phys-h406 – nuclear reactor physics – academic year 2015-2016 1 ch.ii: neutron transport...

20
PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016 1 CH.II: NEUTRON TRANSPORT INTRODUCTORY CONCEPTS ASSUMPTIONS NEUTRON DENSITY, FLUX, CURRENT REACTION RATE FLUENCE, POWER, BURNUP TRANSPORT EQUATION NEUTRON BALANCE BOLTZMANN EQUATION CONTINUITY AND BOUNDARY CONDITIONS INTEGRAL FORMS FORMAL SOLUTION USING NEUMANN SERIES

Upload: dana-moody

Post on 17-Jan-2016

225 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016 1 CH.II: NEUTRON TRANSPORT INTRODUCTORY CONCEPTS ASSUMPTIONS NEUTRON DENSITY, FLUX, CURRENT

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

5-2

01

6

1

CH.II: NEUTRON TRANSPORTINTRODUCTORY CONCEPTS• ASSUMPTIONS• NEUTRON DENSITY, FLUX, CURRENT• REACTION RATE• FLUENCE, POWER, BURNUP

TRANSPORT EQUATION • NEUTRON BALANCE• BOLTZMANN EQUATION • CONTINUITY AND BOUNDARY CONDITIONS • INTEGRAL FORMS • FORMAL SOLUTION USING NEUMANN SERIES

Page 2: PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016 1 CH.II: NEUTRON TRANSPORT INTRODUCTORY CONCEPTS ASSUMPTIONS NEUTRON DENSITY, FLUX, CURRENT

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

5-2

01

6

2

II.1 INTRODUCTORY CONCEPTSASSUMPTIONS

1. Interactions between n – matter: quantum problemBut (n) << characteristic dimensions of the reactor E

2. Density of thermal n: ~ 109 n/cm3

Atomic density of solids: ~ 1022 atoms/cm3

Interactions n – n negligible Linear equation for the neutron balance

3. Statistical treatment of the n, but small fluctuations about the average value of their flux

n: classical particles, not interacting with each other, whose average value of their probability density of presence is accounted for

Page 3: PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016 1 CH.II: NEUTRON TRANSPORT INTRODUCTORY CONCEPTS ASSUMPTIONS NEUTRON DENSITY, FLUX, CURRENT

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

5-2

01

6

NEUTRON DENSITY, FLUX, CURRENT

Variables

Position: 3

Speed: 3 or kinetic energy + direction

(Time: 1 t)

Angular neutron density

: nb of n in about with a speed in [v,v+dv] and a direction in about

Neutron density

Angular neutron density whatever the direction

3

r

rdd

vv

dtvrNtvrn ),,,(),,(4

(similar definition with variables (r,E,) or (r,v))(dimensions of N in both cases?)

,E

dvdrdtvrN ),,,( r

Page 4: PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016 1 CH.II: NEUTRON TRANSPORT INTRODUCTORY CONCEPTS ASSUMPTIONS NEUTRON DENSITY, FLUX, CURRENT

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

5-2

01

6

4

Angular flux

s.t.

Total neutron flux Integrated flux

(Angular) current density

Nb of n flowing through a surface / u.t. (net current)

Isotropic distribution?

),,(.),,,(),,(4

tvrnvdtvrtvr

),,,(.),,,( tvrNvtvr [dim ?]

),,,(),,,(),,,( tvrNvtvrtvrJ

dvdSdntvrdvdSdntvrJoo

.),,,().,,,(

44

),(4

1),,( vrvr

0.),,(4

dSdnvr

),,,( tvr

Net current = 0 , hence flux spatially cst?

Wrong!!A reactor is anisotropic But weak anisotropy often ok (1st order)

dvtvrtro

),,(),(

[dim ?]

