, s, t, a, b, c} withbinaryoperation ⊙ givenbyTable 6.4.6.

(4) Theset W = {e, f, g, h,w, x, y, z} withbinaryoperation ∗ givenbyTable 6.4.7.

⋄ x y z w

x z w y x

y x y z w

z y z w x

w z w x z

Table6.4.4

Wehaveseensomeexamplesoffinitegroupsgivenbyoperationtables, andotherexamples(namelythegroups (Zn,+))thatwerenotgivenbyoperationtables. However, anyfinitegroup

Page 241: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

234 6. Groups

⋆ m n p q r

m n p q m r

n p r m n p

p q m r p n

q m n p q r

r r p n r q

Table6.4.5

⊙ 1 s t a b c

1 1 s t a b c

s s t 1 b c a

t t 1 s c a b

a a c b 1 t s

b b a c s 1 t

c c b a t s 1

Table6.4.6

hasanoperationtable, evenifthatisnothowthegroupwasinitiallydescribed; nomatterhowabinaryoperationisdefined, wecanalwayswriteoutanoperationtablesimplybyseeingwhatthebinaryoperationdoestoeachpairofelementsofthegroup.

BEFORE YOU READ FURTHER:

Lookattheexamplesofoperationtablesthatwehaveseensofarthatyieldgroups. Canyouseeanynicefeaturesofthewaythattheelementsarearrangedinthesetables?

Thefollowingpropositionstatesaverynicefeatureofoperationtablesoffinitegroups.

Proposition 6.4.2. Supposethat (G, ∗) isafinitegroup. Intheoperationtableforthegroup,eachelementofthegroupappearsexactlyonceineachrow, andonceineachcolumn.

Demonstration. SupposetothecontrarythatasingleelementofG appearstwiceinonerow. Inparticular, supposethatthissameelementappearstwiceintherowcorrespondingtotheelementa; supposethatitappearsinthecolumnscorrespondingtoelements b and c. Itfollowsthata∗b = a∗c. Because (G, ∗) isagroup, weknowthat a hasaninverse, say a ′. Wededucethata ′ ∗ (a ∗b) = a ′ ∗ (a ∗ c), andhencebyassociativityweseethat (a ′ ∗a) ∗b = (a ′ ∗a) ∗ c.If e istheidentityelementofthegroup, thenitfollowsthemeaningofinverseelementsthate ∗ b = e ∗ c. By themeaningof the identityelement, wededuce that b = c. However,weassumedthatthecolumnscorrespondingto b and c aredistinctcolumns, andsowehavearrivedata logical impossibility. Theonlywayoutof thissituationis toconcludethateachelementof G appearsatmostonceineachrow. Inordertofillupeachrowintheoperation

Page 242: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

6.4Groups 235

∗ e f g h w x y z

e e f g h w x y z

f f g h e x y z w

g g h e f y z w x

h h e f g z w x y

w w x y z e f g h

x x y z w f g h e

y y z w x g h e f

z z w x y h e f g

Table6.4.7

tablewithelementsof G, itmustbethecasethateveryelementof G appearsatleastonceineachrow. ThefinalconclusionisthateachelementofG appearsexactlyonceineachrow. Thesameideawillworkforcolumnsinsteadofrows, andwewillskipthedetails.

Wenotethateventhougheachelementofthegroupappearsexactlyonceineachrow, andonce in each column, of its operation table, it is definitely not the case that anyoperationtablethatsatisfiesthispropertyyieldsagroup. ThereaderisaskedtofurnishanexampleinExercise 6.4.4.

Exercise 6.4.4. [UsedinThisSection] Findanexampleofafinitesetwithabinaryoperationgivenbyanoperationtable, suchthateachelementofthesetappearsexactlyonceineachrow, andonceineachcolumn, andyetthesetwiththisbinaryoperationisnotagroup.

Exercise 6.4.5. Let C betheset C = {k, l,m}. Constructanoperationon C, bymakinganoperationtable, whichturns C intoagroup.

Whatdoesitmeantosaythattwogroupsaredifferent? Certainly, thegroup (T, ∗) givenbyTable 6.4.1 isdifferentfromthegroup (V,⊕) givenbyTable 6.4.3, becausetheformerhastwoelements(namely r and s), whereasthelatterhasfourelements(namely x, y, z and w).Nowconsidertheset Q = {E, F,G,H} withbinaryoperation ⊞ givenbyTable 6.4.8.Thereadercanverifythat (Q,⊞) isindeedanabeliangroup. Wenowcomparethegroups

(V,⊕) and (Q,⊞). Technicallytheyaredistinctgroups, havingdifferentelementsandoperationtables, butintuitivelytheyappeartobe“essentiallythesame.” Moreprecisely, observethatwe

Page 243: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

236 6. Groups

⊞ F G H E

F E H G F

G H E F G

H G F E H

E F G H E

Table6.4.8

canobtainTable 6.4.8 fromTable 6.4.3 bythefollowingsubstitutions:

x 7−→ F

y 7−→ G

z 7−→ H

w 7−→ E.

