physics’guided,machine,learningclasp-research.engin.umich.edu/groups/admg/agu_2018/07_karpatn… ·...

23
Physicsguided Machine Learning: Opportunities in Combining Physical Knowledge with Data Science for Weather and Climate Sciences Anuj Karpatne Assistant Professor, Computer Science Virginia Tech Torgersen Hall 3160Q, [email protected] https://people.cs.vt.edu/karpatne/ 1

Upload: others

Post on 04-Oct-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Physics’guided,Machine,Learningclasp-research.engin.umich.edu/groups/admg/AGU_2018/07_Karpatn… · Physics’guided,Machine,Learning: Opportunities+in+Combining+Physical+Knowledge+with+

Physics-­‐guided  Machine  Learning:Opportunities  in  Combining  Physical  Knowledge  with  

Data  Science  for  Weather  and  Climate  Sciences

Anuj  KarpatneAssistant  Professor,  Computer  Science

Virginia  Tech

Torgersen Hall  3160Q,[email protected]

https://people.cs.vt.edu/karpatne/ 1

Page 2: Physics’guided,Machine,Learningclasp-research.engin.umich.edu/groups/admg/AGU_2018/07_Karpatn… · Physics’guided,Machine,Learning: Opportunities+in+Combining+Physical+Knowledge+with+

Theory-­‐based  vs.  Data  Science  Models

Contain  knowledge  gaps  in  describing  certain  processes

(turbulence,   groundwater   flow)

Use of Data

Use

of S

cien

tific

The

ory

Theo

ry-b

ased

Mod

els

Data Science Models

Theory-guidedData Science Models

Low High

High

Low

Theory-­‐based  M

odels

2

Page 3: Physics’guided,Machine,Learningclasp-research.engin.umich.edu/groups/admg/AGU_2018/07_Karpatn… · Physics’guided,Machine,Learning: Opportunities+in+Combining+Physical+Knowledge+with+

Theory-­‐based  vs.  Data  Science  Models

Contain  knowledge  gaps  in  describing  certain  processes

(turbulence,   groundwater   flow)

Require  large  number  of  representative  samples

Take  full  advantage  of  data  science  methods  without   ignoring  

the  treasure  of  accumulated  knowledge   in  scientific  “theories”  

Use of Data

Use

of S

cien

tific

The

ory

Theo

ry-b

ased

Mod

els

Data Science Models

Theory-guidedData Science Models

Low High

High

Low

Theory-­‐based  M

odels

Data  Science  Models

Theory-­‐guided  Data  Science  Models

(TGDS)1

1 Karpatne  et  al.  “Theory-­‐guided  data  science:  A  new  paradigm  for  scientific  discovery,”  TKDE  2017

3

Page 4: Physics’guided,Machine,Learningclasp-research.engin.umich.edu/groups/admg/AGU_2018/07_Karpatn… · Physics’guided,Machine,Learning: Opportunities+in+Combining+Physical+Knowledge+with+

• Motivation:

• 1-­‐D  Model  of  Temperature:Target: Temperature  of  water  at  every  depth  in  a  lake

Growth  and  survival  of  fisheries Harmful  Algal  Blooms Chemical  Constituents:O2,  C,  N

TempShort-­‐wave  Radiation,Long-­‐wave  Radiation,Air  Temperature,

Relative  Humidity,Wind  Speed,

Rain,  …

Input  Drivers  (observed  via  meteorology):

Illustrative  Case  Study:Modeling  Lake  Quality  (Temperature)

4

Page 5: Physics’guided,Machine,Learningclasp-research.engin.umich.edu/groups/admg/AGU_2018/07_Karpatn… · Physics’guided,Machine,Learning: Opportunities+in+Combining+Physical+Knowledge+with+

Modeling  Temperature  using  Physics-­‐based  Models

• Standard  Paradigm  for  Scientific  Computing

PHY

𝒛"𝜽

𝐹, 𝐺

𝒙"

𝑦"

solar  radiation,  air  temp.,  …

Input  Drivers:

temperatureTarget:

Hidden  States

water  clarity,  salinity,  …

Parameters:

Physics-­‐based  Equations

𝜕𝜌𝜕𝑡 = −𝛻. 𝜌𝐮

𝜕𝜌𝐮𝜕𝑡 = −𝛻.

1𝜌   𝜌𝐮 ⨂ 𝜌𝐮 +𝑝𝐈 + 𝜌𝐠

𝜕𝐸𝜕𝑡 = −𝛻.

