phys. chem part 2 (1)

Upload: faiz

Post on 07-Jul-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 PHYS. CHEM PART 2 (1)

    1/38

    PHYSICAL

    CHEMISTRY 

    SMJC 2233

  • 8/18/2019 PHYS. CHEM PART 2 (1)

    2/38

    The direci!n !" chemical

    reaci!n# The total energy of the universe isconstant, an so is the energy of anyisolate system.

    !ut energy can change form, an thisha""ens in both chemical an"hysical changes.

     Thermoynamics, in its more com"letean #uantitative form, can tell you in$hich irection such changes $ill go.

    %t $ill not tell you how fast  they $ill go&

  • 8/18/2019 PHYS. CHEM PART 2 (1)

    3/38

    $ir# La% !"Them!dynamic#

    • any change in inernal energy, ∆U, of a system is e#ual to the sum ofthe $or( one on the system an theheat )o$ into the system.

    • energy cannot be create orestroye, it can only be transformefrom one form to another

    *

  • 8/18/2019 PHYS. CHEM PART 2 (1)

    4/38

    There i# a relai!n#hi& be%een %!r' ()*+Hea (,* and he inernal ener-y (.* !" a#y#em a# "!ll!%#/

    0. 1 , )

    Thu#+ , and ) are &!#iie i" ener-yran#"erred in! he #y#em a# %!r' !r hea 4, and ) are ne-aie i" ener-y i# l!#5

    In an!her %!rd#+ %e ie% he 6!% !" ener-ya# %!r' !r hea "r!m he #y#em7#&er#&ecie5

      The $ir# La% !" Therm!dynamic#

    4

  • 8/18/2019 PHYS. CHEM PART 2 (1)

    5/38

    Ener-y

    The ener-y !" a #y#em i# i# ca&aciy ! d! %!r'5

    )hen %!r' i# d!ne !n a #y#em+ i# ca&aciy !d! %!r' i# increa#ed+ #! he ener-y !" he#y#em i# increa#ed5

    )hen he #y#em d!e# %!r'+ i# ener-y i#reduced5

    In #ummary+ %hen %!r' i# d!ne !n a #y#em()1&!#iie*+ #! he ener-y increa#e# (!r%e can #ay+ inernal ener-y+ 0. 1 &!#iie*5

    5

  • 8/18/2019 PHYS. CHEM PART 2 (1)

    6/38

    The Inernal Ener-y

    The !al ener-y !" a #y#em i# called heinernal ener-y+ .5

    . i# he !al 'ineic &!enial ener-y !" hem!lecule# c!m&!#in- he #y#em5

    The chan-e in inernal ener-y+ 0.+ i# hedi8erence in inernal ener-y be%een %! #ae#5

    I mean# ha+ %hen he #y#em chan-e# "r!miniial #ae i %ih he inernal ener-y+ . i  ! a9nal #ae " %ih he inernal ener-y+ ." /

    0. 1 ."  : .i  

    6

  • 8/18/2019 PHYS. CHEM PART 2 (1)

    7/38

    E;&an#i!n )!r'

     E;&an#i!n %!r' i# he %!r' ari#in- "r!m a chan-e in

    !lume5

     $!r e;am&le+ a# #h!%n in he $i-ure+ %hen a &i#!n !"area A m!e# !u hr!u-h a di#ance d

  • 8/18/2019 PHYS. CHEM PART 2 (1)

    8/38

    E;&an#i!n )!r'

    The e;ernal &re##ure+ Pe; i# e,uialen !a %ei-h &re##in- !n he &i#!n+ he "!rce!&&!#in- e;&an#i!n i# $1Pe;A5

      Pe; (he e;ernal &re##ure* i# he &re##urea&&lied !n he #y#em "r!m !u#ide he#y#em5 Thu#/

    +

      f  

    i

    exV W dV = − Ρ ∫ 

  • 8/18/2019 PHYS. CHEM PART 2 (1)

    9/38

    E;&an#i!n a-ain# C!n#an Pre##ure

    A a c!n#an e;ernal&re##ure hr!u-h!u hee;&an#i!n/) 1 : Pe; 0= 1 Pe; (=i > =" *

    $!r e;am&le+ a# #h!%n in$i-ure+ he %!r' d!ne bya -a# %hen i e;&and#a-ain# a c!n#ane;ernal &re##ure+ i#

    e,ual ! he #haded area5

    A chemical e;am&le !"hi# c!ndii!n i# hee;&an#i!n !" a -a#

    "!rmed in a chemical

  • 8/18/2019 PHYS. CHEM PART 2 (1)

    10/38

    Reer#ible E;&an#i!n

      Sy#em a e,uilibrium are &!i#ed !under-! reer#ible chan-e5

     Here+ Pe; i# c!ninu!u#ly chan-in- bu i#

    neer "ar "r!m he &re##ure !" he #y#emi#el"5

     In reer#ible e;&an#i!n+ Pe; 1 P#y# > dP ?