Page 5: PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016 1 CH.II: NEUTRON TRANSPORT INTRODUCTORY CONCEPTS ASSUMPTIONS NEUTRON DENSITY, FLUX, CURRENT

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

5-2

01

6

5

REACTION RATE

Nb of interactions / (volume.time): R

Beam of incident n on a (sufficiently) thin target (internal nuclei not hidden):

R = N.(r,t).(r) = (r).(r,t)

Or: interaction frequency = v [s-1]

n density = n(r,t) [m-3]

R = n(r,t).v(r) = (r).(r,t)

General case: cross sections dependent on E ( v)

Rem: = f(relative v between target nucleus and n) while = f(absolute v of the n) implicit assumption (for the moment): heavy nuclei immobile

(see chap. VIII to release this assumption)

R = Nb nuclei

cm3

Nb n

cm2.s

Cross sectional area of a nucleus (cm2)

dvtvrvrdvtvrnvrvRoo

),,(),(),,(),( ***

x x

Page 6: PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016 1 CH.II: NEUTRON TRANSPORT INTRODUCTORY CONCEPTS ASSUMPTIONS NEUTRON DENSITY, FLUX, CURRENT

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

5-2

01

6

6

Rem: differential cross sections

Scattering speed after a collision?

Conditional probability that 1 n with speed undergoing 1 collision at leaves it with a speed in [v’, v’+dv’] and a direction in about

with

Scattering kernel s.t.

Isotropic case:

),(

'')'.,',,(

),(

'')',',,(

vr

ddvvvr

vr

ddvvvr

s

s

s

s

)',',,().,()',',,( vvrKvrvvr ss

)',',,( vvrK

rv

''d

)',(4

1)',',,( vvrvvr ss

),('')',',,(4

vrddvvvr sso

[dim ?]

Why?

Page 7: PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016 1 CH.II: NEUTRON TRANSPORT INTRODUCTORY CONCEPTS ASSUMPTIONS NEUTRON DENSITY, FLUX, CURRENT

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

5-2

01

6

7

FLUENCE, POWER, BURNUP

Fluence

Characteristics of the irradiation rate ([n.cm-2] or [n.kbarn-1])

Power

Linked to the nb of fission reactions

Burnup

Thermal energy extracted from one ton of heavy nuclei in fresh fuel

Fluence x <fission cross section> x energy per fission

')',(),( dttrtrt

o

rdtrrtPV f ),()()(

Page 8: PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016 1 CH.II: NEUTRON TRANSPORT INTRODUCTORY CONCEPTS ASSUMPTIONS NEUTRON DENSITY, FLUX, CURRENT

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

5-2

01

6

8

II.2 TRANSPORT EQUATION

NEUTRON BALANCE

Variation of the nb of n (/unit speed) in volume V, in dv about v, in about

rdt

tvr

vrd

t

tvrNrdtvrN

t VVV

),,,(1),,,(

),,,(

)),,,((),,,(),,,(),,,(1

tvrJdivtvrtvrSt

tvr

v t

Sources Losses due toall interactions

Losses throughthe boundary

Gauss theorem

V

rdtvrSV

),,,( rdtvrvrtV

),,,(),( SdtvrJ ).,,,(

(n produced in about , dv about v, about )

rdd

r (n lost in about , dv about v, about )

rdd

r

d

dS

Page 9: PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016 1 CH.II: NEUTRON TRANSPORT INTRODUCTORY CONCEPTS ASSUMPTIONS NEUTRON DENSITY, FLUX, CURRENT

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

5-2

01

6

9

Rem: general form of a conservation equation

BOLTZMANN EQUATION (transport)

Without delayed nSources?

Steady-state form

Sourcescurrentdivdensityt

)(

),,,( tvrS

'')',',(),',',(),,(),(),,(.4

ddvvrvvrvrvrvr sot

),,('')',',()',()(4

1

4

vrQddvvrvrv fo

Scattering External source

Fission

)(4

1v

''),',',(),',',(

4

ddvtvrvvrso

),,,( tvrQ

''),',',()',(4

ddvtvrvrfo

Total nb/(vol. x time) of n due to all fission at r

Fraction in dv about v, d about

Page 10: PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016 1 CH.II: NEUTRON TRANSPORT INTRODUCTORY CONCEPTS ASSUMPTIONS NEUTRON DENSITY, FLUX, CURRENT