1𝜌   𝐸 +𝑝 𝜌𝐮 + 𝐮. 𝜌𝐠

Conservation   of  mass,  momentum,  energy

General  Lake  Model1 (GLM)

1Hipsey  et  al.,  2014 5

Page 6: Physics’guided,Machine,Learningclasp-research.engin.umich.edu/groups/admg/AGU_2018/07_Karpatn… · Physics’guided,Machine,Learning: Opportunities+in+Combining+Physical+Knowledge+with+

Limitations  of  Physics-­‐based  Models• Unknown  parameters  (𝜽)  need  to  be  “calibrated”

– Computationally  Expensive– Easy  to  overfit: large  number  of  parameter  choices,  small  

number  of  samplesPHY

𝒛"𝜽𝐹, 𝐺

𝒙"

𝑦"

Errors

𝜃:,  %  water  clarity

𝜃 ;,  %

 salinity

𝜃<  to    𝜃=

For  everylake Number  of  

parameter  choices:  ~  𝑂(2=)

6

Page 7: Physics’guided,Machine,Learningclasp-research.engin.umich.edu/groups/admg/AGU_2018/07_Karpatn… · Physics’guided,Machine,Learning: Opportunities+in+Combining+Physical+Knowledge+with+

Limitations  of  Physics-­‐based  Models• Unknown  parameters  (𝜽)  need  to  be  “calibrated”

– Computationally  Expensive– Easy  to  overfit: large  number  of  parameter  choices,  small  

number  of  samples

• Incomplete  or  missing  physics  (𝑭, 𝑮)– Physics-­‐based  models  often  use  approximate  forms  to  meet  

“scale-­‐accuracy”  trade-­‐off– Results  in  inherent  model  bias

PHY

𝒛"

𝒙"

𝑦"

𝜽

𝑭, 𝑮

Lake  bathymetry often  simplified  using  approximate  forms

7

Page 8: Physics’guided,Machine,Learningclasp-research.engin.umich.edu/groups/admg/AGU_2018/07_Karpatn… · Physics’guided,Machine,Learning: Opportunities+in+Combining+Physical+Knowledge+with+

“Black-­‐box”  Data  Science  Models• An  alternative  to  physics-­‐based  modeling?

PHY

𝒛"𝜽

𝐹, 𝐺

𝒙"

𝑦"

DS

𝒄"LSTM  Gates,

Attention,...

𝒙"

𝑦"

• Requires  calibration  of  model  parameters

• Incomplete  physics

Support   Vector  Machine

Deep  Learning

Choice  of  model  family  not  governed  by  physics

• Require  lots  of  data• Ignorant  of  physical  

knowledge

8

Page 9: Physics’guided,Machine,Learningclasp-research.engin.umich.edu/groups/admg/AGU_2018/07_Karpatn… · Physics’guided,Machine,Learning: Opportunities+in+Combining+Physical+Knowledge+with+

Hybrid-­‐Physics-­‐Data  Models• A  paradigm  shift  in  data-­‐intensive  scientific  modeling

PHY

𝒛"𝜽

𝐹, 𝐺

𝒙"

𝑦"

DS

𝒄"LSTM  Gates,

Attention,...

𝒙"

𝑦"

• Requires  calibration  of  model  parameters

• Incomplete  physics

• Require  lots  of  data• Incoherent  with  

physical  knowledge

PHY

𝒛"𝜽

𝐹, 𝐺

𝒙"

𝑦"

DS

𝒄"LSTM  Gates,

Attention,...

Overcomes  complementary  weaknesses  of  PHY  and  DS    by  combining   them  together

9

Page 10: Physics’guided,Machine,Learningclasp-research.engin.umich.edu/groups/admg/AGU_2018/07_Karpatn… · Physics’guided,Machine,Learning: Opportunities+in+Combining+Physical+Knowledge+with+

!…

"#"$ "%

A  Generic  Framework  forHybrid-­‐Physics-­‐Data  (HPD)  Modeling:

Input  Drivers(Solar  Radiation,Air  Temperature,Relative  Humidity,Wind  Speed,  …)

Black-­‐Box Model

PHY(GLM)

𝒀𝐏𝐇𝐘(Temperature)

𝒀JKLM(Temperature)

10

Page 11: Physics’guided,Machine,Learningclasp-research.engin.umich.edu/groups/admg/AGU_2018/07_Karpatn… · Physics’guided,Machine,Learning: Opportunities+in+Combining+Physical+Knowledge+with+

