plastic bending of steel

Upload: john-diete-koki

Post on 03-Jun-2018

226 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 Plastic Bending of steel

    1/12

    Plastic Bending of Steel

    Page | 1

    Title of Experiment: Plastic Bending of Steel

    Aim of Experiment: To compare plastic bending moment from theoretical and experiment of

    steel sections under load for three different support arrangements.

    Parameters:

    Yield stress of Steel: 275N/mm2(Structural AST!A"#$

    Young%s odulus& 2'' x '"N/mm2(Structural AST!A"#$

    Support Arrangement 1: Simply Supported Steel Beam with Point load mid-span

    Beam geometric properties: )ength * +#'mm, b * 2-.+#mm, d * 5.-mm

    istance bet0een supports * 5'mm

    Second oment of Area (1$ *

    ..

    434.19

    285 285

    ?

    ?

    Mp Mp

    ?

    A B

    C

    A B

    C

    D

    D

    Fig.1: showing plastic bending moment and plastic moment mechanism.

  • 8/12/2019 Plastic Bending of steel

    2/12

    Plastic Bending of Steel

    Page | 2

    inges are formed at 3 0hich is the position 0here the load acts directl4 on, moments

    formed at that position is the plastic moment. The deformation from point load mid!span

    is

    ,

    66. (A$ !"#$, %&&%'

    Soling to get pfrom the plastic mechanism diagram aboe

    (ADC* ()*+(Similar triangles$

    Assuming the )ength of the steel bar as ),

    A8 * ), A * )/2, 3 *

    9rom :irtual ;or< Theorem

    ;or< done outside b4 force and displacement * ;or< done inside b4 plastic hinge

    9orce x distance * oment x rotation

    - / -666666666666 ($

    ;here

    "#666666666666. (2$

    ;here the alue of is er4 small thus tan

    =>uation ($ then becomes

    0

    - / -6666666666666666 ("$

    0

    %-666666666666666666666. (-$

    4-66666666666666666666 (5$

    iide both sides of the e>uation b4

    4-666666666666666666666... (#$

    -66666666666666666666666 (7$

    Soling theoreticall4 for p

    oment * Yield stress ? Section odulus

    - -

    ;here - %2&and - 5

    . .5

    %19.3&6

    - %2&

    %19.33 247%2

    @utting alue of pinto e>uation # to get @

  • 8/12/2019 Plastic Bending of steel

    3/12

    Plastic Bending of Steel

    Page | 3

    29& 4 247%2

    381.8

    @utting alue of @ into e>uation A to get the displacement at that theoretical load

    381.8 29&6

    4 7 % & & 1 &6 434.19 17.33

    Soling for p from aximum )oad from experiment (ax. )oad * "#-N and %4.422$

    -

    4

    34 29&

    4 239&

    p using experimental alue * 5"#'Nmm, p(theoreticall4$ * 5-+25Nmm

    @ercentage difference bet0een the t0o alues is sho0n belo0

    : ;#? 247%2 @ 239&239&

    1&& %.1%:

    Fig. 2: showing load-displacement graphs from experimental and theoretical methods

    Experimental

    theoretical

  • 8/12/2019 Plastic Bending of steel

    4/12

    Plastic Bending of Steel

    Page | 4

    Support Arrangement 2: Propped antile!er Steel Beam

    Beam geometric properties: )ength * +#'mm, b * 2-.+'mm, d * 5.-mm

    istance bet0een supports * 5'mm

    Second oment of Area (1$ *

    .A.

    433.14

    285 285

    Mp Mp

    A B

    C

    A B

    C

    D

    D

    d

    P

    Mp

    Fig.3; showing plastic bending moment and plastic moment mechanism diagrams for a propped cantilever steel

    beam

    inges are formed at point A (0here there is a fixed support$ and @oint 3 0here the load

    acts directl4 on

    eflection at mid!span due to )oad 'B

    B 66666666(A$ ()eet Bang, 2''2$.

    ;hile the @oint )oad, B

    B 666666666666666.....(8$

    )et%s assume that the steel beam length e>uals )

  • 8/12/2019 Plastic Bending of steel

    5/12

    Plastic Bending of Steel

    Page | 5

    Soling for p for the propped cantileer beam aboe using the irtual 0or< method as

    done preiousl4

    - / - / -666666666666 ($

    ;here

    "#C666666666666. (2$

    ;here the alue of is er4 small thus tan

    =>uation ($ then becomes

    0

    - / - / -66666666666.. ("$

    0

    3-666666666666666666666. (-$

    -66666666666666666666 (5$

    iide both sides of the e>uation b4

    -666666666666666666666... (#$

    -66666666666666666666666 (7$

    Soling theoreticall4 for p

    oment * Yield stress ? Section odulus

    - -

    ;here - %2&and - 5

    .A .5

    %17.86

    - %2&

    %17.83 249&

    @utting alue of pinto e>uation # to get @

    29& 249&

    22.18

    @utting alue of @ into e>uation A to get the displacement at that theoretical load

    8 22.18 29&6

    87 %&& 1&6 433.14 1%.&%

    Soling for p from aximum )oad from experiment (ax. )oad * 5'N at 27.81%$

    -

    29& 29&

    27&1

    p using experimental alue * 5+'#Nmm, p(theoreticall4$ * 5-#'Nmm

    @ercentage difference bet0een the t0o alues is sho0n belo0

  • 8/12/2019 Plastic Bending of steel

    6/12

    Plastic Bending of Steel

    Page | 6

    : ;#? 27&18 @ 249&

    249& 1&& .&7:

    Fig 3: showing graph of experimental and theoretical vales for load vs. displacement for a propped cantilever

    steel beam.

