phenix results on the lévy analysis of bose-einstein ...balaton workshop 2017 { tihany m at e csan...

40
PHENIX BEC evy HBT PHENIX results s NN & centrality dep. Summary PHENIX results on the L´ evy analysis of Bose-Einstein correlation functions Balaton Workshop 2017 – Tihany at´ e Csan´ ad for the PHENIX Collaboration otv¨os University, Budapest, Hungary M. Csan´ ad for PHENIX Balaton Workshop 2017 1 / 30

Upload: others

Post on 08-Feb-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • PHENIX BEC Lévy HBT PHENIX results√sNN & centrality dep. Summary

    PHENIX results on the Lévy analysis of

    Bose-Einstein correlation functionsBalaton Workshop 2017 – Tihany

    Máté Csanád for the PHENIX Collaboration

    Eötvös University, Budapest, Hungary

    M. Csanád for PHENIX Balaton Workshop 2017 1 / 30

  • PHENIX BEC Lévy HBT PHENIX results√sNN & centrality dep. Summary

    Outline

    1 The PHENIX experiment

    2 Bose-Einstein correlations

    3 Lévy-type HBT and the critical point

    4 PHENIX Lévy HBT results:√sNN = 200 GeV, MinBias

    5 PHENIX Lévy HBT results:√sNN & centrality dependence

    6 Summary

    M. Csanád for PHENIX Balaton Workshop 2017 2 / 30

  • PHENIX BEC Lévy HBT PHENIX results√sNN & centrality dep. Summary

    The PHENIX Experiment

    I Versatile detector, operating until 2016

    I Tracking via Drift Chambers and Pad Chambers

    I Charged pion ID with TOF, from ∼ 0.2 to 2 GeV/cI This analysis: PID also with EMCal

    M. Csanád for PHENIX Balaton Workshop 2017 3 / 30

  • PHENIX BEC Lévy HBT PHENIX results√sNN & centrality dep. Summary

    The PHENIX Experiment

    I Versatile detector, operating until 2016

    I Tracking via Drift Chambers and Pad Chambers

    I Charged pion ID with TOF, from ∼ 0.2 to 2 GeV/cI This analysis: PID also with EMCal

    M. Csanád for PHENIX Balaton Workshop 2017 3 / 30

  • PHENIX BEC Lévy HBT PHENIX results√sNN & centrality dep. Summary

    PHENIX runs at a glance

    M. Csanád for PHENIX Balaton Workshop 2017 4 / 30

  • PHENIX BEC Lévy HBT PHENIX results√sNN & centrality dep. Summary

    Outline

    1 The PHENIX experiment

    2 Bose-Einstein correlations

    3 Lévy-type HBT and the critical point

    4 PHENIX Lévy HBT results:√sNN = 200 GeV, MinBias

    5 PHENIX Lévy HBT results:√sNN & centrality dependence

    6 Summary

    M. Csanád for PHENIX Balaton Workshop 2017 5 / 30

  • PHENIX BEC Lévy HBT PHENIX results√sNN & centrality dep. Summary

    Bose-Einstein correlations in heavy ion physics

    I Quantum statistics connects spatial and momentum space distributions

    I Spatial source S(x) versus momentum correlation function C2(q):

    C2(q) ' 1 +∣∣∣S̃(q)/S̃(0)∣∣∣2 , S̃(q) = ∫ S(x)e iqxd4x , q = p1 − p2

    I Final state interactions distort the simple Bose-Einstein picture

    I Coulomb interaction important, handled via two-particle wave function

    I Resonance pions: Halo around primordial Core

    Bolz et al, Phys.Rev. D47 (1993) 3860-3870; Csörgő, Lörstad, Zimányi, Z.Phys. C71 (1996) 491-497

    M. Csanád for PHENIX Balaton Workshop 2017 6 / 30

  • PHENIX BEC Lévy HBT PHENIX results√sNN & centrality dep. Summary

    The out-side-long system, HBT radiiI C (q) usually measured in the Bertsch-Pratt pair coordinate-system

    I out: direction of the average transverse momentum (Kt)I long: beam directionI side: orthogonal to the latter two

    I Rout ,Rside ,Rlong : HBT radii

    I Out-side difference → ∆τ emission durationI From a simple hydro calculation:

    R2out =R2

    1 + u2TmT/T0+ β2T∆τ

    2

    R2side =R2

    1 + u2TmT/T0

    I RHIC: ratio is near one → no strong 1st order phase transitionI Plus lots of other details (pre-eq flow, initial state, EoS, ...)

