photonic bandgap materials - mcgill university

52
Photonic Bandgap and Photonic Bandgap and Electromagnetic Metamaterials Andrew Kirk andrew kirk@mcgill ca andrew .kirk@mcgill.ca Department of Electrical and Computer Engineering McGill Institute for Advanced Materials 1 Photonic bandgap and metamaterials A Kirk 11/24/2008

Upload: others

Post on 01-Jan-2022

6 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Photonic Bandgap Materials - McGill University

Photonic Bandgap andPhotonic Bandgap and Electromagnetic Metamaterials

Andrew Kirk

andrew kirk@mcgill [email protected]

Department of Electrical and Computer Engineering

McGill Institute for Advanced Materials

1Photonic bandgap and metamaterialsA Kirk 11/24/2008

Page 2: Photonic Bandgap Materials - McGill University

References and further readingReferences and further reading

• Steven Johnson (MIT), Tutorial slides and notes:Steven Johnson (MIT), Tutorial slides and notes: http://ab‐initio.mit.edu/photons/tutorial/

• J‐M Lourtioz, Photonic Crystals: Towards Nanoscale, yDevices, Springer, 2005

• Maksim Skorobogatiy (Ecole Polytechnique), course g y y qin photonic crystals

2Photonic bandgap and metamaterialsA Kirk 11/24/2008

Page 3: Photonic Bandgap Materials - McGill University

ContentsContents

• Background: EM wavesBackground: EM waves

• Photonic crystalsB d ff t– Bandgap effects

– Resonant cavities

– Superprisms

– Negative index properties

• Metamaterials and optical cloaking

• Fabrication

3Photonic bandgap and metamaterialsA Kirk 11/24/2008

Page 4: Photonic Bandgap Materials - McGill University

After attending this class, you should b blbe able to:

• Explain what is meant by a photonic bandgapp y p g p• Explain what is meant by an electromagnetic metamaterial

• Estimate the critical dimensions for photonic bandgap structures, as a function of wavelength

• Describe the way that photonic bandgap• Describe the way that photonic bandgapstructures can be used to modify the reflective, refractive or dispersive properties of materials

• Describe the common fabrication processes for photonic bandgap and metamaterials

4Photonic bandgap and metamaterialsA Kirk 11/24/2008

Page 5: Photonic Bandgap Materials - McGill University

5Photonic bandgap and metamaterialsA Kirk 11/24/2008

Page 6: Photonic Bandgap Materials - McGill University

Harmonic WavesHarmonic Waves

U0

z/2 /2

-U0

0

Ti2 12

)cos(, 0 kztUtzU

• Wavelength : distance needed to recover the same phase

Space representation

Time representationk

2

f12

fc

Wavelength : distance needed to recover the same phase.• Wave period : time needed to recover the same phase.• Phase of the wave: state at that point in space‐time• Wave frequency : inverse of the period• Wave frequency : inverse of the period.• Phase velocity: rate at which constant phase propagates 

6Photonic bandgap and metamaterialsA Kirk 11/24/2008

Page 7: Photonic Bandgap Materials - McGill University

An electromagnetism reviewAn electromagnetism reviewy

xLight is an electromagnetic wave:

• Orthogonal electric (E) and magnetic (H) fields H

xLight is an electromagnetic wave:

• Wave equation:E z

22

2

1t

EE

22

2

1t

HH

• Phase velocity: which is 3x108 m/s in vacuum1pv

t t

• Material properties:

• Permittivity describes electric field response• Permeability describes magnetic field response• Refractive index n is relative speed of light 1/ pn v

7Photonic bandgap and metamaterialsA Kirk 11/24/2008

Page 8: Photonic Bandgap Materials - McGill University

Transverse EM waves (plane waves)Transverse EM waves (plane waves)

W f l f hWavefronts: planes of constant phase Have infinite extent

E0

-E0

0

kk

How do we describe a wave that does not travel on the zHow do we describe a wave that does not travel on the z‐axis ?

