plantwide_control.ppt

Upload: ataide-neto

Post on 02-Jun-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 plantwide_control.ppt

    1/72

    1

    PLANTWIDE CONTROL

    How to design the control system for acomplete plant in a systematic manner

    Sigurd Skogestad

    Department of Chemical Engineering

    Norwegian University of Science and Tecnology (NTNU)

    Trondheim, Norway

    Petrobras, March 2010

  • 8/10/2019 plantwide_control.ppt

    2/72

    2

    Summary.

    Systematic procedure for plantwide control

    1. Start top-down with economics: Optimize steady-state operation

    Identify active constraints (should normally be tightly controlled tomaxize profit)

    For remaining degrees of freedom: Select controlled variables cbased onself-optimizing control.

    2. Regulatory control I: Decide on how to move mass through the plant:

    Where to set the throughput (usually: feed) Propose local-consistent inventory (level) control structure.

    3. Regulatory control II: Bottom-up stabilization of the plant Control variables to stop drift (sensitive temperatures, pressures, ....)

    Pair variables to avoid interaction and saturation

    4. Finally: make link between top-down and bottom up.

    Advanced control system (MPC):

    CVs: Active constraints and self-optimizing economic variables +

    look after variables in layer below (e.g., avoid saturation)

    MVs: Setpoints to regulatory control layer.

    Coordinates within units and possibly between units

    cs

  • 8/10/2019 plantwide_control.ppt

    3/72

    3

    Summary and references

    The following paper summarizes the procedure:

    S. Skogestad, ``Control structure design for complete chemical plants'',

    Computers and Chemical Engineering, 28(1-2), 219-234 (2004).

    There are many approaches to plantwide control as discussed in thefollowing review paper:

    T. Larsson and S. Skogestad, ``Plantwide control: A review and a new

    design procedure''Modeling, Identification and Control, 21, 209-240

    (2000).

    http://www.nt.ntnu.no/users/skoge/publications/2004/control_structure_design_ccehttp://www.nt.ntnu.no/users/skoge/publications/2000/plantwide_review3/http://www.nt.ntnu.no/users/skoge/publications/2000/plantwide_review3/http://www.nt.ntnu.no/users/skoge/publications/2000/plantwide_review3/http://www.nt.ntnu.no/users/skoge/publications/2000/plantwide_review3/http://www.nt.ntnu.no/users/skoge/publications/2004/control_structure_design_cce
  • 8/10/2019 plantwide_control.ppt

    4/72

    4

    S. Skogestad ``Plantwide control: the search for the self-optimizing control structure'',J. Proc. Control, 10, 487-507 (2000).

    S. Skogestad, ``Self-optimizing control: the missing link between steady-state optimization and control'',Comp.Chem.Engng., 24, 569-575 (2000).

    I.J. Halvorsen, M. Serra and S. Skogestad, ``Evaluation of self-optimising control structures for an integrated Petlyuk distillation column'',Hung. J.of Ind.Chem., 28, 11-15 (2000).

    T. Larsson, K. Hestetun, E. Hovland, and S. Skogestad, ``Self-Optimizing Control of a Large-Scale Plant: The Tennessee Eastman Process'',Ind.Eng. Chem. Res., 40 (22), 4889-4901 (2001).

    K.L. Wu, C.C. Yu, W.L. Luyben and S. Skogestad, ``Reactor/separator processes with recycles-2. Design for composition control'', Comp. Chem.Engng., 27 (3), 401-421 (2003).

    T. Larsson, M.S. Govatsmark, S. Skogestad, and C.C. Yu, ``Control structure selection for reactor, separator and recycle processes'',Ind. Eng.Chem. Res., 42 (6), 1225-1234 (2003).

    A. Faanes and S. Skogestad, ``Buffer Tank Design for Acceptable Control Performance'', Ind. Eng. Chem. Res., 42 (10), 2198-2208 (2003).

    I.J. Halvorsen, S. Skogestad, J.C. Morud and V. Alstad, ``Optimal selection of controlled variables'',Ind. Eng. Chem. Res., 42 (14), 3273-3284 (2003).

    A. Faanes and S. Skogestad, ``pH-neutralization: integrated process and control design'', Computers and Chemical Engineering, 28 (8), 1475-1487(2004).

    S. Skogestad, ``Near-optimal operation by self-optimizing control: From process control to marathon running and business systems'', Computers andChemical Eng

    ineering, 29 (1), 127-137 (2004).

    E.S. Hori, S. Skogestad and V. Alstad, ``Perfect steady-state indirect control'',Ind.Eng.Chem.Res, 44 (4), 863-867 (2005).

    M.S. Govatsmark and S. Skogestad, ``Selection of controlled variables and robust setpoints'',Ind.Eng.Chem.Res, 44 (7), 2207-2217 (2005).

    V. Alstad and S. Skogestad, ``Null Space Method for Selecting Optimal Measurement Combinations as Controlled Variables'',Ind.Eng.Chem.Res,

    46 (3), 846-853 (2007). S. Skogestad, ``The dos and don'ts of distillation columns control'', Chemical Engineering Research and Design (Trans IChemE, Part A) , 85 (A1), 13-

    23 (2007).

    E.S. Hori and S. Skogestad, ``Selection of control structure and temperature location for two-product distillation columns'', Chemical EngineeringResearch and Design (Trans

    IChemE, Part A), 85 (A3), 293-306 (2007).

    A.C.B. Araujo, M. Govatsmark and S. Skogestad, ``Application of plantwide control to the HDA process. I Steady-state and self-optimizingcontrol'', Control Engineering Practice, 15, 1222-1237 (2007).

    A.C.B. Araujo, E.S. Hori and S. Skogestad, ``Application of plantwide control to the HDA process. Part II Regulatory control'', Ind.Eng.Chem.Res,46 (15), 5159-5174 (2007).