    S. Chapman, P. Scotto, U. Heinz, Phys.Rev.Lett. 74 (1995) 4400T. Csörgő and B. Lörstad, Phys.Rev. C54 (1996) 1390S. Pratt, Nucl.Phys. A830 (2009) 51C

    M. Csanád for PHENIX Balaton Workshop 2017 7 / 30

  • PHENIX BEC Lévy HBT PHENIX results√sNN & centrality dep. Summary

    Example: recent PHENIX HBT measurements

    I Corr. func. in BP system, radii from Gaussian fit

    I Linear 1/√mT scaling of HBT radii for all systems and energies

    I Interpolation to common mT , PHENIX and STAR consistent

    PHENIX Collaboration, arXiv:1410.2559

    M. Csanád for PHENIX Balaton Workshop 2017 8 / 30

  • PHENIX BEC Lévy HBT PHENIX results√sNN & centrality dep. Summary

    HBT radii and the search for the critical endpoint

    I Signals of QCD CEP: softestpoint, long emission

    I R2o − R2s : related toemission duration

    I (Rs −√

    2 · R)/Rl : related toexpansion velocity

    I Non-monotonic patterns

    I Indication of the CEP?

    I Further detailed studies doneRoy Lacey, arXiv:1606.08071 &

    arXiv:1411.7931 (PRL114)

    I Maybe Levy exponent αgives further insight?

    PHENIX Collaboration, arXiv:1410.2559

    M. Csanád for PHENIX Balaton Workshop 2017 9 / 30

  • PHENIX BEC Lévy HBT PHENIX results√sNN & centrality dep. Summary

    Outline

    1 The PHENIX experiment

    2 Bose-Einstein correlations

    3 Lévy-type HBT and the critical point

    4 PHENIX Lévy HBT results:√sNN = 200 GeV, MinBias

    5 PHENIX Lévy HBT results:√sNN & centrality dependence

    6 Summary

    M. Csanád for PHENIX Balaton Workshop 2017 10 / 30

  • PHENIX BEC Lévy HBT PHENIX results√sNN & centrality dep. Summary

    Lévy distributions in heavy ion physics

    I Expanding medium, increasing mean free path: anomalous diffusion

    Metzler, Klafter, Physics Reports 339 (2000) 1-77, Csanád, Csörgő, Nagy, Braz.J.Phys. 37 (2007) 1002

    I Lévy-stable distribution: L(α,R, r) = 1(2π)3

    ∫d3qe iqre−

    12|qR|α

    I Generalized Gaussian from generalized central limit theoremI α = 2 Gaussian, α = 1 Cauchy

    I Shape of the correlation functions with Levy source:

    C2(q) = 1 + λ · e−(Rq)α α = 2 : Gaussian

    α = 1 : Exponential

    I Critical behaviour → described by critical exponentsI Spatial corr. ∝ r−(d−2+η) → defines η exponentI Symmetric stable distributions (Levy) → spatial corr. ∝ r−1−αI α identical to critical exponent η

    Csörgő, Hegyi, Zajc, Eur.Phys.J. C36 (2004) 67, nucl-th/0310042

    M. Csanád for PHENIX Balaton Workshop 2017 11 / 30

  • PHENIX BEC Lévy HBT PHENIX results√sNN & centrality dep. Summary

    A possible way of finding the critical point

    I QCD universality class ↔ 3D IsingI Halasz et al., Phys.Rev.D58 (1998) 096007I Stephanov et al., Phys.Rev.Lett.81 (1998) 4816

    I At the critical point:I random field 3D Ising: η = 0.50± 0.05

    Rieger, Phys.Rev.B52 (1995) 6659

    I 3D Ising: η = 0.03631(3)El-Showk et al., J.Stat.Phys.157 (4-5): 869

    I Modulo finite size effects

    I Distance from the critical point?

    I Motivation for precise Levy HBT!

    I Change in αLevy ↔ proximity of CEP?I Non-static system, finite size effects...