Introduce the wave vector kIntroduce the wave vector k

8Photonic bandgap and metamaterialsA Kirk 11/24/2008

Page 9: Photonic Bandgap Materials - McGill University

Transverse EM wavesTransverse EM waves

k W t ( 1)

Write the wave as:

k

k = Wave vector (m‐1)

k a k a k a k

0, , , expx y z t t E E k r

R

P

an

k a xkx a yky azkz

k 2 2

2 kx2 ky

2 kz2 2

0 zu y

What is the plane for which k R is constant ?What is the plane for which k.R is constant ?

Plane of constant phase WAVEFRONT

k is always normal to wave‐front9Photonic bandgap and metamaterialsA Kirk 11/24/2008

Page 10: Photonic Bandgap Materials - McGill University

Dispersion relationDispersion relation

• Relationship between wave number and frequency• For an anisotropic medium, we need to consider the wave‐vector k

2 2 2c k

pv k

ency

l l l d f

Freq

ue Group velocity is local gradient of dispersion curve

gdvdk

k

In free‐space, dispersion relation is linear

Wave‐vectorg dk

10Photonic bandgap and metamaterialsA Kirk 11/24/2008

Page 11: Photonic Bandgap Materials - McGill University

Photonic crystals MultilayerPhotonic crystals

• Also known as photonic b d l

1‐D

aperiod

bandgap materials• Periodic dielectric and/or metallic structures

n1n2metallic structures

• Period is typically close to the wavelength of light

22‐D

Hexagonalg g

• Can be 1‐D, 2‐D, 3‐D structures

i d f

3‐DHexagonal

• May contain defects, heterostructures and other more complex inclusionsp

Woodpile11Photonic bandgap and metamaterialsA Kirk 11/24/2008

Page 12: Photonic Bandgap Materials - McGill University

Scattering from periodic structuresScattering from periodic structures

• Coherent illumination with wavelength 0

• Each plane scatters waves which i t f t ti l interfere, constructively or destructively

• Reflection maxima occur at aangles given by Bragg’s law: 

2 cosa m

• Or equivalently

2 cosa m

m a k

0( / )effn 12Photonic bandgap and metamaterialsA Kirk 11/24/2008

Page 13: Photonic Bandgap Materials - McGill University

Floquet‐Bloch theoremFloquet Bloch theorem

• Infinitely periodic structure– Implies that EM fields will have same periodicity– Fields can be expanded as a summation of Bloch waves (i.e. 

Fourier series)– This is Floquet‐Bloch Theorem

• Structure has reciprocal lattice, with basis vectors Gj• Fields are written:Fields are written:

exp . exp .G

j j u k r V G k r

• Where V derives from the Fourier series• Bloch waves are conserved as they move through the 

lattice 

13Photonic bandgap and metamaterialsA Kirk 11/24/2008

Page 14: Photonic Bandgap Materials - McGill University

Brillouin zonesBrillouin zones• In periodic structure, all of dispersion curve 

a

can be mapped into the irreducible Brillouinzone a k is periodic k+2/a isperiodperiod k is periodic  k+2/a is

equivalent to k n x n x a Limit of zero modulation

cy

cy

Limit of zero modulation

Freq

uenc

Freq

uenc

kWavevector Wavevector 2ka

0‐0.5 0.5

14Photonic bandgap and metamaterialsA Kirk 11/24/2008

Page 15: Photonic Bandgap Materials - McGill University

Brillouin zonesBrillouin zones• In periodic structure, all of dispersion curve can be mapped into the irreducible Brillouinzone a k is periodic k+2/a isperiod k is periodic  k+2/a is

equivalent to k n x n x a Finite index difference

cy

cy

Finite index difference

Freq

uenc

Freq

uenc Bandgap

kWavevector Wavevector 2ka

0‐0.5 0.5

15Photonic bandgap and metamaterialsA Kirk 11/24/2008

Page 16: Photonic Bandgap Materials - McGill University

Degeneracy splitting at band‐edgeDegeneracy splitting at band edgeFinite index differenced m