    V. Kariwala, S. Skogestad and J.F. Forbes, ``Reply to ``Further Theoretical results on Relative Gain Array for Norn-Bounded Uncertain systems''''Ind.Eng.Chem.Res, 46 (24), 8290 (2007).

    V. Lersbamrungsuk, T. Srinophakun, S. Narasimhan and S. Skogestad, ``Control structure design for optimal operation of heat exchangernetworks'',AIChE J., 54 (1), 150-162 (2008). DOI 10.1002/aic.11366

    T. Lid and S. Skogestad, ``Scaled steady state models for effective on-line applications'', Computers and Chemical Engineering, 32, 990-999 (2008). T.Lid and S. Skogestad, ``Data reconciliation and optimal operation of a catalytic naphtha reformer'', Journal of Process Control, 18, 320-331 (2008).

    E.M.B. Aske, S. Strand and S. Skogestad, ``Coordinator MPC for maximizing plant throughput'', Computers and Chemical Engineering, 32, 195-204(2008).

    A. Araujo and S. Skogestad, ``Control structure design for the ammonia synthesis process'', Computers and Chemical Engineering, 32 (12), 2920-2932 (2008).

    E.S. Hori and S. Skogestad, ``Selection of controlled variables: Maximum gain rule and combination of measurements'',Ind.Eng.Chem.Res, 47 (23),9465-9471 (2008).

    V. Alstad, S. Skogestad and E.S. Hori, ``Optimal measurement combinations as controlled variables'',Journal of Process Control, 19, 138-148 (2009)

    E.M.B. Askoe and S. Skogestad, Consistent inventory control, Submitted (2009)