ThefactthatTable 6.4.8 isobtainedfromTable 6.4.3 bythissubstitutionmeansthatnotonlydotheelementsof V correspondtotheelementsofQ, buttheoperation ⊕ correspondstotheoperation⊞. Hence, wesaythat (V,⊕) and (Q,⊞) areessentiallythesameinthatthesecondgroupisobtainedfromthefirstsimplybyrenamingtheelementsoffirstgroupandrenamingthebinaryoperation. Wenote, moreover, that it isacceptable foroneoperation table tobeobtainedfromanotherbysubstitution, evenifonetablehastoberearranged. Forexample, if⊞ hadinitiallybeengivenbyTable 6.4.9, thattoowouldbeessentiallythesameas ⊕. Ifonegroupcanbeobtainedfromanotherbyrenamingtheelementsandthebinaryoperation, andpossiblyrearrangingtheoperationtable, thenwesaythetwogroupsare isomorphic.

⊞ E F G H

E E F G H

F F E H G

G G H E F

H H G F E

Table6.4.9

Clearly, twogroupswithdifferentnumbersofelementscannotbeisomorphic. Ontheotherhand, not all groups of the same size are isomorphic. For example, consider the set Z ={a, b, c, d} withbinaryoperation ⋆ givenbyTable 6.4.10.Again, thereadercanverifythat (Z, ⋆) isanabeliangroup. However, weclaimthat (Z, ⋆)

isnot isomorphic to (Q,⊞) (andhencenot to (V,⊕) either). Themostdirectway toshowthat (Q,⊞) and (Z, ⋆) arenotisomorphicwouldbetotryeverypossiblewayofrenamingtheelementsofQ as a, b, c and d, andthenobservingthatweneverobtainTable 6.4.10 for ⋆ fromTable 6.4.8 for ⊞, evenafterrearranging. Suchaverificationwouldbequitetedious. Themoreappealingwaytoverifythattwogroupsarenotisomorphicistofindsomepropertyofoneof

Page 244: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

6.5Subgroups 237

⋆ a b c d

a a b c d

b b c d a

c c d a b

d d a b c

Table6.4.10

thegroupsthatdoesnotholdfortheothergroup, butsuchthatthepropertywouldbepreservedbyrenamingandrearranginganoperationtable. Forexample, weobservethatinTable 6.4.10,whichhasidentityelement a, eachof a and c isitsowninverses, but b and d arenottheirowninverses(theyareinversesofeachother). Bycontrast, inTable 6.4.8, whichhasidentityelement E, weobservethateachof F, G, H and E isitsowninverses. Hence, in (Z, ⋆) twoelementsaretheirowninverses, whereasin (Q,⊞) allfourelementsaretheirowninverses. Itfollowsthatthesetwogroupscouldnotpossiblybeisomorphic.

Exercise 6.4.6. Isthegroup (Z4,+) isomorphictoeitherof (Z, ⋆) or (Q,⊞)? If (Z4,+)isisomorphictooneofthesetwogroups, demonstratethisfactbyshowinghowtorenametheelementsof (Z4,+) appropriately.

6.5 Subgroups

Oneinterestingphenomenoninthetheoryofgroupsistheideaofasubgroup. Considerthegroup (Z,+). Insidethesetofintegers Z isthesetofevenintegers

E = {. . . ,−6,−4,−2, 0, 2, 4, 6, . . .}.

Thesystem (E,+), isitselfagroup. (YouwereaskedtoverifythisfactinExercise 6.4.1 (1); thepointisthataddingtwoevennumbersgivesanevennumber, sotheclosurepropertyholds,andtheotherpropertiescanbeverifiedsimilarly.) Hence, weseethat (E,+) isbothagroupinitsownright, andit isalsocontainedinthelargergroup (Z,+). Wesaythat (E,+) isasubgroupof (Z,+). Ingeneral, acollectionofelementsofagroup forma subgroup if thiscollection, togetherwiththeoperationoftheoriginalgroup, formagroupintheirownright.Noteverycollectionofelementsofagroupsformsasubgroup. Forexample, considerthesetofoddnumbers, denoted O. Itturnsoutthat (O,+) isnotagroup, becausetheclosurepropertydoesnothold; toseethis, notethatthesumoftwooddnumbersisanevennumber, notanoddnumber.

Page 245: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

238 6. Groups

Exercise 6.5.1.

(1) Let T bethesetofallintegermultiplesof 3, thatis, theset

T = {. . . ,−9,−6,−3, 0, 3, 6, 9, . . .}.

Is (T,+) subgroupof (Z,+)?

(2) Let V bethesetofallperfectsquareintegersandtheirnegatives, thatis, theset

V = {. . . ,−16,−9,−4,−1, 0, 1, 4, 9, 16 . . .}.

Is (V,+) subgroupof (Z,+)?

It turnsout thatagroupmayhavemanysubgroups, or itmayhavevery few. Everygroupcontainswhatiscalledthe trivialsubgroup, whichisthesubgroupconsistingofnothingbuttheidentityelement. Thistrivialsubgrouphasonlyoneelementinit, whichmaymakeitseemlessthanexciting, butitisreallyavalidgroup. Forexample, thetrivialsubgroupof (Z,+) isjusttheoneelementset {0}, togetherwiththeoperationofaddition. Notethat 0 + 0 = 0, sotheclosurepropertyholdsforthistrivialgroup; theotherpropertiesofgroupscanalsobeverifiedfor {0}. Everygroupalsocontainsatleastoneothersubgroup, namelyitself. Wedidnotrequirethatasubgrouphavefewerelements thantheoriginalgroup. Ofcourse, whatwearereallyinterestedinaresubgroupsthatarenottheentireoriginalgroup. A subgroupthatisnotequaltotheoriginalgroupiscalleda propersubgroup. Thequestionnowbecomeswhetherthereareanyproper, non-trivialsubgroupsinagivengroup.Letusstartwiththeexampleof (Z8,+), theoperationtableforwhichisgiveninTable 6.3.1.