    P#y# 

     Thu#+ d) 1 :Pe; d= 1 :P#y#d=

    10

  • 8/18/2019 PHYS. CHEM PART 2 (1)

    11/38

  • 8/18/2019 PHYS. CHEM PART 2 (1)

    12/38

     ue#i!n5 A #am&le c!n#i#in- !" B m!l !" Ar-!n i#e;&anded i#!hermally a °C "r!m 225D dm3  ! DD5dm35 Calculae %!r' "!r each "!ll!%in- &r!ce##e#/

     reer#ibly/

    ) 1 : nRT ln (=" @ =i*  1 : (B m!l* (53BD JK :Bm!l:B* (2F3 K* ln (DD5 @ 225D* 1

    : BGF3 J

    A-ain# a c!n#an e;ernal &re##ure e,ual ! he9nal &re##ure !" he -a#/

    ) 1 :P" 0= %hereP" 1 nRT @ =" P" 1 (B m!l* (53BD JK 

    :Bm!l:B* (2F3 K* @ DD5 dm3 1 G5 Jdm:3

     0= 1 =

    " :=

    i 1 DD5 : 225D dm3 1 225D dm3

      12

  • 8/18/2019 PHYS. CHEM PART 2 (1)

    13/38

    Plea#e d! rei#i!n !n 

    erfect as /Pa-e 3B!oyles a$ /constant tem"erature

    an3harles a$ /constant "ressure

    Pa-e 32H!me%!r' Pa-e GD

  • 8/18/2019 PHYS. CHEM PART 2 (1)

    14/38

    ome$or(&

    • age 104

     – 2.*/!

     – 2.4/!

     –

    2.5/! – 2.6/!

     – 2c.1b

     – 2!.2/b

     – 2!.*/b

     – 2c6.b "art /i

     – 2c7.b

     – 2c+.b

    14

  • 8/18/2019 PHYS. CHEM PART 2 (1)

    15/38

    In any naurally !ccurrin- #y#em heenr!&y !" an i#!laed #y#em cann!decrea#e5

    a#ed !n he 2

    nd

     la% !" herm!dynamic#+hea can be ran#"erred #&!nane!u#lyNLY   "r!m a b!dy a a hi-herem&eraure ! a b!dy a a l!%erem&eraure5

    The c!nce& !" enr!&y i# u#ed !de#cribe he de-ree !" !rder in a#y#em5 The number !" %ay# a #y#emcan be !r-ani

  • 8/18/2019 PHYS. CHEM PART 2 (1)

    16/38

     Hea Ca&aciy a C!n#an =!lume (C=*

     A a c!n#an !lume/ d. 1 d,= 1 C=dT

     $!r polyatomic -a#e#+ he m!lar hea ca&aciy aa c!n#an !lume i# C+m1 2G JK :B m!l:B5

      $!r monoatomic  &er"ec -a#e#+ he m!lar heaca&aciy a a c!n#an !lume+ C+m1 (3@2*R5

    16

    U C     

     

     

     

     

    ∂=

  • 8/18/2019 PHYS. CHEM PART 2 (1)

    17/38

    Enhal&y (H*

    17

    U V Η = + Ρ  

      p

     P 

     P 

    ∂Η   =  ÷∂Τ  

    ∆Η = ∆Τ

  • 8/18/2019 PHYS. CHEM PART 2 (1)

    18/38

    1+

    ue#i!n5ne m!le !" an ideal m!n!a!mic -a# a 2G5C i# c!!led andall!%ed ! e;&and "r!m B5 dm3 ! B5 dm3 a-ain# ane;ernal &re##ure !" B5 bar5 Calculae he 9nal em&eraure+

    %!r'+ hea+ inernal ener-y chan-e and enhal&y chan-e !"hi# &r!ce##5 (R 1 53BD ; B:2 dm35bar5K :B5m!l:B5*An#%er/P= 1 nRTB bar (B dm3* 1 B m!l (53BD;B:2 dm35bar5K :B5m!l:B* TThu#/ T 1 B253 K 