    M. Csanád for PHENIX Balaton Workshop 2017 12 / 30

  • PHENIX BEC Lévy HBT PHENIX results√sNN & centrality dep. Summary

    Outline

    1 The PHENIX experiment

    2 Bose-Einstein correlations

    3 Lévy-type HBT and the critical point

    4 PHENIX Lévy HBT results:√sNN = 200 GeV, MinBias

    5 PHENIX Lévy HBT results:√sNN & centrality dependence

    6 Summary

    M. Csanád for PHENIX Balaton Workshop 2017 13 / 30

  • PHENIX BEC Lévy HBT PHENIX results√sNN & centrality dep. Summary

    PHENIX Lévy HBT analysis

    I Dataset used for the analysis:I Run-10, Au+Au,

    √sNN = 200 GeV, 7.3·109 events

    I Minimum bias results so far

    I Additional offline requirements:I Collision vertex position less than ±30 cm

    I Particle identification:I time-of-flight data from PbSc e/w, TOF e/w, momentum, flight lengthI 2 σ cuts on m2 distribution

    I Single track cuts:I 2σ matching cuts in TOF & PbSc for pions

    I Pair-cuts:I A random member of pairs assoc. with hits on same tower were removedI customary shaped cuts on ∆ϕ− ∆z plane for PbSc e/w, TOF e/w

    I 1D corr. func. as a function of |k |LCMS in various mT binsI Levy fits for 31 mT bins with Coulomb effect incorporated

    M. Csanád for PHENIX Balaton Workshop 2017 14 / 30

  • PHENIX BEC Lévy HBT PHENIX results√sNN & centrality dep. Summary

    Example C (|k |LCMS) measurement resultMeasured in 31 m2T = m

    2 + p2T bins for π+π+ and π−π− pairs

    Physical parameters: R, λ, α; measured versus pair mTM. Csanád for PHENIX Balaton Workshop 2017 15 / 30

  • PHENIX BEC Lévy HBT PHENIX results√sNN & centrality dep. Summary

    Example C (|k |LCMS) measurement resultMeasured in 31 m2T = m

    2 + p2T bins for π+π+ and π−π− pairs

    Physical parameters: R, λ, α; measured versus pair mTM. Csanád for PHENIX Balaton Workshop 2017 15 / 30

  • PHENIX BEC Lévy HBT PHENIX results√sNN & centrality dep. Summary

    Levy scale parameter R

    ]2 [GeV/cTm0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

    R [f

    m]

    3

    4

    5

    6

    7

    8

    9

    10

    freeα

    = 200 GeVNNsMinBias Au+Au @

    freeα

    -π-π+π+π

    PH ENIXpreliminary

    ]2 [GeV/cTm0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

    ]2 [1

    /fm2

    1/R

    0

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0.07

    0.08

    freeα

    = 200 GeVNNsMinBias Au+Au @

    freeα

    -π-π+π+π

    PH ENIXpreliminary

    I Similar decreasing trend as Gaussian HBT radii

    I Hydro behaviour not invalid

    I The linear scaling of 1/R2, breaks for high mT

    M. Csanád for PHENIX Balaton Workshop 2017 16 / 30

  • PHENIX BEC Lévy HBT PHENIX results√sNN & centrality dep. Summary

    Levy scale parameter R

    ]2 [GeV/cTm0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

    R [f

    m]

    3

    4

    5

    6

    7

    8

    9

    10

    freeα

    = 200 GeVNNsMinBias Au+Au @

    freeα

    -π-π+π+π

    PH ENIXpreliminary

    I Similar decreasing trend as Gaussian HBT radii

    I Hydro behaviour not invalid

    I The linear scaling of 1/R2, breaks for high mT

    M. Csanád for PHENIX Balaton Workshop 2017 16 / 30

  • PHENIX BEC Lévy HBT PHENIX results√sNN & centrality dep. Summary

    Correlation strength λ

    ]2 [GeV/cTm0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

    λ

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    freeα

    = 200 GeVNNsMinBias Au+Au @

    freeα

    -π-π+π+π

    PH ENIXpreliminary

    I From the Core-Halo model: λ =(

    NCNC+NH

    )2I Observed decrease (“hole”) at small mT → increase of halo fractionI Different effects can cause change in λ

    I Resonance effects, partially coherent pion production

    I λ/λmax with smaller systematic uncertaintiesI Precise measurement may help extract physics info

    M. Csanád for PHENIX Balaton Workshop 2017 17 / 30

  • PHENIX BEC Lévy HBT PHENIX results√sNN & centrality dep. Summary

    A possible (?) interpretation of λ(mT )

    ]2 [GeV/cTm0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

    max

    λ/λ

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    PRL105:182301(2010),

    PRC83:054903(2011)

    2(0.5-0.7) GeV/c〉λ〈 = maxλ=958 MeV'ηm=900 MeV'ηm=700 MeV'ηm=500 MeV'ηm=250 MeV'ηm= 50 MeV'ηm

    ]2 [GeV/cTm0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

    max

    λ/λ

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4 = 200 GeVNNsMinBias Au+Au @

    〉λ〈 = maxλ

    -π-π+π+π

    'η(0.5-0.7) GeV/c2

    freeα

    PH ENIXpreliminary

    I λ(mT ) measures core/(core+halo) fractionI May be connected to mass modifications (c.f. chiral restoration)