    http://www.nt.ntnu.no/users/skoge/publications/2007/hori_distillation_structures_cherdhttp://www.nt.ntnu.no/users/skoge/publications/2000/self1/http://www.nt.ntnu.no/users/skoge/publications/2000/self1_pse2000/http://www.nt.ntnu.no/users/skoge/publications/2000/HungarianJIC-SelfOpthttp://www.nt.ntnu.no/users/skoge/publications/2001/te/http://www.nt.ntnu.no/users/skoge/publications/2003/wu_yu_luyben_skogestad_recycle2/http://www.nt.ntnu.no/users/skoge/publications/2003/recyclehttp://www.nt.ntnu.no/users/skoge/publications/2003/buffer_tank_design_faanes/http://www.nt.ntnu.no/users/skoge/publications/2003/self2http://www.nt.ntnu.no/users/skoge/publications/2004/faanes_cce_phhttp://www.nt.ntnu.no/users/skoge/publications/2004/self_economy_cce_special-issuehttp://www.nt.ntnu.no/users/skoge/publications/2005/hori_self_indirecthttp://www.nt.ntnu.no/users/skoge/publications/2005/govatsmark_robust_setpointshttp://www.nt.ntnu.no/users/skoge/publications/2007/alstad_iecr_nullspacehttp://www.nt.ntnu.no/users/skoge/publications/2007/skogestad_distillation-dos-and-donts_special-issue-of-cherdhttp://www.nt.ntnu.no/users/skoge/publications/2007/hori_distillation_structures_cherdhttp://www.nt.ntnu.no/users/skoge/publications/2007/araujo_hda_part1_cephttp://www.nt.ntnu.no/users/skoge/publications/2007/araujo_hda_part1_cephttp://www.nt.ntnu.no/users/skoge/publications/2007/araujo_hda_part2_dynhttp://www.nt.ntnu.no/users/skoge/publications/2007/kariwala_reply_rgahttp://www.nt.ntnu.no/users/skoge/publications/2008/lek-hen-aichejhttp://www.nt.ntnu.no/users/skoge/publications/2008/lek-hen-aichejhttp://www.nt.ntnu.no/users/skoge/publications/2008/lid-reformer-jpc-seborg-issuehttp://www.nt.ntnu.no/users/skoge/publications/2008/lid-reformer-jpc-seborg-issuehttp://www.nt.ntnu.no/users/skoge/publications/2008/lid-reformer-jpc-seborg-issuehttp://www.nt.ntnu.no/users/skoge/publications/2008/lid-reformer-jpc-seborg-issuehttp://www.nt.ntnu.no/users/skoge/publications/2008/aske_coordinator-mpc_ccehttp://www.nt.ntnu.no/users/skoge/publications/2008/araujo_ammonia_ccehttp://www.nt.ntnu.no/users/skoge/publications/2008/hori_max-gain-rulehttp://www.nt.ntnu.no/users/skoge/publications/2009/alstad_extended_nullspace_jpchttp://www.nt.ntnu.no/users/skoge/publications/2009/alstad_extended_nullspace_jpchttp://www.nt.ntnu.no/users/skoge/publications/2008/hori_max-gain-rulehttp://www.nt.ntnu.no/users/skoge/publications/2008/araujo_ammonia_ccehttp://www.nt.ntnu.no/users/skoge/publications/2008/aske_coordinator-mpc_ccehttp://www.nt.ntnu.no/users/skoge/publications/2008/lid-reformer-jpc-seborg-issuehttp://www.nt.ntnu.no/users/skoge/publications/2008/lid-modeling-cce-rex-issuehttp://www.nt.ntnu.no/users/skoge/publications/2008/lid-modeling-cce-rex-issuehttp://www.nt.ntnu.no/users/skoge/publications/2008/lid-modeling-cce-rex-issuehttp://www.nt.ntnu.no/users/skoge/publications/2008/lek-hen-aichejhttp://www.nt.ntnu.no/users/skoge/publications/2008/lek-hen-aichejhttp://www.nt.ntnu.no/users/skoge/publications/2007/kariwala_reply_rgahttp://www.nt.ntnu.no/users/skoge/publications/2007/kariwala_reply_rgahttp://www.nt.ntnu.no/users/skoge/publications/2007/kariwala_reply_rgahttp://www.nt.ntnu.no/users/skoge/publications/2007/araujo_hda_part2_dynhttp://www.nt.ntnu.no/users/skoge/publications/2007/araujo_hda_part1_cephttp://www.nt.ntnu.no/users/skoge/publications/2007/araujo_hda_part1_cephttp://www.nt.ntnu.no/users/skoge/publications/2007/araujo_hda_part1_cephttp://www.nt.ntnu.no/users/skoge/publications/2007/araujo_hda_part1_cephttp://www.nt.ntnu.no/users/skoge/publications/2007/araujo_hda_part1_cephttp://www.nt.ntnu.no/users/skoge/publications/2007/araujo_hda_part1_cephttp://www.nt.ntnu.no/users/skoge/publications/2007/hori_distillation_structures_cherdhttp://www.nt.ntnu.no/users/skoge/publications/2007/hori_distillation_structures_cherdhttp://www.nt.ntnu.no/users/skoge/publications/2007/hori_distillation_structures_cherdhttp://www.nt.ntnu.no/users/skoge/publications/2007/skogestad_distillation-dos-and-donts_special-issue-of-cherdhttp://www.nt.ntnu.no/users/skoge/publications/2007/alstad_iecr_nullspacehttp://www.nt.ntnu.no/users/skoge/publications/2005/govatsmark_robust_setpointshttp://www.nt.ntnu.no/users/skoge/publications/2005/hori_self_indirecthttp://www.nt.ntnu.no/users/skoge/publications/2005/hori_self_indirecthttp://www.nt.ntnu.no/users/skoge/publications/2005/hori_self_indirecthttp://www.nt.ntnu.no/users/skoge/publications/2004/self_economy_cce_special-issuehttp://www.nt.ntnu.no/users/skoge/publications/2004/self_economy_cce_special-issuehttp://www.nt.ntnu.no/users/skoge/publications/2004/self_economy_cce_special-issuehttp://www.nt.ntnu.no/users/skoge/publications/2004/self_economy_cce_special-issuehttp://www.nt.ntnu.no/users/skoge/publications/2004/self_economy_cce_special-issuehttp://www.nt.ntnu.no/users/skoge/publications/2004/faanes_cce_phhttp://www.nt.ntnu.no/users/skoge/publications/2004/faanes_cce_phhttp://www.nt.ntnu.no/users/skoge/publications/2004/faanes_cce_phhttp://www.nt.ntnu.no/users/skoge/publications/2003/self2http://www.nt.ntnu.no/users/skoge/publications/2003/buffer_tank_design_faanes/http://www.nt.ntnu.no/users/skoge/publications/2003/recyclehttp://www.nt.ntnu.no/users/skoge/publications/2003/wu_yu_luyben_skogestad_recycle2/http://www.nt.ntnu.no/users/skoge/publications/2003/wu_yu_luyben_skogestad_recycle2/http://www.nt.ntnu.no/users/skoge/publications/2003/wu_yu_luyben_skogestad_recycle2/http://www.nt.ntnu.no/users/skoge/publications/2001/te/http://www.nt.ntnu.no/users/skoge/publications/2001/te/http://www.nt.ntnu.no/users/skoge/publications/2001/te/http://www.nt.ntnu.no/users/skoge/publications/2001/te/http://www.nt.ntnu.no/users/skoge/publications/2001/te/http://www.nt.ntnu.no/users/skoge/publications/2000/HungarianJIC-SelfOpthttp://www.nt.ntnu.no/users/skoge/publications/2000/HungarianJIC-SelfOpthttp://www.nt.ntnu.no/users/skoge/publications/2000/HungarianJIC-SelfOpthttp://www.nt.ntnu.no/users/skoge/publications/2000/self1_pse2000/http://www.nt.ntnu.no/users/skoge/publications/2000/self1_pse2000/http://www.nt.ntnu.no/users/skoge/publications/2000/self1_pse2000/http://www.nt.ntnu.no/users/skoge/publications/2000/self1_pse2000/http://www.nt.ntnu.no/users/skoge/publications/2000/self1_pse2000/http://www.nt.ntnu.no/users/skoge/publications/2000/self1/http://www.nt.ntnu.no/users/skoge/publications/2000/self1/http://www.nt.ntnu.no/users/skoge/publications/2000/self1/
  • 8/10/2019 plantwide_control.ppt

    5/72

    5

    Plantwide control intro course: Contents

    Overview of plantwide control

    Selection of primary controlled variables based on economic : The linkbetween the optimization (RTO) and the control (MPC; PID) layers- Degrees of freedom- Optimization- Self-optimizing control

    - Applications- Many examples

    Where to set the production rate and bottleneck

    Design of the regulatory control layer ("what more should wecontrol")

    - stabilization- secondary controlled variables (measurements)- pairing with inputs- controllability analysis

    - cascade control and time scale separation. Design of supervisory control layer

    - Decentralized versus centralized (MPC)- Design of decentralized controllers: Sequential and independent design- Pairing and RGA-analysis

    Summary and case studies

  • 8/10/2019 plantwide_control.ppt

    6/72

    6

    Outline

    Control structure design (plantwide control)

    A procedure for control structure design

    I Top Down

    Step 1: Degrees of freedom Step 2: Operational objectives (optimal operation)

    Step 3: What to control ? (primary CVs) (self-optimizing control)

    Step 4: Where set the production rate? (Inventory control)

    II Bottom Up

    Step 5: Regulatory control: What more to control (secondary CVs) ?