Wewanttofindasubcollectionofelementsof (Z8,+) thatformagroupbythemselves. Be-cause theoperation + isassociative forall theelementsof Z8, it iscertainlyassociative foranysubcollectionofelements. Asaresult, wewillnothavetoworryaboutassociativitywhenlookingforsubgroupsof (Z8,+), orsubgroupsofanythingelseforthatmatter. Ontheotherhand, wedohavetoworryaboutclosure, identityandinverses. Becausethesubcollectionsof(Z8,+) thatwearelookingformustsatisfytheidentityproperty, theymustcontain 0. So, weneedtofindasubcollectionof Z8 = {0, 1, 2, 3, 4, 5, 6, 7} thatcontains 0, andthatsatisfiestheclosureproperty, andsuchthatforanyelementofthesubcollection, itsinversewillbeinthesubcollection. A goodwaytotrytofindsuchasubcollectionistochoosesomeelements, andconstructtheoperationtable.Letustrythesubcollection A = {0, 1, 3, 7} of Z8, chosenrandomly. Theoperationtablefor

theseelements, showninTable 6.5.1, wasobtainedbydeletingalltheunnecessaryrowsandcolumnsoftheoperationtablefor (Z8,+).Aninspectionoftheoperationtablefor A revealsthat (A,+) isnotasubgroupof (Z8,+).

First, itdoesnotsatisfytheclosureproperty, because, forexample, weseethat 1 + 3 = 4, and

Page 246: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

6.5Subgroups 239

+ 0 1 3 7

0 0 1 3 7

1 1 2 4 0

3 3 4 6 2

7 7 0 2 6

Table6.5.1

yet 4 isnotinthesubcollection A. Ingeneral, ifalltheentriesintheoperationtableforthesubcollectionarethemselvesinthesubcollection, thentheclosurepropertyholds; conversely,ifsomeoftheentriesintheoperationtableforthesubcollectionarenotinthesubcollection,thentheclosurepropertydoesnothold. Further, notethat 3 doesnothaveaninversein A,becausethereisnothingin A which, whenaddedto 3, yields 0. (Theelement 3 doeshaveaninversein (Z8,+), namely 5, but 5 isnotin A.) So, ifwewanttofindsubgroups, weneedtochooseoursubcollectionsmorecarefully.Letusnowtrythesubcollection B = {0, 2, 4, 6}. Theoperationtablefor (B,+) isshownin

Table 6.5.2.

+ 0 2 4 6

0 0 2 4 6

2 2 4 6 0

4 4 6 0 2

6 6 0 2 4

Table6.5.2

Thistimethingslookmorepromising. Noticethatalltheelementsofthetablearefromthesubcollection B, sothattheclosurepropertyholds. Theelement 0 isinthecollection, sotheidentitypropertyholds. Asforinverses, notethat 0 isitsowninverse, that 4 isitsowninverse,andthat 2+ 6 = 0 and 6+ 2 = 0, sothat 2 and 6 areinversesofeachother. Hencetheinversespropertyholds. Becausetheassociativitypropertyisautomatic, asmentionedabove, weseethat (B,+) isindeedasubgroup.Arethereanyotherpropersubgroupsof (Z8,+)? Twothatareeasytofindare C = {0} (the

trivialsubgroup)and D = {0, 4}. Itisnothardtoverifythat C and D areindeedsubgroupsbyexaminingtheiroperationtables. Arethereanyothersubgroups? Wecouldexamineeachpossiblesubcollectionof Z8 aswedidsubcollection A above, butthatwouldbeverytedious.Ingeneral, itisnoteasytofindallsubgroupsofagivengroup, butthereisonefactthatis

veryusefulinreducingtheworkincheckingthevarioussubcollections. Thisresult, knownasLagrange’sTheorem, isasfollows. A proofofthistheoremisbeyondthescopeofthistext.

Proposition 6.5.1 (LaGrange’sTheorem). Supposethat (G, ∗) isafinitegroup. Supposethat Hisasubgroupof G. Thenthenumberofelementsin H dividesthenumberofelementsin G.

Page 247: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

240 6. Groups

Inotherwords, ifyouhaveafinitegroupandyouarelookingforsubgroups, youcanruleoutanysubcollectionwherethenumberofelementsdoesnotdividethenumberofelementsoftheoriginalgroup. However, justbecauseasubcolletiondoeshaveanacceptablenumberofelementsdoesnotmeanthatthesubcollectionisnecessarilyasubgroup.LetusapplyLagrange’sTheoremtothegroup (Z8,+). Thisgrouphas 8 elements. Theonly

numbersthatdivide 8 are 1, 2, 4 and 8. Wecanignore 1 and 8, becausetheonlysubgroupwithoneelementisthetrivialsubgroup {0}, andtheonlysubgroupwith 8 elementsisthewholeof(Z8,+). Hence, byLagrange’sTheorem, alltheproper, non-trivialsubgroupsof (Z8,+) musthave 2 or 4 elements. Inparticular, therecanbenosubgroupsof (Z8,+) witheither 3, 5, 6 or7 elements. Ontheotherhand, noteverysubcollectionof (Z8,+) with 2 or 4 elementsisasubgroup. Forexample, thesubcollection A discussedabovehad 4 elements, andyetwasnotasubgroup. Infact, itturnsoutthattherearenoothersubgroupsof (Z8,+) otherthan B, CandD givenabove(weomitthedetails, thoughitcouldbeverifieddirectly, albeittediously, bycheckingallsubcollectionsof Z8 witheither 2 or 4 elements).Next, letusfindallsubgroupsofthegroup (Z7,+). Thisgrouphas 7 elements. ByLagrange’s