    Experiment

    theoretical

  • 8/12/2019 Plastic Bending of steel

    7/12

    Plastic Bending of Steel

    Page | 7

    Support Arrangement ": Steel #eam with point load at mid-span with ends fully

    fixed

    Beam geometric properties: )ength * +#'mm, b * 25.'mm, d * #.'+mm

    istance bet0een supports * 5'mm

    Second oment of Area (1$ *

    .A.A

    48&.11

    285 285

    ?

    ?

    Mp Mp

    ?

    A B

    C

    D

    Mp Mp

    ?d

    Fig.5: showing plastic moment bending diagram and mechanism for a fully fixed Steel beam

    )et%s assume that the steel beam length e>uals )

    eflection of the full4 fixed beam

    inges are formed at point A, 8 (0here there are fixed supports$ and @oint 3 0here theload acts directl4 on

  • 8/12/2019 Plastic Bending of steel

    8/12

    Plastic Bending of Steel

    Page | 8

    eflection at mid!span due to )oad '

    666666 (A$ ()eet Bang, 2''2$

    ;hile the @oint )oad,

    66666666666666 (8$

    )et%s assume that the steel beam length e>uals )

    Soling for p for the propped cantileer beam aboe using the irtual 0or< method as

    done preiousl4

    - / - / - / -666666666666 ($

    ;here

    "#666666666666. (2$

    ;here the alue of is er4 small thus tan

    =>uation ($ then becomes

    0

    - / - / - / -66666666666.. ("$

    0

    4-666666666666666666666. (-$

    7-66666666666666666666 (5$

    iide both sides of the e>uation b4

    7-666666666666666666666... (#$

    -66666666666666666666666 (7$

    Soling theoreticall4 for p

    oment * Yield stress ? Section odulus

    - -

    ;here - %2&and - 5

    .A .A5

    %31.96

    - %2&

    %31.93 2899&

    @utting alue of pinto e>uation # to get @

    29& 7 249&

    841.2

    @utting alue of @ into e>uation A to get the displacement at that theoretical load

    841.2 29&

    6

    19% %&& 1&6 48&.11 7.44

  • 8/12/2019 Plastic Bending of steel

    9/12

    Plastic Bending of Steel

    Page | 9

    Soling for p from aximum )oad from experiment (ax. )oad * '2+N at 9.431$

    -

    7

    1&%7 29&

    7 87212

    p using experimental alue * 7+55Nmm, p(theoreticall4$ * 57'Nmm

    @ercentage difference bet0een the t0o alues is sho0n belo0

    : ;#? 87212 @ 2899&

    2899& 1&& 32.4&:

    Fig !: "raph showing plastic moments for fll# fixed steel beam from experimental and theoretical methods

    0

    200

    400

    600

    800

    1000

    1200

    0.000 10.000 20.000 30.000 40.000 50.000 60.000 70.000 80.000 90.000

    Experimental

    theoretical

  • 8/12/2019 Plastic Bending of steel

    10/12

    Plastic Bending of Steel

    Page | 10

    $iscussion

    @lastic design anal4sis is premised on the assumption that an ultimate load is reached

    before secondar4 effects such as member instabilit4 causes member failure( 3laruired number of plastic hinges that are needed to transform the structure into a

    mechanism(geometricall4 unstable$ must be in place and further load at this point 0ill

    cause collapse.

    1t is expected that alues from experiments should corroborate alues from theor4

    because experiments are used to alidate h4pothesis to become theories. 8ased on this

    0e can relate it to our test, for the stcondition, 0hich is a simpl4 supported 0hich is a

    staticall4 determinate beam, re>uires the formation of Dust one plastic hinge (0hich in

    this case is formed at the point of loading$ 0hich should occur 0hen the moment at mid!

    span reaches the plastic moment. The oment of plasticit4 gotten from experimental is

    less than theoretical alues b4 2E, this could hae been as a result of the ):T not being

    at the centre bet0een supports thus not tauiring more than one plastic

    hinge to form a mechanism, the plastic moment from theoretical is #.'+E but test cannot

    be relied upon because the ):T moed out of the steel beam 0hile force 0as still loaded

    on the steel member mauiring larger

    load.

    %ndustry Applications of Plastic $esign & Analysis

    1t is used in the anal4sis and design of staticall4 determinate framed structures 1t is used in the design of steel structures 1t brings cost!saings due to lighter members from anal4sis and design compared

    to the elastic method

  • 8/12/2019 Plastic Bending of steel

    11/12

    Plastic Bending of Steel

    Page | 11

    esigning a member b4 plastic anal4sis gies the member a resere momentcapacit4 0hen the member reaches 4ield capacit4 as signified b4 the shape factor

    of the member

    ;ith plastic anal4sis a structure can be designed to form a predetermined 4ieldmechanism at ultimate load leel to create possible scenarios 0here the response

    of the member to such situations are

  • 8/12/2019 Plastic Bending of steel

    12/12

    Plastic Bending of Steel

    Page | 12