    Step 6: Supervisory control

    Step 7: Real-time optimization

    Case studies

  • 8/10/2019 plantwide_control.ppt

    7/72

    7

    Main message

    1. Control for economics (Top-down steady-state arguments)

    Primary controlled variables c = y1: Control active constraints

    For remaining unconstrained degrees of freedom: Look for self-optimizingvariables

    2. Control for stabilization (Bottom-up; regulatory PID control)

    Secondary controlled variables y2(inner cascade loops)

    Control variables which otherwise may drift

    Both cases: Control sensitive variables (with a large gain)!

  • 8/10/2019 plantwide_control.ppt

    8/72

    8

    Idealized view of control

    (Ph.D. control)

  • 8/10/2019 plantwide_control.ppt

    9/72

    9

    Practice: Tennessee Eastman challenge

    problem (Downs, 1991)

    (PID control)

  • 8/10/2019 plantwide_control.ppt

    10/72

    10

    How we design a control system for a

    complete chemical plant?

    Where do we start?

    What should we control? and why?

    etc.

    etc.

  • 8/10/2019 plantwide_control.ppt

    11/72

    11

    Alan Foss (Critique of chemical process control theory, AIChE

    Journal,1973):

    The central issue to be resolved ... is the determination of control system

    structure. Which variables should be measured, which inputs should be

    manipulated and which links should be made between the two sets?

    There is more than a suspicion that the work of a genius is needed here,

    for without it the control configuration problem will likely remain in a

    primitive, hazily stated and wholly unmanageable form. The gap is

    present indeed, but contrary to the views of many, it is the theoretician

    who must close it.

    Carl Nett (1989):

    Minimize control system complexity subject to the achievement of accuracy

    specifications in the face of uncertainty.

  • 8/10/2019 plantwide_control.ppt

    12/72

    12

    Control structure design

    Notthe tuning and behavior of each control loop,

    But rather the control philosophyof the overall plant with emphasis on

    the structural decisions:

    Selection of controlled variables (outputs) Selection of manipulated variables (inputs)

    Selection of (extra) measurements

    Selection of control configuration (structure of overall controller that

    interconnects the controlled, manipulated and measured variables)

    Selection of controller type(LQG, H-infinity, PID, decoupler, MPC etc.). That is:Control structure designincludes all the decisions we need

    make to get from ``PID controlto Ph.Dcontrol

  • 8/10/2019 plantwide_control.ppt

    13/72

    13

    Process control:

    Plantwide control = Control structure

    design for complete chemical plant Large systems

    Each plant usually differentmodeling expensive

    Slow processesno problem with computation time

    Structural issuesimportant

    What to control? Extra measurements, Pairing of loops

    Previous work on plantwide control:Page Buckley (1964) - Chapter on Overall process control(still industrial practice)

    Greg Shinskey (1967)process control systems

    Alan Foss (1973) - control system structure

    Bill Luyben et al. (1975- )case studies ; snowball effect

    George Stephanopoulos and Manfred Morari (1980)synthesis of control structures for chemical processes

    Ruel Shinnar (1981- ) - dominant variables

    Jim Downs (1991) - Tennessee Eastman challenge problem

    Larsson and Skogestad (2000): Review of plantwide control

  • 8/10/2019 plantwide_control.ppt

    14/72

    14

    Control structure selection issues are identified as important also in

    other industries.

    Professor Gary Balas (Minnesota) at ECC03 about flight control at Boeing:

    The most important control issue has always been to select the right

    controlled variables --- no systematic tools used!

  • 8/10/2019 plantwide_control.ppt

    15/72

    15

    Main objectives control system

    1. Stabilization

    2. Implementation of acceptable (near-optimal) operation

    ARE THESE OBJECTIVES CONFLICTING?

    Usually NOT

    Different time scales

    Stabilization fast time scale

    Stabilization doesnt use up any degrees of freedom Reference value (setpoint) available for layer above

    But it uses up part of the time window (frequency range)

    Dealing with complexity

  • 8/10/2019 plantwide_control.ppt

    16/72

    16

    cs = y1s

    MPC

    PID

    y2s

    RTO

    u (valves)

    Follow path (+ look after)

    CV=y1 (+ u); MV=y2s

    Stabilize + avoid drift

    CV=y2; MV=u

    Min J (economics);MV=y1s

    OBJECTIVE

    Dealing with complexity

    Main simplification: Hierarchical decomposition

    Process control The controlled variables (CVs

    interconnect the layers

    Hierarchical decomposition

  • 8/10/2019 plantwide_control.ppt

    17/72

    17

    Example: Bicycle riding

    Note: design starts from the bottom

    Regulatory control:

    First need to learn to stabilize the bicycle

    CV = y2 = tilt of bike

    MV = body position

    Supervisory control:

    Then need to follow the road.

    CV = y1= distance from right hand side

    MV=y2s

    Usually a constant setpoint policy is OK, e.g. y1s=0.5 m

    Optimization:

    Which road should you follow?

    Temporary (discrete) changes in y1s

    Hierarchical decomposition

  • 8/10/2019 plantwide_control.ppt

    18/72

    21

    Summary: The three layers

    Optimization layer (RTO; steady-state nonlinear model): Identifies active constraints and computes optimal setpoints for primary controlled variables (y1).

    Supervisory control (MPC; linear model with constraints): Follow setpoints for y1(usually constant) by adjusting setpoints for secondary variables (MV=y2s)

    Look after other variables (e.g., avoid saturation for us used in regulatory layer)

    Regulatory control (PID): Stabilizes the plant and avoids drift, in addition to following setpoints for y2. MV=valves (u).

    Problem definition and overall control objectives (y1, y2) starts from the top.

    Design starts from the bottom.