ency

Bandgap

a

period

Freq

ue

ka00 5 0 5

Bandgap

EM waves

• Bandgap width is approximately

Wavevector 2ka

0‐0.5 0.5 n x n x a

d• Bandgap width is approximately

• State concentrated in higher index has lower frequency

0

d

m

State concentrated in higher index has lower frequency 

16Photonic bandgap and metamaterialsA Kirk 11/24/2008

Page 17: Photonic Bandgap Materials - McGill University

BandgapBandgap

• Bandgap: Frequency bandFinite index difference

Bandgap: Frequency band for which propagation is forbidden

ency

Bandgap• All 1‐D photonic crystals have a bandgap Fr

eque

ka00 5 0 5

Bandgap

• Only some 2‐D and 3‐D crystals have complete b d

Wavevector 2ka

0‐0.5 0.5

bandgaps

Photonic bandgap and metamaterialsA Kirk 11/24/2008 17

Page 18: Photonic Bandgap Materials - McGill University

Square 2‐D lattice (From Johnson)a Rods in air

a/ 

0.8

0.9

1

(2πc/a)  = 

0 5

0.6

0.7

uency

(0.3

0.4

0.5

Photonic Band Gapfreq

0

0.1

0.2TM bands=12:1

ETM

M

X M irreducible Brillouin zone

k

gap for

HTM Xk n > ~1.75:1

A Kirk 11/24/2008 18Photonic bandgap and metamaterials

Page 19: Photonic Bandgap Materials - McGill University

Electric field distribution (from Johnson)

0.8

0.9

1

E

0 5

0.6

0.7

Ez

0.3

0.4

0.5

Photonic Band Gap(+ 90° rotated version)

0

0.1

0.2TM bands

Ez

ETM

X M

gap for

HTM– + n > ~1.75:1

A Kirk 11/24/2008 19Photonic bandgap and metamaterials

Page 20: Photonic Bandgap Materials - McGill University

3‐D photonic crystal: complete gap , =12:1I.

0.8

II.

0.6

0.7

21% gap

0.3

0.4

0.5

L'

z

0.1

0.2

LK'

W

U'XU'' U

W' K

UÕ L X W K0I: rod layer II: hole layer

gap for n > ~4:1[ S. G. Johnson et al., Appl. Phys. Lett. 77, 3490 (2000) ]

A Kirk 11/24/2008 20Photonic bandgap and metamaterials

Page 21: Photonic Bandgap Materials - McGill University

Properties of Bulk Crystals(from Johnson)

(cartoon)band diagram (dispersion relation)

ncy photonic band gap

d /dk l l h

backwards slope:negative refraction

ved freq

ue d/dk 0: slow light(e.g. DFB lasers)

synthetic mediumf i

conserv

strong curvature:super‐prisms, …

(+ negative refraction)

for propagation

conserved wavevector k

(+ negative refraction)

A Kirk 11/24/2008 21Photonic bandgap and metamaterials

Page 22: Photonic Bandgap Materials - McGill University

Properties of Bulk Crystals(from Johnson)

(cartoon)band diagram (dispersion relation)

ncy photonic band gap

d /dk l l h

backwards slope:negative refraction

ved freq

ue d/dk 0: slow light(e.g. DFB lasers)

synthetic mediumf i

conserv

strong curvature:super‐prisms, …

(+ negative refraction)

for propagation

conserved wavevector k

(+ negative refraction)

A Kirk 11/24/2008 22Photonic bandgap and metamaterials

Page 23: Photonic Bandgap Materials - McGill University

Bandgap effectsBandgap effects• Make use of bandgap to confine light 

within `defect` waveguideStandard bendwithin  defect  waveguide

• Hexagonal crystal structure typically used

bend

• Vertical confinement achieved via total internal reflection (i.e. Conventional guiding)

Optimized bend

• Advantage over conventional index guiding is small size

• However scattering loss is higher (4• However scattering loss is higher (4 dB/cm reported)