!…

"#"$ "%

A  Generic  Framework  forHybrid-­‐Physics-­‐Data  (HPD)  Modeling:

Input  Drivers(Solar  Radiation,Air  Temperature,Relative  Humidity,Wind  Speed,  …)

Hybrid-­‐Physics-­‐Data  Model

PHY(GLM)

𝒀𝐏𝐇𝐘(Temperature)

𝒀JKLM(Temperature)

Challenge  with  training  AI  methods:• 𝑌JKLM may  violate  physical  relationships

b/w  𝑌 and  other  variables11

Page 12: Physics’guided,Machine,Learningclasp-research.engin.umich.edu/groups/admg/AGU_2018/07_Karpatn… · Physics’guided,Machine,Learning: Opportunities+in+Combining+Physical+Knowledge+with+

DensityDe

pth

Physical  Relationships  of  Temperature

-10 -5 0 4 10 15 20 25 30

996

997

998

999

1000

Denser  water  is  at  higher  depthTemperature  directly  related  

to  density  of  water

Use  physics-­‐based  loss  functions:• Measure  violations  of  physical  relationships  b/w  𝑌JKLM and  other  variables• Does  not  require  labeled  data!

12

Page 13: Physics’guided,Machine,Learningclasp-research.engin.umich.edu/groups/admg/AGU_2018/07_Karpatn… · Physics’guided,Machine,Learning: Opportunities+in+Combining+Physical+Knowledge+with+

Physics-­‐guided  Neural  Network  (PGNN)1

!…

"#"$ "%

Labeled  Data

Drivers+

Unlabeled  Data

Drivers+

Training  Loss

𝑌"KOL,𝑌JKLM+  

 𝜆  R 𝑊

Physics-­‐based  Loss   𝑌JKLM

𝑌JKLM

𝑌JKLM

𝒀𝐏𝐇𝐘

𝒀𝐏𝐇𝐘

Objective  Function  ∶=Training  Loss   𝑌"KOL,𝑌JKLM + 𝜆  R 𝑊 +

𝜆TUV  Physics-­‐based  Loss   𝑌JKLM

1Karpatne  et  al.,  “Physics-­‐guided  neural  networks  (PGNN):  An  Application  in  Lake  Temperature  Modeling,”  arXiv:  1710.11431,  2017. 13

Page 14: Physics’guided,Machine,Learningclasp-research.engin.umich.edu/groups/admg/AGU_2018/07_Karpatn… · Physics’guided,Machine,Learning: Opportunities+in+Combining+Physical+Knowledge+with+

Experimental  Results

Lake  Mille  Lacs,  MN

0 0.2 0.4 0.6 0.8 1

Physical Inconsistency

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Te

st R

MS

E

14

Page 15: Physics’guided,Machine,Learningclasp-research.engin.umich.edu/groups/admg/AGU_2018/07_Karpatn… · Physics’guided,Machine,Learning: Opportunities+in+Combining+Physical+Knowledge+with+

Experimental  Results

Lake  Mille  Lacs,  MN

0 0.2 0.4 0.6 0.8 1

Physical Inconsistency

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Te

st R

MS

E

PHY

15

Page 16: Physics’guided,Machine,Learningclasp-research.engin.umich.edu/groups/admg/AGU_2018/07_Karpatn… · Physics’guided,Machine,Learning: Opportunities+in+Combining+Physical+Knowledge+with+

Experimental  Results

Lake  Mille  Lacs,  MN

0 0.2 0.4 0.6 0.8 1

Physical Inconsistency

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Te

st R

MS

E

PHY

NN

16

Page 17: Physics’guided,Machine,Learningclasp-research.engin.umich.edu/groups/admg/AGU_2018/07_Karpatn… · Physics’guided,Machine,Learning: Opportunities+in+Combining+Physical+Knowledge+with+

Experimental  Results

Lake  Mille  Lacs,  MN

0 0.2 0.4 0.6 0.8 1

Physical Inconsistency

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Te

st R

MS

E

PHY

NN

PGNN0

17

Page 18: Physics’guided,Machine,Learningclasp-research.engin.umich.edu/groups/admg/AGU_2018/07_Karpatn… · Physics’guided,Machine,Learning: Opportunities+in+Combining+Physical+Knowledge+with+

Experimental  Results

Lake  Mille  Lacs,  MN

0 0.2 0.4 0.6 0.8 1

Physical Inconsistency

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Te

st R

MS

E

PHY

NN

PGNN0PGNN

18

Page 19: Physics’guided,Machine,Learningclasp-research.engin.umich.edu/groups/admg/AGU_2018/07_Karpatn… · Physics’guided,Machine,Learning: Opportunities+in+Combining+Physical+Knowledge+with+