    A good example is bicycle riding:

    Regulatory control: First you need to learn how to stabilize the bicycle (y2)

    Supervisory control: Then you need to follow the road. Usually a constant setpoint policy is OK, for example, stay

    y1s=0.5 m from the right hand side of the road (in this case the "magic" self-optimizing variableself-optimizing variable is y1=distance to right hand side of road)

    Optimization: Which road (route) should you follow?

    http://www.nt.ntnu.no/users/skoge/research/research-selfopt.htmlhttp://www.nt.ntnu.no/users/skoge/research/research-selfopt.htmlhttp://www.nt.ntnu.no/users/skoge/research/research-selfopt.htmlhttp://www.nt.ntnu.no/users/skoge/research/research-selfopt.html
  • 8/10/2019 plantwide_control.ppt

    19/72

    22

    Stepwise procedure plantwide control

    I. TOP-DOWNStep 1. DEGREES OF FREEDOM

    Step 2. OPERATIONAL OBJECTIVES

    Step 3. WHAT TO CONTROL? (primary CVsc=y1)

    Step 4. PRODUCTION RATE

    II. BOTTOM-UP (structure control system):Step 5. REGULATORY CONTROL LAYER (PID)

    Stabilization

    What more to control? (secondary CVs y2)

    Step 6. SUPERVISORY CONTROL LAYER (MPC)Decentralization

    Step 7. OPTIMIZATION LAYER (RTO)

    Can we do without it?

  • 8/10/2019 plantwide_control.ppt

    20/72

    23

    Control structure design procedure

    I Top Down Step 1: Identify degrees of freedom (MVs)

    Step 2: Define operational objectives (optimal operation)

    Cost function J (to be minimized)

    Operational constraints

    Step 3: Select primary controlled variables c=y1

    (CVs)

    Step 4: Where set the production rate? (Inventory control)

    II Bottom Up Step 5: Regulatory / stabilizing control (PID layer)

    What more to control (y2; local CVs)?

    Pairing of inputs and outputs

    Step 6: Supervisory control (MPC layer) Step 7: Real-time optimization

    Understanding and using this procedure is the most important part of this course!!!!

    y1

    y2

    Process

    MVs

  • 8/10/2019 plantwide_control.ppt

    21/72

  • 8/10/2019 plantwide_control.ppt

    22/72

    25

    Steady-statedegrees of freedom (DOFs)

    IMPORTANT! No. of steady-state CVs = No. of steady-state DOFs

    Three methods to obtain no. of steady-state degrees of freedom (Nss):

    1. Equation-counting

    Nss= no. of variablesno. of equations/specifications

    Very difficult in practice (not covered here)

    2. Valve-counting (easier!)

    Nss= NvalvesN0ssNspecs

    N0ss= variables with no steady-state effect

    3. Typical number for some units (useful for checking!)

    CV = controlled variable (c)

  • 8/10/2019 plantwide_control.ppt

    23/72

    26

    Steady-state degrees of freedom (Nss):

    2. Valve-counting

    Nvalves = no. of dynamic (control) DOFs (valves)

    Nss= NvalvesN0ssNspecs : no. of steady-state DOFs N0ss= N0y+ N0,valves : no. of variables with no steady-state effect

    N0,valves: no. purely dynamic control DOFs

    N0y: no. controlled variables (liquid levels) with no steady-state effect

    Nspecs: No of equality specifications (e.g., given pressure)

  • 8/10/2019 plantwide_control.ppt

    24/72

    27

    Nvalves= 6 , N0y= 2 , Nspecs= 2, NSS= 6 -2 -2 = 2

    Distillation column with given feed and pressure

  • 8/10/2019 plantwide_control.ppt

    25/72

    28

    Heat-integrated distillation process

    Nvalves = 11 w/feed , N0 = 4 levels , Nss= 114=

  • 8/10/2019 plantwide_control.ppt

    26/72

    29

    Heat-integrated distillation process

    Nvalves = 11 w/feed , N0 = 4 levels , Nss= 114= 7

  • 8/10/2019 plantwide_control.ppt

    27/72

    30

    Heat exchanger with bypasses

    CW

    Nvalves = 3, N0valves = 2 (of 3), Nss= 32 = 1

  • 8/10/2019 plantwide_control.ppt

    28/72

    31

    Heat exchanger with bypasses

    CW

    Nvalves = 3, N0valves = 2 (of 3), Nss= 32 = 1

  • 8/10/2019 plantwide_control.ppt

    29/72

    32

    Steady-state degrees of freedom (Nss):

    3. Typical number for some process units

    each external feedstream: 1 (feedrate)

    splitter: n-1 (split fractions) where n is the number of exit streams

    mixer: 0

    compressor, turbine, pump: 1 (work/speed) adiabatic flash tank: 0*

    liquid phase reactor: 1 (holdup-volume reactant)

    gas phase reactor: 0*

    heat exchanger: 1 (duty or net area)

    column (e.g. distillation) excluding heat exchangers: 0*

    + no. of sidestreams pressure*: add 1DOF at each extra place you set pressure (using an extra

    valve, compressor or pump), e.g. in adiabatic flash tank, gas phase reactor or

    column

    *Pressure is normally assumed to be given by the surrounding process and is then not a degree of

    freedom

  • 8/10/2019 plantwide_control.ppt

    30/72

    33

    Heat exchanger with bypasses

    CW

    Typical number heat exchanger Nss= 1

  • 8/10/2019 plantwide_control.ppt

    31/72

    34

    Typical number,

    Nss= 0 (distillation) + 2*1 (heat exchangers) = 2

    Distillation column with given feed and pressure

  • 8/10/2019 plantwide_control.ppt

    32/72

    35

    Heat-integrated distillation process

    Typical number, Nss= 1 (feed) + 2*0 (columns) + 2*1

    (column pressures) + 1 (sidestream) + 3 (hex) = 7

  • 8/10/2019 plantwide_control.ppt

    33/72

    36

    HDA process

    Mixer FEHE Furnace PFRQuench

    Separator

    Compressor

    Cooler

    StabilizerBenzeneColumn

    TolueneColumn

    H2+ CH4

    Toluene

    Toluene Benzene CH4

    Diphenyl

    Purge (H2+ CH4)