Theoremanysubgroupwouldhave tohaveanumberofelements thatdivides 7. But 7 isaprimenumber; thatis, therearenonumbersthatdivide 7 exceptitselfand 1. A subgroupwith7 elementswouldjustbethewholegroup (Z7,+), andasubgroupwith 1 elementwouldhavetobethetrivialsubgroup. Inotherwords, weseefromLagrange’sTheoremthat (Z7,+) hasnoproper, non-trivialsubgroup. Thissamereasoningappliestoanyfinitegroupthathasaprimenumberofelements.

Exercise 6.5.2. Thegroup (Z36,+) has 36 elements. Howmanyelementscouldasubgroupof (Z36,+) possiblyhave?

Exercise 6.5.3. Which, if any, of the following subcollections of Z6 are subgroups of(Z6,+)? UseLagrange’sTheorem, andconstructoperationtablesaswedidforsubgroupsof (Z8,+).

(1) A = {0, 3};

(2) B = {0, 2};

(3) C = {0, 1, 4};

(4) D = {0, 2, 4}.

(5) E = {0, 1, 2, 3}.

Page 248: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

6.6SymmetryandGroups 241

Exercise 6.5.4. Let (M,⊙) beas inExercise 6.4.3 (3). Which, ifany, of the followingsubcollectionsof M aresubgroupsof (M,⊙)?

(1) E = {1, s};

(2) F = {1, a};

(3) C = {1, s, t};

(4) D = {1, a, b, c}.

Exercise 6.5.5. Findasmanypropersubgroupsasyoucanof (Z12,+). Theoperationtablefor (Z12,+) isgiveninTable 6.2.2.

6.6 SymmetryandGroups

Althoughthestudyofsymmetryappearstobe“geometric”innature, andthestudyofgroupsappearstobe“algebraic,” infactsomeofthesameideasappearinbothfields. Forexample,recallLeonardo’sTheorem(Proposition 5.4.5)aboutrosettepatterns, whichstatedthatthesym-metrygroupofarosettepatterniseitherCn forsomepositiveinteger n, orDn forsomepositiveinteger n. The Cn groupsshouldlookveryfamiliarafterourdiscussionoftheintegersmod n

inSection 6.3. Forexample, wesaw inTable 5.4.1 theoperationtablefor (C8, ·). Comparethatoperationtablewiththeoperationtablefor (Z8,+), showninTable 6.3.1. Itisseenfromthesetwooperationtablesthat (C8, ·) and (Z8,+) areisomorphicgroups; simplyreplace 1by 0, replace r by 1, replace r2 by 2, replace r3 by 3, etc. Thesameideashowsthatforeachpositiveinteger n, thegroup (Cn, ·) isisomorphictothegroup (Zn,+). Wethereforeseethatthesamebasicobjectcanariseinthestudyofgeometryandthestudyofalgebra. Geometryandalgebraare, wesee, notasunrelatedasonemightthinkafterseeingthetwofieldsstudiedratherseparatelyintypicalhighschoolcourses.Tounderstand the relationbetweensymmetryandalgebramoreexplicitly, recall the term

“symmetrygroup” thatwestartedusinginSection 5.1, thoughatthetimewesimplyusedthistermtorefertothecollectionofallsymmetriesofagivenobject. Nowthatwehavediscussedthegeneralconceptofgroups(whichisinherentlyanalgebraicconcept), weneedtoaskwhethera“symmetrygroup”aspreviouslydefinedisindeedagroupaswehavenowdefinedit. Theanswer, notsurprisinglygivenourchoiceofterminology, isyes.

Proposition 6.6.1. Supposethat K isaplanarobject. LetG denotethecollectionofallsymme-triesof K. Then (G, ◦) isagroup.

Page 249: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

242 6. Groups

Demonstration. TheclosurepropertiesfollowsfromProposition 5.1.2 (1). Theassociativeprop-ertyfollowsfromProposition 4.4.2 (2). Theidentityof (G, ◦) istheidentitysymmetry I. TheinversespropertiesfollowsfromProposition 5.1.2 (2).

Anotherexampleofasymmetrygroupthatalsoarisesnaturallyinalgebraisthefriezegroupf11, whichwasdiscussedinSection 5.5. Thefriezegroup f11 isthesymmetrygroupoffriezepatternsthathavenosymmetryotherthantranslation, forexample · · · FFFFF · · · . AsstatedinSection 5.5, wehave

f11 ={· · · t−3, t−2, t−1, 1, t, t2, t3, · · ·

},

where t denotesthesmallestpossibletranslationsymmetrytotherightofthefriezepattern. Wecanthinkof t as t1, and 1 as t0, andwecancombineanytwosymmetriesin f11 bytheruletatb = ta+b. Itcannowbeobservedthatthegroup (f11, ◦) isisomorphictothegroup (Z,+),where 1 in f11 correspondsto 0 in Z, where t correspondsto 1, where t2 correspondsto 2,where t3 correspondsto 3, etc.Observethatsymmetrygroupsarenotnecessarilyabelian, forexamplethesymmetrygroup

ofanequilateraltriangle. WementionthattheanalogofProposition 6.6.1 forthreedimensional(andhigher)objectsalsoholds(andforthesamereasons), butwewillnotgointodetailshere.Also, weshouldnotethatalthougheverysymmetrygroupofaplanarobjectisagroup, noteverygrouparisesasthesymmetrygroupofaplanarobject(seeExercise 6.6.1).

