physics ch 23 review sheet - polytechnic schoolfaculty.polytechnic.org/physics/3 a.p. physics...

4
Chapter 23: Electric Fields By Courtney Yang Background/Summary Electromagnetic forces exist everywhere in nature, and are governed by the existence of positive and negative charges in the atmosphere. The relationship between positive and negative charges (a lack or abundance of electrons, respectively) and the way charges move relative to each other are both illustrated by electric fields. Major Topics Test charges—opposites attract Coulomb’s Law, ! = ! ! ! ! ! ! ! Electric fields and electric field lines Motion of charged particles in an electric field Important Vocabulary Proton = +1.6e19 C, mass = 1.67e27 Electron= 1.6e19 C, mass = 9.11e31 Conductor = material in which electrons can move freely Insulator = material in which electrons cannot move freely Coulomb = SI unit of charge Coulomb constant ! = 8.99!9 ! ! ! /! ! ! ! = 8.85! 12 ! ! /! ! ! Electric field = exists in space around a charge or charged object (units N/C) Diagrams Here are 4 basic scenarios illustrating the behavior of positive and negative charges (F=force on test charge, E=direction of electric field) q r + P F q 0 q r + P E q 0 q P F q 0 q P E r

Upload: vuongdieu

Post on 04-May-2018

214 views

Category:

Documents


1 download

TRANSCRIPT

Chapter  23:  Electric  Fields  By  Courtney  Yang  

 Background/Summary  Electromagnetic  forces  exist  everywhere  in  nature,  and  are  governed  by  the  existence  of  positive  and  negative  charges  in  the  atmosphere.  The  relationship  between  positive  and  negative  charges  (a  lack  or  abundance  of  electrons,  respectively)  and  the  way  charges  move  relative  to  each  other  are  both  illustrated  by  electric  fields.    Major  Topics  

• Test  charges—opposites  attract  • Coulomb’s  Law,  ! = ! !!!!

!!  

• Electric  fields  and  electric  field  lines  • Motion  of  charged  particles  in  an  electric  field  

 Important  Vocabulary  

• Proton  =  +1.6e-­‐19  C,  mass  =  1.67e-­‐27  • Electron=  -­‐1.6e-­‐19  C,  mass  =  9.11e-­‐31  • Conductor  =  material  in  which  electrons  can  move  freely  • Insulator  =  material  in  which  electrons  cannot  move  freely  • Coulomb  =  SI  unit  of  charge  • Coulomb  constant  ! = 8.99!9  ! ∙!!/!!  • !! = 8.85! − 12  !!/! ∙!!  • Electric  field  =  exists  in  space  around  a  charge  or  charged  object  (units  N/C)  

 Diagrams  

Here  are  4  basic  scenarios  illustrating  the  behavior  of  positive  and  negative  charges  (F=force  on  test  charge,  E=direction  of  electric  field)                              

 

     

q

r +

P F

q0

   

 

q

r +

P E

q0

 

 

 

q

-­‐

P F

q0

 

 

 

q

-­‐

P E r

Formulas  

! = !!!!!!!        !! = !"        !" = !

!"!!        ! = !

!!! = !

!!! = !

!"!!        ! =

!!! =

!"!        

! =!!        ! =

!!        ! =

!!  

   Free  Response  Problems  (See  solutions  for  diagrams)    

1. [Easy]  The  electron  and  proton  of  a  hydrogen  atom  are  separated  by  a  distance  of  approximately  5.3e-­‐11  m.  Find  the  magnitudes  of  the  electric  force  and  the  gravitational  force  between  the  two  particles.  

 2. [Medium]  A  ring  of  radius  a  carries  a  uniformly  distributed  positive  total  charge  

Q.  Calculate  the  electric  field  due  to  the  ring  at  a  point  P  lying  a  distance  x  from  its  center  along  the  central  axis  perpendicular  to  the  plane  of  the  ring.  

 3. [Medium]  Point  P  is  at  the  origin,  as  shown  below,  and  is  the  center  of  curvature  

of  the  charge  distribution.  a. On  the  dot  representing  point  P  below,  indicate  the  direction  of  the  electric  

field  at  point  P  due  to  the  charge  Q.  b. Derive  an  expression  for  the  magnitude  of  the  electric  field  at  point  P.  

 

               

Solutions:  

1. ! = ! ! !!^!

= !.!!!! !.!"!!!" !

!.!!!!! ! = 8.2! − 8  !  We  use  the  magnitude  of  the  charges  for  Coulomb’s  law  (otherwise  we  would  have  a  negative  force,  because  although  the  charges  of  a  proton  and  electron  are  of  the  same  magnitude,  an  electron  has  a  negative  charge),  and  find  the  force  of  attraction  between  the  proton  and  electron.  The  force  is  an  attractive  force  because  of  the  opposite  charges  of  the  proton  and  electron.  

Hydrogen  atom      

 

2. !! = ! !"!!, ! = !! + !!

!!, cos! = !

!  

   

!" = !"#$%& = !!"!!

!! =

!"

!! + !!!!!"  

! =!"

!! + !!!!!" =

!"

!! + !!!!

!" =!"#

!! + !!!!  

 

 

   

p

5.3e-­‐11 +

e

 -­‐

 θ

x  

+

+ +

+

+

+

+ +

+

+

+

+

dq

 

P

r  

 

Using  the  Pythagorean  Theorem,  we  find  that  ! = !! + !!!!,  and  we  use  this  value  for  

r  in  the  differential  equation  for  an  electric  field.  Since  we  are  only  using  the  cosine  (or  x)  component  of  each  dq  section  around  the  ring  (the  y-­‐values  cancel  each  other  out),  we  can  substitute  x/r  for  cosine  in  the  differential  equation.  Finally,  after  the  integration,  we  find  that  the  electric  field  at  point  P  relative  to  a  ring  of  equally  distributed  charge  can  be  expressed  as   !"#

!!!!!!!.  

 3.  

   

 

! = ! = !" = !"#$%& =!  !"!! !"#$  

!" =2!! !"  

! =2!"!!!

!/!

!!/!!"#$  !" =

2!"!!! !"#$

!4−!4

 

! =2 2!!! !"  

 Like  Problem  #2,  we  only  need  to  consider  the  cosine  (x)  components  of  the  electric  field  because  the  vertical  components  cancel  each  other  out.  Therefore,  since  we  are  integrating  with  respect  to  !"#$,  we  need  to  alter  dq  so  it  is  with  respect  to  the  angle  theta.  Plugging  everything  in  and  integrating  from  π/4  to  –π/4  (equivalent  part  of  circle  over  which  charge  Q  is  distributed),  we  solve  for  the  magnitude  of  the  electric  field  at  point  P.