    B bar 1 BG Nm:2 Thu#/ B J 1 B Nm % 1 Pe; (=i > =" * 1 BG Nm:2 (B;B:3 m3 > B;B:3 m3* 1 :O J$!r m!n!a!mic -a#+ C+m 1 (3@2*R

     . 1 nC+m  T 1 B m!l ; 3@2 (53BD J5m!l:B5K :B* (B253 K >2O K* 1 :22B5B J, 1 . > % 1 :22B5B J > (: O J* 1 F35O J H 1 . P= 1 : 35F 'J

  • 8/18/2019 PHYS. CHEM PART 2 (1)

    19/38

    1

    The Enhal&y !" a Per"ec a#

    $!r an Ideal a# he relai!n#hi& be%een heaca&aciie# i# -ien by/

    C&:C 1 nR

     g 

    V nRU V 

    U nR

    U n R

    Ρ = Τ

    Η = + Ρ  

    Η = + Τ

    ∆Η = ∆ + ∆ Τ

  • 8/18/2019 PHYS. CHEM PART 2 (1)

    20/38

    Therm!chemi#ry

    20

    The #udy !" he ener-y ran#"erred a# headurin- he c!ur#e !" chemical reaci!n5

    I" %e 'n!% 0. !r 0H "!r a reaci!n+ %e can&redic he am!un !" hea he reaci!n can&r!duce5

    Sandard enhal&y chan-e The chan-e in

    enhal&y "!r a &r!ce## in %hich he iniial and9nal #ub#ance# are in heir #andard #ae#5

    Sandard #ae i# &ure "!rm a B bar

    He## Q# la%/ The #andard enhal&y chan-e !" an!erall reaci!n i# he #um !" he #andard

    enhal&ie# !" he indiidual reaci!n# in! %hich areaci!n may be diided5

    Pr Re tanr m m

    oducts ac ts

    ν ν ∆ Η = Η − Η  

    ∑ ∑

    o o o

  • 8/18/2019 PHYS. CHEM PART 2 (1)

    21/38

    Enr!&y

    ntro"y is a measure of the energy is"erse in a"rocess.

      The conce"t of entro"y is use to escribe the

    egree of orer in a system.

     The number of $ays a system can be organiecan be use as a measure of its isorer or

    ranomness

     The secon la$ of thermoynamics uses entro"yto ientify the s"ontaneous changes among

    "ermissible changes.

  • 8/18/2019 PHYS. CHEM PART 2 (1)

    22/38

    Enr!&y ny s"ontaneous /natural change in an isolate

    system is accom"anie by an increase in theentro"y of the system.

    ll s"ontaneous "rocesses are irreversible"rocesses an Total entro"y $hich is the sum ofthe entro"y of the system "lus the surrouningmust be 8 0.

    9or reversible "rocess, 0S total = 0S #y#0S#ur1

    $!r adiabaic chan-e+ 0S#urr 1 (no heat istransferred to surr.) 22

  • 8/18/2019 PHYS. CHEM PART 2 (1)

    23/38

    S&!nane!u# Pr!ce##e#

    2*

  • 8/18/2019 PHYS. CHEM PART 2 (1)

    24/38

    The Therm!dynamic# e9nii!n !" Enr!&y

    I !ccur# a# a re#ul !" a &hy#ical !r a chemical chan-e(-enerally/ a &r!ce##*

    I c!me# "r!m he idea ha h!% much ener-y i#ran#"erred a# hea5

    )hy I i# becau#e hea #imulae# rand!m m!i!n inhe #urr!undin-#5

    )!r' #imulae# uni"!rm m!i!n !" a!m# in he

    #urr!undin-#+ hu# i d!e#n7 chan-e heir enr!&y5

    The enr!&y !" all &er"ec cry#alline #ub#ance# i#

  • 8/18/2019 PHYS. CHEM PART 2 (1)

    25/38

    25

    Enr!&y and reer#ibiliy

    9or a reversible "rocess, the entro"y change ise:ne as&

    Reversible& a "rocess $here a tiny change inconitions $oul reverse the "rocess.