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

5-2

01

6

10

Compact notation

with

(destruction-scattering operator)

and

(production operator)

Non-stationary form

'')',',()',()(4

1),,)((

4

ddvvrvrvvrJ fo

'')',',(),',',(

),,(),(),,(.),,)((

4

ddvvrvvr

vrvrvrvrK

so

t

QJK

QKJtv

)(1

Page 11: PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016 1 CH.II: NEUTRON TRANSPORT INTRODUCTORY CONCEPTS ASSUMPTIONS NEUTRON DENSITY, FLUX, CURRENT

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

5-2

01

6

11

With delayed n

Concentration Ci of the precursors of group i:

with i = (ln 2) / Ti

Def: production operator for the delayed n of group i, i = 1…6:

Total production operator:

Let

t

trCi ),(

'')',()(4

1)(

4

ddvvrvJ foii

4

)().,(),,,)()(1(),,,)((

6

1

vtrCtvrJtvrJ i

iii

o

4

)().,(),,(

vtrCtvrF i

ii

),( trCii

dvdtvrvrfo),,,(),(

4

prompt n

i

Fraction/(vol. x time) of n due to all fissions at r in group i

Radioactive decay

Fraction in dv about v, d about

Production of delayed n of group i / (vol. x time)

(precursors assumed to be a direct product of a fission)

Page 12: PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016 1 CH.II: NEUTRON TRANSPORT INTRODUCTORY CONCEPTS ASSUMPTIONS NEUTRON DENSITY, FLUX, CURRENT

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

5-2

01

6

12

System of equations for the transport problem with delayed n

Stationary regime

Reduction to 1 equation:

Production operator: equivalent to having J Jo (prompt n) iff

Formalism equivalent, with or without delayed n, with a modified fission spectrum

0),,(),,(])1[(6

1

vrQvrJKJ iii

o

)()()1()(~)(6

1

vvvv iii

oo

6...1,),,)((),,(),,(

itvrJtvrF

t

tvrFiiii

i

),,,(),,(),,,(])1[(),,,(1 6

1

tvrQtvrFtvrKJt

tvr

v iii

o

(Why in stationary regime?)

Page 13: PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016 1 CH.II: NEUTRON TRANSPORT INTRODUCTORY CONCEPTS ASSUMPTIONS NEUTRON DENSITY, FLUX, CURRENT

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

5-2

01

6

13

CONTINUITY AND BOUNDARY CONDITIONS

Nuclear reactors: juxtaposition of uniform media ( indep. of the position) How to combine solutions of

in the media?

Let : discontinuity border (without superficial source)

Integration on a distance [-,] about in the direction

continuity on Boundary condition (convex reactor surrounded

by an vacuum):

),,(),,(),(),,(. vrSvrvrvr t

0)(),,(),,(0

Ovrvr ss

dvrS

dvrvrdvr

s

ssts

),,(

),,(),(),,(.

0.,0),,( nrvr ss

sr

Page 14: PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016 1 CH.II: NEUTRON TRANSPORT INTRODUCTORY CONCEPTS ASSUMPTIONS NEUTRON DENSITY, FLUX, CURRENT

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

5-2

01

6

14

INTEGRAL FORMS

If s = distance covered in the direction of the n:

Lagrange’s variation of constants:

Let

(interpretation ?)

: optical thickness (or distance) [1]

),,(),,(),(),,(

vsrSvsrvsrds

vsrdooot

o

'),,'(),,("),"(

' dsvsrSevsr o

s dsvsr

o

ot

s

s

dsvsrSevro

dsvsrts

o ),,(),,('),'(

'),'(),( dsvsrrr ot

s

oov

srr o

Page 15: PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016 1 CH.II: NEUTRON TRANSPORT INTRODUCTORY CONCEPTS ASSUMPTIONS NEUTRON DENSITY, FLUX, CURRENT

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

5-2

01

6

15

Yet

If both scattering and independent source are isotropic

After integration to obtain the total flux:

Rem: S fct of !!