  • 8/10/2019 plantwide_control.ppt

    34/72

    37

    HDA process: steady-state degrees of freedom

    1

    2

    3

    8 7

    4

    6

    5

    9

    10

    11

    12

    13

    14

    Conclusion: 14

    steady-stateDOFs

    Assume given column pressures

    feed:1.2

    hex: 3, 4, 6

    splitter 5, 7

    compressor: 8

    distillation: 2 eachcolumn

  • 8/10/2019 plantwide_control.ppt

    35/72

    38

    Check that there are enough manipulated variables (DOFs) - both

    dynamically and at steady-state (step 2)

    Otherwise: Need to add equipment extra heat exchanger

    bypass

    surge tank

  • 8/10/2019 plantwide_control.ppt

    36/72

    39

    Outline

    Introduction

    Control structure design (plantwide control)

    A procedure for control structure design

    I Top Down

    Step 1: Degrees of freedom

    Step 2: Operational objectives (optimal operation)

    Step 3: What to control ? (self-optimizing control)

    Step 4: Where set production rate? (inventory control)

    II Bottom Up

    Step 5: Regulatory control: What more to control ? Step 6: Supervisory control

    Step 7: Real-time optimization

    Case studies

  • 8/10/2019 plantwide_control.ppt

    37/72

    40

    Step 2. Define optimal operation (economics)

    What are we going to use our degrees of freedom for?

    Define scalar cost function J(u0,x,d)

    u0: degrees of freedom

    d: disturbances

    x: states (internal variables)

    Typical cost function:

    Optimal operation for given d:

    minuss J(uss,x,d)subject to:

    Model equations: f(uss,x,d) = 0

    Operational constraints: g(uss,x,d) < 0

    J = cost feed + cost energyvalue products

  • 8/10/2019 plantwide_control.ppt

    38/72

    41

    Optimal operation distillation column

    Distillation at steady state with given p and F: N=2 DOFs, e.g. L and V

    Cost to be minimized (economics)

    J = - P where P= pDD + pBBpFFpVV

    ConstraintsPurity D: For example xD, impuritymax

    Purity B: For example, xB, impuritymax

    Flow constraints: minD, B, L etc. max

    Column capacity (flooding): VVmax, etc.

    Pressure: 1) p given, 2) p free: pminp pmax

    Feed: 1) F given 2) F free: FFmax

    Optimal operation: Minimize J with respect to steady-state DOFs

    value products

    cost energy (heating+ cooling)

    cost feed

  • 8/10/2019 plantwide_control.ppt

    39/72

    42

    Optimal operation

    1. Given feed

    Amount of products is then usually indirectly given and J = cost energy.

    Optimal operation is then usually unconstrained:

    2. Feed free

    Products usually much more valuable than feed + energy costs small.

    Optimal operation is then usually constrained:

    minimize J = cost feed + cost energyvalue products

    maximize efficiency (energy)

    maximize production

    Two main cases (modes) depending on marked conditions:

    Control: Operate at bottleneck (obvious)

    Control: Operate at optimaltrade-off (not obvious how to do

    and what to control)

  • 8/10/2019 plantwide_control.ppt

    40/72

    43

    Comments optimal operation

    Do not forget to include feedrate as a degree of freedom!!

    For LNG plant it may be optimal to have max. compressor power or max.

    compressor speed, and adjust feedrate of LNG For paper machine it may be optimal to have max. drying and adjust the

    feedrate of paper (speed of the paper machine) to meet spec!

    Control at bottleneck

    see later: Where to set the production rate

  • 8/10/2019 plantwide_control.ppt

    41/72

    44

    QUIZ

    1. Degrees of freedom (Dynamic, steady-state)?

    2. Expected active constraints?

    3. Proposed control structure?

    Reaktor

    A+B C

    Kompressor

    Purge (mest A, litt B)

    Fde

    ca 51%A, 49% B

    Oppvarming Kjling

    Separator

    Produkt (C)

    HeatingCooling

    Feed

    51%A, 49%B

    Purge (mostly A, some B, trace C)

    Liquid Product (C)

    Flash

    Gas phase process

    (e.g. ammonia, methanol)

  • 8/10/2019 plantwide_control.ppt

    42/72

    45

    Implementation of optimal operation

    Optimal operation for given d*:

    minu J(u,x,d)subject to:

    Model equations: f(u,x,d) = 0

    Operational constraints: g(u,x,d) < 0

    uopt

    (d*)

    Problem:Usally cannot keep uoptconstant because disturbances d change

    How should we adjust the degrees of freedom (u)?

  • 8/10/2019 plantwide_control.ppt

    43/72

    46

    Solution I: Optimal feedforward

    With availability of perfect model and

    measurement of all disturbances d,

    degrees of freedom ucan be continuously

    updated using online optimizer

    Problem: UNREALISTIC!