    I Decreased η′ mass → η′ enhancement → halo enhancementI Kinematics: η′ decay pions will have low mT → decreased λ at small mT

    I Incompatibility with unmodified in-medium η′ mass?Kapusta, Kharzeev, McLerran, Phys.Rev. D53 (1996) 5028, hep-ph/9507343Vance, Csörgő, Kharzeev, Phys.Rev.Lett. 81 (1998) 2205, nucl-th/9802074

    Csörgő, Vértesi, Sziklai, Phys.Rev.Lett. 105 (2010) 182301, arXiv:0912.5526

    M. Csanád for PHENIX Balaton Workshop 2017 18 / 30

  • PHENIX BEC Lévy HBT PHENIX results√sNN & centrality dep. Summary

    A possible (?) interpretation of λ(mT )

    ]2 [GeV/cTm0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

    max

    λ/λ

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4 = 200 GeVNNsMinBias Au+Au @

    PRL105:182301(2010),

    PRC83:054903(2011)

    2(0.5-0.7) GeV/c〉λ〈 = maxλ

    -π-π+π+π

    =958 MeV'ηm=900 MeV'ηm=700 MeV'ηm=500 MeV'ηm=250 MeV'ηm= 50 MeV'ηm

    freeα

    PH ENIXpreliminary(data only)

    I λ(mT ) measures core/(core+halo) fractionI May be connected to mass modifications (c.f. chiral restoration)

    I Decreased η′ mass → η′ enhancement → halo enhancementI Kinematics: η′ decay pions will have low mT → decreased λ at small mT

    I Incompatibility with unmodified in-medium η′ mass?Kapusta, Kharzeev, McLerran, Phys.Rev. D53 (1996) 5028, hep-ph/9507343Vance, Csörgő, Kharzeev, Phys.Rev.Lett. 81 (1998) 2205, nucl-th/9802074

    Csörgő, Vértesi, Sziklai, Phys.Rev.Lett. 105 (2010) 182301, arXiv:0912.5526

    M. Csanád for PHENIX Balaton Workshop 2017 18 / 30

  • PHENIX BEC Lévy HBT PHENIX results√sNN & centrality dep. Summary

    Levy exponent α

    ]2 [GeV/cTm0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

    α

    1

    1.05

    1.1

    1.15

    1.2

    1.25

    1.3

    1.35

    1.4

    1.45

    1.5 = 200 GeVNNsMinBias Au+Au @

    0.003± = 1.134 0α

    /ndf = 159/612χ

    -π-π+π+π

    PH ENIXpreliminary

    I The measured value is far from Gaussian (α = 2) and expo. (α = 1)

    I Also far from the rfd.3D Ising value at CEP (α = 0.5)

    I More or less constant (at least within systematic errors)

    I Motivation to do fits with fixed α = 1.134

    I Note: α(mT ) = constant fit statistically not acceptable

    M. Csanád for PHENIX Balaton Workshop 2017 19 / 30

  • PHENIX BEC Lévy HBT PHENIX results√sNN & centrality dep. Summary

    Levy scale parameter R with fixed α = 1.134

    ]2 [GeV/cTm0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

    R [f

    m]

    3

    4

    5

    6

    7

    8

    9

    10

    = 1.134α

    = 200 GeVNNsMinBias Au+Au @

    = 1.134α

    -π-π+π+π

    PH ENIXpreliminary

    ]2 [GeV/cTm0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

    ]2 [1

    /fm2

    1/R

    0

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0.07

    0.08

    = 1.134α

    = 200 GeVNNsMinBias Au+Au @

    = 1.134α

    -π-π+π+π

    PH ENIXpreliminary

    I More smooth trend

    I Remarkable linearity of 1/R2

    I Hydro behavior valid, despite α < 2

    M. Csanád for PHENIX Balaton Workshop 2017 20 / 30

  • PHENIX BEC Lévy HBT PHENIX results√sNN & centrality dep. Summary

    Levy scale parameter R with fixed α = 1.134

    ]2 [GeV/cTm0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

    R [f

    m]