')(2 dsdrrrrd oo

''),),((),,( ))(,(

4

dsdvsrSevr oo

srr ov

oo

ooR

o

rr

rdrr

rrvrS

rr

e ov

),,(3 2

),(

ooRo

rr

rdvrSrr

evr

ov

),(4

),(3 2

),(

Page 16: PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016 1 CH.II: NEUTRON TRANSPORT INTRODUCTORY CONCEPTS ASSUMPTIONS NEUTRON DENSITY, FLUX, CURRENT

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

5-2

01

6

16

Explicit form of the integral equation for the angular flux

We have

and

Thus

(interpretation ?)

),,('')',',(),',',(

'')',',()',()(4

1),,(

4

4

vrQddvvrvvr

ddvvrvrvvrS

so

fo

oo

ofosoo

o

o

rr

R

ooo

o

o

rr

R

rdddvvr

vrv

vvrrr

rr

rr

e

rdvrQrr

rr

rr

evr

ov

ov

'')',',(

)]',(4

)(),',',([

),,(),,(

42

),(

2

),(

3

3

oo

ooR

o

rr

rdrr

rrvrS

rr

evr

ov

),,(),,(3 2

),(

Page 17: PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016 1 CH.II: NEUTRON TRANSPORT INTRODUCTORY CONCEPTS ASSUMPTIONS NEUTRON DENSITY, FLUX, CURRENT

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

5-2

01

6

17

Transition kernel Transport process: proba distribution of the ingoing coordinates in the next collision, given the outgoing coordinates from the previous one

Collision kernel

Impact: entry in 1 collision exit

Compact notation :

)'().'(.'

'

')',(),,',','( 2

),'(

vvrr

rr

rr

evrvrvrT

rr

t

v

)'()','(

)]','(4)(

),',','([),,',','( rr

vr

vrv

vvrvrvrC

t

fs

)',','(';),,( vrPvrP

1)'( dPPPC

)(1)'( vedPPPT

Captures not considered

Fissions : 1

= 1 for an infinite reactor

(based on the negative exponential law)

Page 18: PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016 1 CH.II: NEUTRON TRANSPORT INTRODUCTORY CONCEPTS ASSUMPTIONS NEUTRON DENSITY, FLUX, CURRENT

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

5-2

01

6

18

Collision densities

Ingoing density: = expected nb of n entering/u.t. in a collision with coordinates in dP about P

Outgoing density: = expected nb of n leaving/u.t a collision with coordinates in dP about P

Evolution equations

')'()'()( dPPPTPP

dPP)(

)()()( PPP t

dPP)(

')'()'()()( dPPPCPPQP

")"()"()(

"')'()'"()"(')'()'()(

dPPPKPPI

dPdPPPTPPCPdPPPTPQP

Interpretation ?

Page 19: PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016 1 CH.II: NEUTRON TRANSPORT INTRODUCTORY CONCEPTS ASSUMPTIONS NEUTRON DENSITY, FLUX, CURRENT

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

5-2

01

6

19

Rem:

equ. of (P) = (equ. of (P)) x t(P)

Possible interpretation of n transport as a shock-by-shock process

FORMAL SOLUTION USING NEUMANN SERIES

Let

j(P): ingoing collision density in the jth collision

: solution of the transport equation

Not realistic: infinite summation… Basis for solution algorithms

)()( PIPo

...1,')'()'()( 1 jdPPPKPP jj

)()(0

PP jj

Page 20: PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016 1 CH.II: NEUTRON TRANSPORT INTRODUCTORY CONCEPTS ASSUMPTIONS NEUTRON DENSITY, FLUX, CURRENT

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

5-2

01

6

20

CH.II: NEUTRON TRANSPORTINTRODUCTORY CONCEPTS• ASSUMPTIONS• NEUTRON DENSITY, FLUX, CURRENT• REACTION RATE• FLUENCE, POWER, BURNUP

TRANSPORT EQUATION • NEUTRON BALANCE• BOLTZMANN EQUATION • CONTINUITY AND BOUNDARY CONDITIONS • INTEGRAL FORMS • FORMAL SOLUTION USING NEUMANN SERIES