Exercise 6.6.1. [Used in This Section] Show that the group (W, ∗) given in Exer-cise 6.4.3 (4)isnotthesymmetrygroupofanyplanarobject. Theideaisasfollows. Giventhat W isfinite, if itwere the symmetrygroupofaplanarobject, itwouldhave tobethesymmetrygroupofa rosettepattern (because thoseareprecisely theplanarobjectswithfinitesymmetrygroups). ByLeonardo’sTheorem (Proposition 5.4.5), weknowthatanyrosettepatternhassymmetrygroupeither Cn or Dn forsomepositiveinteger n. Findreasonstoshowwhy (W, ∗) isnotisomorphictoanyofthe Cn or Dn groups.

Nowthatweknowthatsymmetrygroupsareindeedgroups, variousideasaboutgroupscanbeusedtogainabetterunderstandingofsymmetry. Indeed, mathematicallycompleteproofsofProposition 5.5.1 andProposition 5.6.2, inwhichwestatedtheclassificationoffriezepatternsandwallpaperpatternsrespectively, arebasedonsomeideasfromgrouptheorythatarebeyondthescopeofthistext.Oneconceptfromthetheoryofgroupsthatcanbeappliedtosymmetrygroupsisthenotion

ofsubgroups. (Indeed, subgroupsplayanimportantroleontheproofsreferredtointhepreviousparagraph.) Giventhesymmetrygroupofanobject, wecanaskwhichcollectionsofsymmetriesoftheobjectformsubgroups. Forexample, letusexaminethesymmetrygroupofthesquare,theoperationtableforwhichweseeinTable 6.6.1.

Page 250: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

6.6SymmetryandGroups 243

· 1 r r2 r3 m mr mr2 mr3

1 1 r r2 r3 m mr mr2 mr3

r r r2 r3 1 mr3 m mr mr2

r2 r2 r3 1 r mr2 mr3 m mr

r3 r3 1 r r2 mr mr2 mr3 m

m m mr mr2 mr3 1 r r2 r3

mr mr mr2 mr3 m r3 1 r r2

mr2 mr2 mr3 m mr r2 r3 1 r

mr3 mr3 m mr mr2 r r2 r3 1

Table6.6.1

AnexaminationofTable 6.6.1 showsthatthisgrouphasninepropersubgroups, asfollows:

{1},

{1, r2},

{1,m},

{1,mr},

{1,mr2},

{1,mr3},

{1, r, r2, r3},

{1, r2,m,mr2},

{1, r2,mr,mr3}.

Wefoundthesesubgroupsbytrialanderror, thoughwemadeuseofLaGrange’sTheorem, whichsaidthatweonlyneededtolookforsubgroupswith 1, 2 or 4 elements.

Exercise 6.6.2. Foreachofthefollowingobjects, findallpropersubgroupsofitssymmetrygroup.

(1) Theequilateraltriangle.

(2) Theregularpentagon.

Are thereanygeneral rules forfinding subgroupsof symmetrygroups? Forexample, doesthecollectionofalltranslationsymmetriesformasubgroup? Whataboutthecollectionofallrotationsymmetries? Whataboutthecollectionofallrotationandallreflectionsymmetries?Thesecondandthirdofthesecollectionsofsymmetriesarenotalwayssubgroups(andexamplewillbegivenshortly), butthefirstalwaysis, asshownbythefollowingproposition.

Page 251: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

244 6. Groups

Proposition 6.6.2. Supposethat K isaplanarobject. LetG denotethecollectionofallsymme-triesof K. Thenthefollowingsubcollectionsof G aresubgroupsof (G, ◦):

1. Alltranslationsymmetriesof A;

2. Alltranslationandrotationsymmetriesof A.

Demonstration.

(1). Let T denote thecollectionofall translationsymmetriesof K. WeknowfromPropo-sition 4.6.2 that thecompositionofanytwotranslations isa translation, andweknowfromProposition 5.1.2 (1)thatthecompositionofanytwosymmetriesofanobjectisasymmetry.Puttingthesetwofactstogether, wededucethat (T, ◦) satisfiestheclosureproperty. Theasso-ciativepropertyfor (T, ◦) isautomaticallytrue, becauseitistruefor ◦ ingeneral(seePropo-sition 4.4.2 (2)). Next, wecanthinkoftheidentityisometry I astranslationby 0, andso I isin T . Therefore (T, ◦) satisfiestheidentityproperty. WededucefromProposition 4.6.5 (2)thattheinverseofanytranslationisatranslation, andweknowfromProposition 5.1.2 (2)thattheinverseofanysymmetryofanobjectisasymmetry. Puttingthesetwofactstogether, wededucethat (T, ◦) satisfiestheinversesproperty. Alltold, weseethat (T, ◦) isagroupinitsownright,andhenceitisasubgroupof (G, ◦).