    Feedforward problems:

    1. Lack of measurements of d2. Sensitive to model error

  • 8/10/2019 plantwide_control.ppt

    44/72

  • 8/10/2019 plantwide_control.ppt

    45/72

    48

    Solution III (Practical!): Hierarchical

    decomposition with separate layers

    When disturbance d:

    Degrees of freedom (u)

    are updated indirectly tokeep controlled variables

    at setpoints

    y

    Controlled variables that

    link the optimization andcontrol layers

    S lf O ti i i C t l

  • 8/10/2019 plantwide_control.ppt

    46/72

    49

    Self-Optimizing Control

    = Solution III with constant setpoints

    When constantsetpoints are OK

    y

  • 8/10/2019 plantwide_control.ppt

    47/72

    50

    Formal Definition

    Self-optimizing control is said to occur when we can achieve an acceptable loss (in comparison withtruly optimal operation) with constant setpoint values for the controlled variables without the needto reoptimize when disturbances occur.

    Reference: S. Skogestad, Plantwide control: The search for the self-optimizing control structure'',

    Journal of Process Control, 10, 487-507 (2000).

    Acceptable loss)self-optimizing controlController

    Processd

    u(d)

    c = f(y)

    cse

    -

    +

    +n

    cm

  • 8/10/2019 plantwide_control.ppt

    48/72

    51

    How does self-optimizing control (solution

    III) work?

    When disturbances d occur, controlled variable c deviates from setpoint cs

    Feedback controller changes degree of freedom u to uFB(d) to keep cat cs

    Near-optimal operation / acceptable loss (self-optimizing control) is achieved if uFB(d) uopt(d)

    or more generally,J(uFB(d)) J(uopt(d))

    Of course, variation of uFB(d) is different for different CVs c.

    We need to look for variables, for whichJ(uFB(d)) J(uopt(d)) or Loss =J(uFB(d)) -J(uopt(d)) is small

  • 8/10/2019 plantwide_control.ppt

    49/72

    52

    Remarks

    Self-optimizing control provides a trade-off between complexity of control systemand optimality.

    Old idea (Morari et al., 1980):

    We want to find a function c of the process variables which when held constant,

    leads automatically to the optimal adjustments of the manipulated variables, andwith it, the optimal operating conditions.

    The term self -optimizing control is similar to self-regulation, where acceptabledynamic behavior is attained by keeping manipulated variables constant.

  • 8/10/2019 plantwide_control.ppt

    50/72

    53

    Relation with Similar Techniques

    Broadly, self-optimizing control can be seen as a measurement-based (or feedback-based)

    optimization technique.

    Some related ideas are:

    Control of necessary conditions of optimality (Profs. Dominique Bonvin, B. Srinivasan and co-

    workers)

    Extremum seeking control (Profs. Miroslav Krstic, Martin Guay and co-workers)

    In these techniques, uis updated to drive the gradient of Lagrange function (obtained

    analytically or estimated) to zero.

    Gradient of Lagrange function is a possible self-optimizing variable!

  • 8/10/2019 plantwide_control.ppt

    51/72

    54

    Step 3. What should we control (c)?

    (primary controlled variables y1=c)

    Introductory example: Marathon runner

    What should we

    control?

  • 8/10/2019 plantwide_control.ppt

    52/72

    55

    Optimal operationRunner

    Cost: J=T

    One degree of freedom (u=power)

    Optimal operation?

    Optimal operation - Runner

  • 8/10/2019 plantwide_control.ppt

    53/72

    56

    Solution 1: Optimizing control

    Even getting a reasonable model

    requires > 10 PhDs and

    the model has to be fitted to each

    individual.

    Clearly impractical!

    Optimal operation - Runner

  • 8/10/2019 plantwide_control.ppt

    54/72

    57

    Solution 2Feedback

    (Self-optimizing control)

    What should we control?

    Optimal operation - Runner

  • 8/10/2019 plantwide_control.ppt

    55/72

    58

    Self-optimizing control: Sprinter (100m)

    1. Optimal operation of Sprinter, J=T

    Active constraint control:

    Maximum speed (no thinking required)

    Optimal operation - Runner

  • 8/10/2019 plantwide_control.ppt

    56/72

    59

    Optimal operation of Marathon runner, J=T

    Any self-optimizing variable c (to control at

    constant setpoint)? c1 = distance to leader of race c2 = speed

    c3 = heart rate

    c4= level of lactate in muscles

    Self-optimizing control: Marathon (40 km)

    Optimal operation - Runner

  • 8/10/2019 plantwide_control.ppt

    57/72

    60

    Conclusion Marathon runner

    c = heart rate

    select one measurement

    Simple and robust implementation

    Disturbances are indirectly handled by keeping a constant heart rate

    May have infrequent adjustment of setpoint (heart rate)

  • 8/10/2019 plantwide_control.ppt

    58/72

    61

    Example: Cake Baking

    Objective: Nice tasting cake with good texture

    u1 = Heat input

    u2 = Final time

    d1=

    oven specifications

    d2 =oven door opening

    d3 =ambient temperature

    d4

    =

    initial temperature

    y1 =oven temperature

    y2 =cake temperature

    y3 =cake color

    MeasurementsDisturbances

    Degrees of Freedom

  • 8/10/2019 plantwide_control.ppt

    59/72

    62

    Further examples self-optimizing control

    Marathon runner

    Central bank

    Cake baking

    Business systems (KPIs) Investment portifolio

    Biology

    Chemical process plants: Optimal blending of gasoline

    Define optimal operation (J) and look for magic variable

    (c) which when kept constant gives acceptable loss (self-

    optimizing control)

  • 8/10/2019 plantwide_control.ppt

    60/72

    63

    More on further examples

    Central bank. J = welfare. u = interest rate. c=inflation rate (2.5%) Cake baking.J = nice taste, u = heat input. c = Temperature (200C)

    Business,J = profit. c = Key performance indicator (KPI), e.g.