    ;uring a reversible "rocess, the system remainsat e#uilibrium. /systems at e#. tens to unergoreversible change

    ntro"y generate ue to irreversibility

     ∆S < W lost !  

    qS    rev=∆

  • 8/18/2019 PHYS. CHEM PART 2 (1)

    26/38

    =n a $arm evening, 27o3, >ara an li aresitting outsie having a co?ee an $atchingtheir young cousin, 9ara "laying $ith a ball.

    9ara, $ho $eighs 2+ (g, is running after theball. nfortunately she isnt loo(ing $hereshe is going an runs into a tree. 9arabounces o? the tree, lans on the groun

    an comes to a com"lete sto". 9ara ha as"ee of + m.s-1 Aust before she hit the tree.Bhat is the change in entro"y of theuniverse ue to this collisionC

  • 8/18/2019 PHYS. CHEM PART 2 (1)

    27/38

    %n this case, 9aras collision is an irreversible "rocess , hermechanical energy /(inetic energy is com"letely lost as thermalenergy, an cannot be change bac( into mechanical energy.

     The change in entro"y of the universe ue to this collision isgiven by&

    S 1 W l!# /T  $here !  is the tem"erature anW lost is the $or( lost ue to an irreversible "rocess

    The %!r' l!# due ! he c!lli#i!n i# he 'ineic ener-y&rei!u#ly had by $ara

     "# $ E mv 2 < E × 2+ (g × /+ m.s-1 < +6 F.

    The chan-e in enr!&y !" he unier#e i#

     ∆S < W lost !  

    < +6 F G *00 H   < *.0 F.H -1.

  • 8/18/2019 PHYS. CHEM PART 2 (1)

    28/38

    Sandard Reaci!n Enr!&y

    •  The i?erence bet$een the molar entro"ies of the"ure, se"arate "roucts an the "ure se"aratereactants at their stanar states at s"eci:etem"erature.

    • Bhere vA are stoichiometric numbers / I for"roucts, - for reactants

  • 8/18/2019 PHYS. CHEM PART 2 (1)

    29/38

    $ree:ener-y $unci!n#

    Helmh!l< "ree:ener-y A+

    A 1 . > TS

    ibb# "ree:ener-y +

      he m!#im&!ran

    1 H > TS

    1 . P= >TS  1 H : T S

  • 8/18/2019 PHYS. CHEM PART 2 (1)

    30/38

    • 3riteria of s"ontaneous change &

    dA + (a c!n#an em&5 and!l5*

    d (a c!n#an em&5 and&re#5*

    )e are m!re inere#ed in chan-e# !ccurrin-a c!n#an &re##ure raher han c!n#an

    !lume5

    Chemical reaci!n# are #&!nane!u# in hedireci!n !" decrea#in- ibb# Ener-y5

  • 8/18/2019 PHYS. CHEM PART 2 (1)

    31/38

    Helmh!l< Ener-y

    • t e#uilibrium, $hen neither thefor$ar nor reverse "rocess has atenency to occur, is&

    d AT,V  1

    •  The change in the elmholt functionis e#ual to the maJimum $or(accom"anying a "rocess at constanttem"erature&

    dwma; 1 d A

    =*1

  • 8/18/2019 PHYS. CHEM PART 2 (1)

    32/38

    ibb# $ree Ener-y

    • =r sim"ly 9ree nergy

    • wa,maJ < %, (maximum additional non&expansionwor')

    • wa,maJ $ ∆%

    • ∆r G = ∆r  H K − T ∆r S K /standard %ibbs energy of reaction• criterion for e#uilibrium is that the total ibbs 9ree

    nergy of a reaction is at a minimum.

    • reaction in the irection of ecreasing is s"ontaneous

    • reaction in the irection of increasing is nots"ontaneous

  • 8/18/2019 PHYS. CHEM PART 2 (1)

    33/38

    **

  • 8/18/2019 PHYS. CHEM PART 2 (1)

    34/38

    *4

  • 8/18/2019 PHYS. CHEM PART 2 (1)

    35/38

    *5

  • 8/18/2019 PHYS. CHEM PART 2 (1)

    36/38

    E,uilibrium c!n#an

  • 8/18/2019 PHYS. CHEM PART 2 (1)

    37/38

    E;am&le

  • 8/18/2019 PHYS. CHEM PART 2 (1)

    38/38

    Summary

    Therm!dynamic Pr!&erie# .+H+ S+ A+ • $ir# La% L uses internal energy to

    ientify "ermissible changes.• Sec!nd La% L uses entro"y to

    ientify s"ontaneous changes among

    those "ermissible changes.