• Operating bandwidth is typically <30 nm

Watanabe 2007

A Kirk 11/24/2008 Photonic bandgap and metamaterials 23

Page 24: Photonic Bandgap Materials - McGill University

Thermo‐optic Mach‐Zender modulatorThermo optic Mach Zender modulator

Camargo 2006A Kirk 11/24/2008 Photonic bandgap and metamaterials 24

Page 25: Photonic Bandgap Materials - McGill University

Resonant cavity structuresResonant cavity structures

• 2‐D bandgaps can be used to define very small cavities

Photonic crystal cavity with displaced holes (marked by letters A, B and C), fabricated in SOI [Asano 2006]

• Applications include single photon lasers• Require high Q‐factor and small volume (i.e. large Q/V)

A Kirk 11/24/2008 Photonic bandgap and metamaterials 25

Page 26: Photonic Bandgap Materials - McGill University

Heterostructure cavitiesHeterostructure cavities

A Kirk 11/24/2008 Photonic bandgap and metamaterials 26

Asano 2006

Page 27: Photonic Bandgap Materials - McGill University

Properties of Bulk Crystals(from Johnson)

(cartoon)band diagram (dispersion relation)

ncy photonic band gap

d /dk l l h

backwards slope:negative refraction

ved freq

ue d/dk 0: slow light(e.g. DFB lasers)

synthetic mediumf i

conserv

strong curvature:super‐prisms, …

(+ negative refraction)

for propagation

conserved wavevector k

(+ negative refraction)

A Kirk 11/24/2008 27Photonic bandgap and metamaterials

Page 28: Photonic Bandgap Materials - McGill University

Photonic crystal superprismPhotonic crystal superprism

• Photonic crystal operated o o c c ys a ope a edat wavelength above bandgap

• Periodic structure significantly modifies dispersiondispersion 

• Can be used to form optical multiplexer/demultiplexerp / p

• Potential for very compact devices

Kosaka 1999A Kirk 11/24/2008 28Photonic bandgap and metamaterials

Page 29: Photonic Bandgap Materials - McGill University

S‐vector and k‐vector effectsS vector and k vector effectsEffective index diagram

n1 n2

1‐D photonic crystal nx=kx/k0

n1 n2

xkr

Sr(1)

kr(2)Sr(2)

ki Sr kr(1)1

ki

kz

• S‐vector: Group velocity dispersion

z2 nz=kz/k0

– Beam is directed along normal to dispersion surface

• k‐vector: Phase velocity dispersion– Wavefront is refracted according to effective indexg

• Which effect is most useful? Which lattice is best – 1‐D, 2‐D, hexagonal, square?A Kirk 11/24/2008 29Photonic bandgap and metamaterials

Page 30: Photonic Bandgap Materials - McGill University

S‐vector and k‐vector superprismsS vector and k vector superprisms

S‐vector device k‐vector device

D i bj ti

Spatial separation within photonic crystal

Angular dispersionCan make use of non‐parallel edges

• Design objectives:– High spectral resolution– Small device areaSmall device area

A Kirk 11/24/2008 30Photonic bandgap and metamaterials

Page 31: Photonic Bandgap Materials - McGill University

Material systemMaterial system• All designs were carried out for silicon‐on‐insulator (SOI)insulator (SOI)

• Design wavelength 1550 nm• Plane wave expansion method analysis (3 D)

Air

• Plane wave expansion method analysis (3‐D)

Si n=3.45 0.2‐0.5 m

Air

SiO2

S

n=1.46

n 3.45

3 m

0.2 0.5 m

SiA Kirk 11/24/2008 31Photonic bandgap and metamaterials

Page 32: Photonic Bandgap Materials - McGill University

k‐vector scales to DWDM Resultsk-vector designs(DWDM 32 channels x 100 GHz)

1-D 2-D square 2-D hexagonal

P i d ( ) 314 314 359Period (nm) 314 314 359

Hole size (nm) 204 241 211

Prism area (mm2) 0.0135 0.0125 0.016Lattices equalOnly n is important

S-vector designs(CWDM 4 channels x 20

1-D 2-D square

2-D hexagonal

nm)