(2). ThispartisverysimilartoPart (1), andthedetailsarelefttothereader.

Theabovepropositiongivestwoverysimpletypesofsubgroupsofsymmetrygroups, thoughthereareother subgroupsaswell. Thecollectionof all rotation symmetries isnot alwaysasubgroup—itdependsupontheobject. Forarosettepattern, forexample, thecollectionofallrotationsymmetriesisasubgroup; thereaderisaskedtosupplythedetailsinExercise 6.6.4.Bycontrast, forafriezepatternthathashalfturnrotationsymmetry, thecollectionofallrotationsymmetriesisnotasubgroup, becausethecompositionoftwohalfturnrotationsaboutdifferentcentersofrotationisatranslation, andthereforetheclosurepropertyisnotsatisfied.

Exercise 6.6.3. Iseachofthefollowingcollectionofsymmetriesalwaysasubgroupofthesymmetrygroupofaplanarobject. Explainyouranswers.

(1) Thecollectionofallreflectionsymmetries.

(2) Thecollectionofalltranslationandallhalfturnrotationsymmetries.

(3) Thecollectionofallrotationandallreflectionsymmetries.

Exercise 6.6.4. [UsedinThisSection] Showthatforarosettepattern, thecollectionofallrotationsymmetriesisasubgroupofthesymmetrygroup.

Page 252: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

SuggestionsforFurtherReading

Therearemanyexcellenttextsthatyoumightwishtoreadtofurtheryourstudyofthematerialdiscussedinthisbook(thoughsomeofthesetextsshouldbeapproachedwithanunderstandingof their strengthsandweaknesses). What follows isavery idiosyncraticallyannotated listofvariousbooksyoumightconsiderforfurtherreading, arrangedbythechaptersinthistext.

GeometryBasics

• Euclid, “TheElements”(3vols.), Dover, 1956.

Oneof thegreatestworksofWesternCivilization, andoneof themore tediousaswell. It’sunquestionablytruethatourliveswouldbeverydifferenttodayifthisbookhadnotbeenwritten,butthat’snoreasontoattempttoreadthewholething. ItiswellworthknowingwhatEuclidwastryingtodo, howhedidit, andwhetherornothesucceeded, butitdoesn’ttakeallthreevolumestogetthat. Lookitover, inanycase. Thisusedtoberequiredreadingforeverypersonclaimingtobeeducated. Unfortunately, lessEuclidinschoolshasnotbeenreplacedbyotherkindsofgeometry.

• RobinHartshorne, “Geometry: EuclidandBeyond,” Springer-Verlag, NewYork, 2000.

OneofthemostimpressivemathematicstextbooksI haverecentlyseen. Thistext, meantasacompaniontoEuclid’s“TheElements,” doesnotsummarizeEuclid, butratherexplainswhathisconceptualunderstandingwasandhowitdiffersfromourcontemporaryapproach, andshowshowEuclidcanbebroughtmathematicallyuptodate. Thoughmostofthebookisaimedatanaudienceofjuniororseniorlevelcollegemathematicsmajors(and, inparticular, makesuseofabstractalgebra), muchofthediscussionofEuclideangeometryinthefirsttwochaptersis

Page 253: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

246 SuggestionsforFurtherReading

accessibletoabroaderaudience, andwellworththepriceofhavingtoskipoversometechni-calities. HartshornehasdoneanastonishingjoboffiguringEuclidout, makingthisasubstantialbookwithequallysubstantialrewards.

Polygons

• MarthaBoles&RochelleNewman, “TheGolden-Relationship, Book1,” PythagoreanPress, 1987.

A workbook that actually has you get your hands dirtywith geometric constructions usingstraightedgeandcompass. InbetweentheproblemsandprojectsareveryreadablediscussionsoftheGoldenRatio, Fibonaccinumbersandthelike. Somereadersmayfindthephilosophicalexpositionabitflaky, butit’sworthwadingthroughitforthesakeofthehands-onapproach.Besides, howcanyougowrongwithabookthathasarecipefor“FibonacciFudge”?

• TheodoreA.Cook, “TheCurvesofLife,” Dover, 1914.

Morethanyoueverwantedtoknowaboutspirals, fromrams’hornstospiralstaircases. Thefirstandlastfewchaptersareworthreading; thestuffinbetween(whichisafairbit)makesforfunbrowsing.

• MatilaGhyka, “TheGeometryofArtandLife,” Dover, 1977.

Inspiteof thebroadtitle, mostof thebookfocusesontheGoldenRatioandrelatedtopics.Someofthematerialisgood, thoughabittechnical; otherpartsofthebookarespeculative(toputitpolitely), concerningvariousesoterictheoriestheauthorappearstobelieve. Interestingreadingifyoucandealwithit.

• H.E.Huntley, “TheDivineProportion,” Dover, 1970.

A rhapsodyabouttheGoldenRatio(a.k.a.theDivineProportion), andbeautyinmathematicsingeneral. Someofthematerialisphilosophical, somefairlytechnical. It’sworthpickingbitsandpiecesoutofthisbook.

• RobertLawlor, “SacredGeometry,” Crossroad, 1982.

Greatpictures, andallkindsofesoterictheories—withlotsofgeometricalconstructionsthrownin. Youwillhavetodecideforyourselfwhat’sgoingonhere, becauseI amnotsure.