    Response time to order

    Energy consumption pr. kg or unit

    Number of employees Research spending

    Optimal values obtained by benchmarking

    Investment(portofolio management). J = profit. c = Fraction ofinvestment in shares (50%)

    Biological systems:

    Self-optimizing controlled variables c have been found by naturalselection

    Need to do reverse engineering :

    Find the controlled variables used in nature

    From this possibly identify what overall objective J the biological system hasbeen attempting to optimize

  • 8/10/2019 plantwide_control.ppt

    61/72

    64

    Step 3. What should we control (c)?

    (primary controlled variables y1=c)

    Selection of controlled variables c

    1. Control active constraints!

    2. Unconstrained variables: Control magic self-

    optimizing variables!

  • 8/10/2019 plantwide_control.ppt

    62/72

    65

    1. If c= u= manipulated input (MV): Implementation trivial: Keep uat constraint (uminor umax)

    2. If c=y= output variable (CV):

    Use uto controlyat constraint (feedback)

    BUT: Need to introduceback-off (safety margin)

    c cconstraint

    Jopt

    c

    J

    copt

    Optimal solution is usually at constraints, that is, most of the

    degrees of freedom are used to satisfy active constraints,

    g(u,d) = 0 -> c=cconstraint

    1. CONTROL ACTIVE CONSTRAINTS!

    B k ff f i i

  • 8/10/2019 plantwide_control.ppt

    63/72

    66

    Back-off for active output constraints

    a) If constraint can be violated dynamically (only average matters)

    Required Back-off= bias (steady-state measurement error for c)

    b) If constraint cannotbe violated dynamically (hard constraint)

    Required Back-off= bias+ maximum dynamic control error

    Back-off

    Loss

    c cconstraint

    Jopt

    c

    J

    copt

    Example Optimal operation = max throughput

  • 8/10/2019 plantwide_control.ppt

    64/72

    67

    Example. Optimal operation max. throughput.

    Want tight bottleneck control to reduce backoff!

    Time

    Back-off

    = Lost

    production

    Rule for control of hard output constraints: Squeeze and shift!

    Reduce variance (Squeeze) and shift setpoint csto reduce backoff

    Hard Constraints: SQUEEZE AND SHIFT

  • 8/10/2019 plantwide_control.ppt

    65/72

    68

    Hard Constraints: SQUEEZE AND SHIFT

    0 50 100 150 200 250 300 350 400 4500

    0.5

    1

    1.5

    2

    OFF

    SPEC

    QUALITY

    N Histogram

    Q1

    Sigma 1

    Q2

    Sigma 2

    DELTA COST (W2-W1)

    LEVEL 0 / LEVEL 1

    Sigma 1 -- Sigma 2

    LEVEL 2

    Q1 -- Q2

    W1

    W2

    COST FUNCTION

    Richalet SHIFT

    SQUEEZE

  • 8/10/2019 plantwide_control.ppt

    66/72

  • 8/10/2019 plantwide_control.ppt

    67/72

    70

    Cost to be minimized (economics)

    J = - P where P= pDD + pBBpFFpVV

    ConstraintsPurity D: For example xD, impuritymax

    Purity B: For example, xB, impuritymax

    Flow constraints: 0 D, B, L etc. max

    Column capacity (flooding): V Vmax, etc.

    value products

    cost energy (heating+ cooling)

    cost feed

    Optimal operation distillation

  • 8/10/2019 plantwide_control.ppt

    68/72

    71

    Expected active constraints distillation

    Valueable product: Purity spec. always active

    Reason: Amount of valuable product (D or B)

    should always be maximized

    Avoid product give-away

    (Sell water as methanol)

    Also saves energy

    Control implications valueable product: Control

    purity at spec.

    valuable

    product

    methanol+ max. 0.5%

    water

    cheap product

    (byproduct)

    water+ max. 0.1%

    methanol

    methanol

    + water

  • 8/10/2019 plantwide_control.ppt

    69/72

  • 8/10/2019 plantwide_control.ppt

    70/72

    73

    Summary: Optimal operation distillation

    Cost to be minimized

    J = - P where P= pDD + pBBpFFpVV

    N=2 steady-state degrees of freedom

    Active constraints distillation:

    Purity spec. valuable product is always active (avoid give-away of valuable product).

    Purity spec. cheap product may not be active (may want to

    overpurify to avoid loss of valuable productbut costs energy)

    Three cases:

    1. Nactive=2: Two active constraints (for example, xD, impurity= max. xB,

    impurity= max, TWO-POINT COMPOSITION CONTROL)

    2. Nactive=1: One constraint active (1 unconstrained DOF)

    3. Nactive=0: No constraints active (2 unconstrained DOFs)

    Can happen if no purity specifications

    (e.g. byproducts or recycle)

    WHAT SHOULD WE

    CONTROL (TO SATISFY

    UNCONSTRAINED DOFs)?

    Solution:

    Often compositions

    but not always!

  • 8/10/2019 plantwide_control.ppt

    71/72

    74

    QUIZ (again)

    1. Degrees of freedom (Dynamic, steady-state)?

    2. Expected active constraints? (1. Feed given; 2. Feed free)

    3. Proposed control structure?

    Reaktor

    A+B C

    Kompressor

    Purge (mest A, litt B)

    Fde

    ca 51%A, 49% B

    Oppvarming Kjling

    Separator

    Produkt (C)

    Heating Cooling

    Feed

    51%A, 49%B

    Purge (mostly A, some B, trace C)

    Liquid Product (C)

    Flash

    Gas phase process

    (e.g. ammonia, methanol)

  • 8/10/2019 plantwide_control.ppt

    72/72

    2. UNCONSTRAINED VARIABLES:

    WHAT MORE SHOULD WE CONTROL?

    Intuition:Dominant variables (Shinnar)

    Is there any systematic procedure?

    A. Senstive variables: Max. gain rule (Gain= Minimum singular value)

    B. Brute force loss evaluation

    C. Optimal linear combination of measurements, c = Hy