Period (nm) 251.7 246.1 283.4

Hole size (nm) 176 7 171 1 208 4Hole size (nm) 176.7 171.1 208.4

Prism area (mm2) 0.0068 1.01 2.42

1‐D significantly more compact due to lower band curvatureg f y p

Page 33: Photonic Bandgap Materials - McGill University

Layout for a 3X32 DWDM k‐vector multiplexery p

A Kirk 11/24/2008 33Photonic bandgap and metamaterials

Page 34: Photonic Bandgap Materials - McGill University

Properties of Bulk Crystals(from Johnson)

(cartoon)band diagram (dispersion relation)

ncy photonic band gap

d /dk l l h

backwards slope:negative refraction

ved freq

ue d/dk 0: slow light(e.g. DFB lasers)

synthetic mediumf i

conserv

strong curvature:super‐prisms, …

(+ negative refraction)

for propagation

conserved wavevector k

(+ negative refraction)

A Kirk 11/24/2008 34Photonic bandgap and metamaterials

Page 35: Photonic Bandgap Materials - McGill University

Negative refractive index materialsNegative refractive index materials

Ortwin Hess, ‘Optics: Farewell to Flatland’, Nature 455, 299‐300(18Ortwin Hess,  Optics: Farewell to Flatland , Nature 455, 299 300(18 September 2008)

A Kirk 11/24/2008 35Photonic bandgap and metamaterials

Page 36: Photonic Bandgap Materials - McGill University

Strange properties of negative index materialsg p p g

Positive index material

Negative index material

sin sini i t tn n Incident ray

iin

tn

Air Incident rayi

in

tn

Air

Transmitted rayt Transmitted rayt

Flat lens (originallyFlat lens (originally proposed by Pendry)

A Kirk 11/24/2008 36Photonic bandgap and metamaterials

Page 37: Photonic Bandgap Materials - McGill University

Negative index regionNegative index region

• Periodic arrays of air holes in dielectrics canPeriodic arrays of air holes in dielectrics can also have n=‐1

Imaging properties of dielectric photonic crystal slabs for large object distancesGuilin Sun, Aju S. Jugessur, and Andrew G. Kirk 

Optics Express, Vol. 14, Issue 15, pp. 6755‐6765 A Kirk 11/24/2008 37Photonic bandgap and metamaterials

Page 38: Photonic Bandgap Materials - McGill University

Electromagnetic metamaterialsElectromagnetic metamaterials

• So far we have discussed periodic dielectric pstructures

• We have modulated  but not • What happens if we modulate both?

R lt i t t i l C h ti t• Result is a metamaterial: Can have properties not found in nature

• Typically the modulation is on a period smallerTypically the modulation is on a period smaller than the wavelength of light, so effect is not due to interference

A Kirk 11/24/2008 Photonic bandgap and metamaterials 38

Page 39: Photonic Bandgap Materials - McGill University

Example: Optical cloakingExample: Optical cloaking

• If we could bend light around an object, we could make it g j ,invisible

• This is called ‘Optical cloaking’

• In Pendry’s 2006 ‘Science’ paper he works out what electromagnetic properties this cloak should have

A Kirk 11/24/2008 39Photonic bandgap and metamaterials

Page 40: Photonic Bandgap Materials - McGill University

Material requirementsMaterial requirements• Pendry showed that the material needs to anisotropic• The permittivitity and permeability (for a cylinder) must be given by:

2

1r r

r Rr

1

rr R

2

2 1

2 1z z

R r RR R r

r r

4

5

ability

rr rr z

Natural materials do not usually have =

2

3

, tivity, perme

1 2 1 4 1 6 1 8 2

1 r, r

z, z

Perm

ittr

1.2 1.4 1.6 1.8 2Radius, r

A Kirk 11/24/2008 40Photonic bandgap and metamaterials

Page 41: Photonic Bandgap Materials - McGill University

Engineering a microwave cloakEngineering a microwave cloak

• Only 5 months after Pendry’s paper, the first experimental y y p p , pdemonstration of electromagnetic cloaking was published