Page 254: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

SuggestionsforFurtherReading 247

Polyhedra

• PeterR.Cromwell, “Polyhedra,” CambridgeUniversityPress, Cambridge, 1997.

A lovelytextforthenon-specialist. Thereisawealthofhistoricalinformationonthestudyofpolyhedra, wonderfulillustrations, andanexcellentchoiceoftopics, rangingfromsuchstan-dardsasthePlatonicsolidstolesswellknown(toapopularaudience)gemssuchasDescartes’TheoremonangledefectsandConnelly’sflexiblesphere. Theonerealdrawbackisthelackofexercisesforthereader, devaluingthisbookasatextbook, butwellworthreadingnonetheless.

• MarjorieSenechalandGeorgeFleck, “ShapingSpace,” Birkhäuser, Boston, 1988.

Thisbookistheproceedingsfromaconferenceonvariousaspectsofpolyhedraandrelatedtopics, whichmightsounddulluntilyoutakealookatit—lookingthroughthisbookmakesmewishthatI hadbeenatthatconference! Thoughafewofthearticlesarequitetechnical, manyareaimedatageneralaudience, includinganicehistoryofthestudyofpolyhedra. Thebookisverywellillustrated. I wouldn’tnecessarilyrecommendbuyingthisoneunlessyouareahardcorepolyhedrafan, butitiswellworthabrowse.

HigherDimensions

• EdwinA.Abbott, “Flatland,” Dover, 1952(orothereditions; alsoavailableontheweb).

A minorclassic, withheavyemphasisonbothwords. “Flatland”recountstheadventuresofASQUARE,wholivesina2dimensionalworld. Thefirstpartofthebook, asatireoftheVictoriansocietyinwhichAbbottlived, describestheracistandsexistsocialorderinwhichourherolives.ThesecondpartofthebookdescribesA SQUARE’S encounterwithlowerandhigherdimen-sionalbeings, thusintroducingthereadertosomeimportantideasaboutthefourthdimensionandhigher. Neithergreatwritingnorbrilliantmathematics, “Flatland”straddlesthefencesowellthatitsplaceinthecanonisassured. (Becarefulwiththeintroductionstovariouseditionsof“Flatland”—theonebyBaneshHoffmannintheDoveredition, andtheonebyIsaacAsimovintheHarperCollinsedition, bothentirelymissthepointofthebook.)

• DionysBurger, “Sphereland,” PerennialLibrary(Harper&Row), 1965.

A modern sequel to “Flatland,” introducingmanymathematical ideas recognizedas impor-tantsincetheadventofEinstein’stheoryofrelativity(whichpost-dates“Flatland”by25years).“Sphereland”waswrittenbyamathematician, whichshowsinboththewellchosenmathemat-icaltopics, andthelessthangrippingnarrativestyle. Thoughmathematicallymoresubstantialthan“Flatland,” itlacksthelatter’ssatiricalbite.

• RudyRucker, “TheFourthDimension: aGuidedTouroftheHigherUniverses,” HoughtonMifflin, 1984.

Page 255: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

248 SuggestionsforFurtherReading

A funbookcoveringalotofseriousmaterial, andsomeratheresotericstuff toboot. Ruckermakeshigherdimensions, relativityandgeometryenjoyableandsurprisinginawaynooneelsecan. Lotsofgoodproblemsandpuzzles, andgreatquotesandillustrations. Cometoyourownconclusionsaboutthemorespeculativestuff—I’msureRudywouldn’thaveitanyotherway.

• Thomas F. Banchoff, “Beyond theThird Dimension,” ScientificAmerican Library, NY1990.

I wishI hadwrittenthisone, thoughitisjustaswellthatI didn’t, becauseitishardtoimaginethatanyoneelsewouldhavecomeclose todoing itaswellasBanchoff (aserious researchmathematicianwithagenuineinterestinreachingabroadaudience). Thisbookissuchacare-fullythoughtoutandbeautifullyillustratedtreatmentofhigherdimensionsthatitcouldmakeafinecoffeetablebook, thoughdon’tletthatfoolyou—thisbookdiscussesseriousstuff. Theexcellentchoiceof topics range fromunfoldingand slicinghigherdimensionalcubes (withgreatcomputergraphics)toperspectiveandscaling. Afterreadingtheclassics“Flatland”and“Sphereland,” thiswouldbeanexcellentnextplacetowhichtoturnifyouwanttoknowmoreabouthigherdimensions.

• A.K.Dewdney, “ThePlaniverse,” PoseidonPress, 1984.

A verydetailedexplorationofwhata2-dimensionalworldcouldreallybelike, wrappedinasomewhatsillynarrative. Theemphasisisnotonmathematics(asinFlatland), butonphysics,biologyandtechnologyin2dimensions. Whatwoulda2-dimensionalsailboatlooklike? Howwould2-dimensionalintestineskeepfromsplittingacreatureintwo? It’sallquitefun, thoughabitmorethanyoumightwanttoknow.

• MichioKaku, “Hyperspace,” Anchor, 1994.

A rhapsodyaboutthelatesttheoriesofphysics(forexample, stringtheory, paralleluniverses,wormholesandthelike), andtheirrelationtomathematics, especiallythestudyofhigherdi-mensions. Writtenbyaphysicist, ithastheadvantageofaninsider’sviewofthelatestphysicaltheories, andthedisadvantageofaphysicistsviewofmathematics—whichtothismathemati-cianseemsabitdistorted. Thefirstfewchaptersonhigherdimensionscontainsomeinterestinghistoricaldiscussionoftheriseofpopularinterestinthesubject, butthemathematicalideascanbefoundtreatedbetterelsewhere. Ifyouwanttolearnaboutphysics, thenbyallmeansreadthisbook.