Experimental  Results

Lake  Mille  Lacs,  MN

0 0.2 0.4 0.6 0.8 1

Physical Inconsistency

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Te

st R

MS

E

PHY

NN

PGNN0PGNN

Lake  Mendota,  Wisconsin

0 0.2 0.4 0.6 0.8 1

Physical Inconsistency

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Te

st R

MS

E

PHY

NN

PGNN0PGNN

PGNN  ensures  Generalizability  +  Physical  Consistency

19

Page 20: Physics’guided,Machine,Learningclasp-research.engin.umich.edu/groups/admg/AGU_2018/07_Karpatn… · Physics’guided,Machine,Learning: Opportunities+in+Combining+Physical+Knowledge+with+

Analyzing  Physical  Inconsistency

20

Lake  Mendota,  Wisconsin

0 0.2 0.4 0.6 0.8 1

Physical Inconsistency

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Te

st R

MS

E

PHY

NN

PGNN0PGNN

998.4 998.6 998.8 999 999.2 999.4 999.6 999.8 1000 1000.2

0

5

10

15

20

25

Density

Depth

27−May−2003

Obs

PGNN

PGNN0

NN

PHY

Includephysical  consistency as  another  evaluation  criterion,  going  beyond  standard  metrics  for  test  error

Page 21: Physics’guided,Machine,Learningclasp-research.engin.umich.edu/groups/admg/AGU_2018/07_Karpatn… · Physics’guided,Machine,Learning: Opportunities+in+Combining+Physical+Knowledge+with+

Alternate  Ways  of  Incorporating  Physics  in  ML

• Other  Physics-­‐based  Loss  Functions:

• Pre-­‐training  ML  models  using  Physics

– Train  ML  methods  using  physical  simulations– Fine-­‐tune  using  observational  data 21

Density

Depth

-10 -5 0 4 10 15 20 25 30

996

997

998

999

1000

Physical)Constraint:)Denser&water&is&at&higher&depthPhysical&relationship&b/w&

temperature&and&density

Conservation  of  Energy  in  Recurrent  Neural  Networks  

Depth-­‐Density  Constraint  in  Multi-­‐layer  Perceptron  Network

dUt/dt =  RSW (1-­‐ αSW)  +  RLWin(1-­‐ αLW)  -­‐ RLWout -­‐ E– H

Page 22: Physics’guided,Machine,Learningclasp-research.engin.umich.edu/groups/admg/AGU_2018/07_Karpatn… · Physics’guided,Machine,Learning: Opportunities+in+Combining+Physical+Knowledge+with+

Physics-­‐guided  Recurrent  Neural  Networks  (PGRNN)

22

Use of Data

Use

of S

cien

tific

The

ory

Theo

ry-b

ased

Mod

els

Data Science Models

Theory-guidedData Science Models

Low High

High

Low

Theory'based,M

odels

Data,Science,Models

Theory'guided,Data,Science,Models

(TGDS)1

Number  of   training  samples  

PGRNN

AGU  2018  Poster  IN41D-­‐0872:  Read    et  al.,  Process-­Guided  Data-­Driven  modeling  of  water  temperature:  Anchoring  predictions  with  thermodynamic  constraints  in  the  Big  Data  era

Jia et  al.,  Physics  Guided  RNNs  for  Modeling  Dynamical  Systems:  A  Case  Study  in  Simulating  Lake  Temperature  Profiles,  arxiv:  1810.13075,  2018.

Page 23: Physics’guided,Machine,Learningclasp-research.engin.umich.edu/groups/admg/AGU_2018/07_Karpatn… · Physics’guided,Machine,Learning: Opportunities+in+Combining+Physical+Knowledge+with+

Summary  and  Future  Directions• Research  themes  in  TGDS

– Physics-­‐guided  Learning of  ML  models• Loss  Functions,  Priors,  Constraints,  …

– Physics-­‐guided  Design of  ML  models• Architecture  of  NN  models,  LSTM  connections,  activation  functions

– Pre-­‐training  ML  models  using  Physical  Simulations• Train  Using  Combination  of  Physical  Simulations  +  Observations  

– Building  Hybrid-­‐Physics-­‐Data  Models• Rectify  Model  Outputs,  Replace  Model  Components  using  ML

– Inferring  Parameters/States  in  Physics-­‐based  Models• Parameter  Calibration,  Data  Assimilation

23