• The research was led by D.R.Smith at Duke University

A Kirk 11/24/2008 41Photonic bandgap and metamaterials

Page 42: Photonic Bandgap Materials - McGill University

How it was doneHow it was done• Cloak is made of many split ring 

resonators

• Curved conductors with a precisely calculated inductance

• This is a metamaterial for microwaves (3.5 mm wavelength)

• In order to simplify the experiment, the structure guided EM waves in the gcorrect direction but did not provide the full impedance matching

• Therefore it still reflected some radiation

A Kirk 11/24/2008 42Photonic bandgap and metamaterials

Page 43: Photonic Bandgap Materials - McGill University

Measurement systemMeasurement system

ProbeProbe

Cloak

Microwave source (8.5 GHz wavelength is 3 5GHz, wavelength is 3.5 mm)

A Kirk 11/24/2008 43Photonic bandgap and metamaterials

Page 44: Photonic Bandgap Materials - McGill University

Results: Electric field patternsSimulation: ideal materials Simulation: actual materials

Experiment: uncloaked copper cylinder Experiment: cloaked copper cylinder

A Kirk 11/24/2008 44Photonic bandgap and metamaterials

Page 45: Photonic Bandgap Materials - McGill University

Electromagnetic cloaking for lightElectromagnetic cloaking for light• In April 2007, in a letter in Nature, Vladimir Shalaev at Purdue showed (by 

simulation) that optical cloaking should possible by using metallic wires in a di l i didielectric medium

A Kirk 11/24/2008 45Photonic bandgap and metamaterials

Page 46: Photonic Bandgap Materials - McGill University

Simulated results (at 632 nm)Simulated results (at 632 nm)

Cloaked

Uncloaked

As before, this does not provide impedance matching, so reflections still occur

A Kirk 11/24/2008 46Photonic bandgap and metamaterials

Page 47: Photonic Bandgap Materials - McGill University

Demonstration of negative index optical i lmaterials

• An experimental demonstration is probably not far offp p y

• The Purdue group have already demonstrated negative refractive index optical materials

Silver gratings separated by 38 nm of alumina

A Kirk 11/24/2008 47Photonic bandgap and metamaterials

Page 48: Photonic Bandgap Materials - McGill University

ResultsResults

A Kirk 11/24/2008 48Photonic bandgap and metamaterials

Page 49: Photonic Bandgap Materials - McGill University

3‐D negative refractive index materials3 D negative refractive index materials• Researchers at Berkeley have recently demonstrated a 3‐D negative 

index optical meatmaterial (Nature 455 September 2008):

Silver and magnesium fluoride ‘fishnet’ structure

Layers are 80 nm thick and period is 860 nm

A Kirk 11/24/2008 49Photonic bandgap and metamaterials

Page 50: Photonic Bandgap Materials - McGill University

ResultsResults

J Valentine et al. Nature 000, 1‐4 (2008) doi:10.1038/nature07247

A Kirk 11/24/2008 50Photonic bandgap and metamaterials

Page 51: Photonic Bandgap Materials - McGill University

FabricationFabrication

• Fabrication of photonic crystal structures isFabrication of photonic crystal structures is typically achieved via nanolithography

• Electron beam lithography is often employed• Electron‐beam lithography is often employed

• Deep‐UV optical lithography is also suitable ( d ffi i f d i )(and more efficient for mass‐production)

• Focused ion‐beam etching is also used

• Typical materials are silicon‐on‐insulator (SOI), silicon and III‐V semiconductors 

A Kirk 11/24/2008 Photonic bandgap and metamaterials 51

Page 52: Photonic Bandgap Materials - McGill University

SummarySummary

• Photonic crystals are materials withPhotonic crystals are materials with periodically modulated permittivity (on a scale of the wavelength)of the wavelength)

• This modifies the reflective, dispersive and refractive propertiesrefractive properties

• Metamaterials typically have modulated bili i ddi i i i i dpermeability, in addition to permittivity, and 

do not operate via interference

A Kirk 11/24/2008 Photonic bandgap and metamaterials 52