• CharlesH.Hinton, “SpeculationsontheFourthDimension,” Dover, 1980.

Probablyamustforhard-core4thdimensionfans, butnotnecessarilyforanyoneelse. Hinton,amathematicianobsessedwiththe4thdimension, wroteavarietyofessaysand“Flatland”stylestoriesthathavebeenexcerptedandcollectedbyRudyRuckerinthisvolume. Thefictionat-temptstobemorescientificthan“Flatland”(havingadifferentsortof2dimensionalworld, andanticipatingthelaterbook“ThePlaniverse”), butthenarrativeistedious, andimbuedwithHin-ton’smysticalideas. Theessaysarefineinpart, but, aswiththefiction, thereisbetterelsewhere.

Page 256: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

SuggestionsforFurtherReading 249

SymmetryofPlanarObjectsandOrnamentalPatterns

• HermanWeyl, “Symmetry,” Princeton, 1952.

A classicbyoneofthegreatmathematiciansofthe20thcentury. Thecaliberofthephilosophicalandhistoricaldiscussionsreflectthestatureoftheauthor. Weyldoeslapseintosomeoverlytechnicalpassages, buttheyarewellworthwadingthroughfortherest. Greatillustrationsaswell.

• Farmer, David, “GroupsandSymmetry,” AMS,1996

Theideaisofthisbookisgreat: anexpositionoflovelymathematicaltopicsincludingsymmetry,ornamentalpatternsandgroups, aimedatnon-mathematicians, donenotbylecturingbutbybriefdiscussioncombinedwithlotsof‘tasks’forthereadertoexplore. Unfortunately, thewritingisattimesawkward, thechoiceofterminologyisonoccasionunfortunate, theorganizationispoorandthe‘tasks’varyfromtrivialtoextremelyhardwithnowarning. A fewextrarevisionswouldhavehelped. A well-meaningbookthatdoesnotquiteliveuptoitspromise.

• GeorgeE.Martin, “TransformationGeometry,” SpringerVerlag, 1982.

A verytechnicalbookappropriateforpeoplewithatminimumsomeCalculuslevelmathemat-ics(thoughCalculusperseisnotrequired). Thebookhasaverynicetreatmentoffriezeandwallpapergroups, tilings, andprojectivegeometry. Thisonedemandsseriousstudy.

Tilings

• BrankoGrünbaum&G.C.Shephard, “TilingsandPatterns,” W.H.Freeman, NY,1987.

Theultimatereferenceonthemathematicaltheoryoftilingsandotherplanarornamentalpat-terns, thismassivebookwillsurelybethedefinitivesourceintheforeseeablefuture. Thoughmostofthetextismathematicallysophisticated, thelovelyintroductionisaccessibletoall, andthepicturesandfiguresthroughoutthetextaregreat. I wouldnotrecommendbuyingthisoneunlessyouareplanningaseriousstudyofthesubject, butitiswellworthlookingthrough.

Page 257: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

250 SuggestionsforFurtherReading

Page 258: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

Bibliography

[Bar01] ArthurBaragar, ASurveyofClassicalandModernGeometries, withComputerActiv-ities, PrenticeHall, UpperSaddleRiver, NJ, 2001.

[Euc56] Euclid, TheThirteenBooksoftheElements, trans. ThomasL. Heath, Dover, NewYork,1956.

[Fed82] P. J. Federico, DescartesonPolyhedra, Springer-Verlag, NewYork, 1982.

[Gre93] MarvinJ. Greenberg, EuclideanandNon-EuclideanGeometries, 3rded., W. H. Free-man, NewYork, 1993.

[Har00] RobinHartshorne, Geometry: EuclidandBeyond, Springer-Verlag, NewYork, 2000.

[Joh66] NormanW. Johnson, Convexpolyhedrawithregularfaces, Canad. J. Math. 18 (1966),169–200.

[Jus61] NortonJuster, ThePhantomTollbooth, Epstein&Carroll, NewYork, 1961.

[Loo40] ElishaLoomis, ThePythagoreanProposition, EdwardsBrothers, AnnArbor, 1940.

[Mar75] GeorgeMartin, TheFoundationsofGeometryandtheNon-EuclideanPlane, Springer-Verlag, NewYork, 1975.

[Mar82] , TransformationGeometry: An Introduction to Symmetry, Springer-Verlag,NewYork, 1982.

[Mey99] WalterMeyer, GeometryanditsApplications, AcademicPress, SanDiego, 1999.

Page 259: POLYGONS, POLYHEDRA, PATTERNS & BEYOND

252 Bibliography

[Sen90] MarjorieSenechal, CrystallineSymmetries: AnInformalMathematicalIntroduction,AdamHilger, Bristol, 1990.

[Tru87] RichardTrudeau, TheNon-EuclideanRevolution, Birkhäuser, Boston, 1987.

[WW98] EdwardWallaceandStephenWest, RoadstoGeometry, 2nded., PrenticeHall, UpperSaddleRiver, NJ, 1998.

[Wey52] HermanWeyl, Symmetry, PrincetonUniversityPress, Princeton, 1952.