    3

    4

    5

    6

    7

    8

    9

    10

    = 1.134α

    = 200 GeVNNsMinBias Au+Au @

    = 1.134α

    -π-π+π+π

    PH ENIXpreliminary

    ]2 [GeV/cTm0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

    ]2 [1

    /fm2

    1/R

    0

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0.07

    0.08

    = 1.134α

    = 200 GeVNNsMinBias Au+Au @

    = 1.134α

    -π-π+π+π

    PH ENIXpreliminary

    ________

    ________

    ________

    ________

    __

    I More smooth trend

    I Remarkable linearity of 1/R2

    I Hydro behavior valid, despite α < 2

    M. Csanád for PHENIX Balaton Workshop 2017 20 / 30

  • PHENIX BEC Lévy HBT PHENIX results√sNN & centrality dep. Summary

    Newly discovered scaling parameter R̂

    M. Csanád for PHENIX Balaton Workshop 2017 21 / 30

  • PHENIX BEC Lévy HBT PHENIX results√sNN & centrality dep. Summary

    Newly discovered scaling parameter R̂

    ]2 [GeV/cTm0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

    [1/fm

    ]R

    1/

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    freeα

    = 200 GeVNNsMinBias Au+Au @

    freeα

    )α(1+⋅λR = R

    -π-π+π+π

    PH ENIXpreliminary

    I Empirically found scaling parameter

    I Linear in mTI Physical interpretation → open question

    M. Csanád for PHENIX Balaton Workshop 2017 21 / 30

  • PHENIX BEC Lévy HBT PHENIX results√sNN & centrality dep. Summary

    Newly discovered scaling parameter R̂

    I α = 1.134 fixed ]2 [GeV/cTm0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

    [1/fm

    ]R

    1/

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    = 1.134α

    = 200 GeVNNsMinBias Au+Au @

    = 1.134α

    )α(1+⋅λR = R

    -π-π+π+π

    PH ENIXpreliminary

    I Empirically found scaling parameter

    I Linear in mTI Physical interpretation → open question

    M. Csanád for PHENIX Balaton Workshop 2017 22 / 30

  • PHENIX BEC Lévy HBT PHENIX results√sNN & centrality dep. Summary

    Outline

    1 The PHENIX experiment

    2 Bose-Einstein correlations

    3 Lévy-type HBT and the critical point

    4 PHENIX Lévy HBT results:√sNN = 200 GeV, MinBias

    5 PHENIX Lévy HBT results:√sNN & centrality dependence

    6 Summary

    M. Csanád for PHENIX Balaton Workshop 2017 23 / 30

  • PHENIX BEC Lévy HBT PHENIX results√sNN & centrality dep. Summary

    Lévy exponent α at 200 GeV

    I Slightly non-monotonic behavior as a function of mTI Average 〈α〉 non-monotonic behavior versus NpartI α = 〈α〉 constant fits were performed

    ]2 [GeV/cTm0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

    α

    0.8

    1

    1.2

    1.4

    1.6

    1.8

    2

    2.2 = 200 GeVNNsPHENIX Au+Au

    +π+π+-π-π

    = 200 GeVNNsPHENIX Au+Au

    +π+π+-π-π

    = 200 GeVNNsPHENIX Au+Au

    +π+π+-π-π

    = 200 GeVNNsPHENIX Au+Au

    +π+π+-π-π

    = 200 GeVNNsPHENIX Au+Au

    +π+π+-π-π

    > = 1.096α0-10% , <> = 1.247α10-20% , <> = 1.373α20-30% , <> = 1.422α30-40% , <> = 1.403α40-50% , <> = 1.348α50-60% , <

    PH ENIXpreliminary

    partN0 50 100 150 200 250 300 350

    >α<

    1.05

    1.1

    1.15

    1.2

    1.25

    1.3

    1.35

    1.4

    1.45

    1.5

    = 200 GeVNNsPHENIX Au+Au +π+π+-π-π

    PH ENIXpreliminary

    M. Csanád for PHENIX Balaton Workshop 2017 24 / 30

  • PHENIX BEC Lévy HBT PHENIX results√sNN & centrality dep. Summary

    Lévy exponent α at 62 and 39 GeV

    I Lévy exponent α: no significant change vs√sNN at 39-62-200 GeV

    I Usual values between 1 and 1.5

    I Non-monotonicity in mT

    α

    1

    1.2

    1.4

    1.6

    1.8

    2

    0-10%10-20%20-30%30-40%

    +π+π+-π-π = 62 GeV, NNsPHENIX Au+Au 0-10%10-20%20-30%30-40%

    +π+π+-π-π = 62 GeV, NNsPHENIX Au+Au 0-10%10-20%20-30%30-40%

    +π+π+-π-π = 62 GeV, NNsPHENIX Au+Au 0-10%10-20%20-30%30-40%

    ]2 [GeV/cTm0.2 0.3 0.4 0.5 0.6 0.7

    α/α δ -0.1

    00.1 rel. syst. uncertaintiesrel. syst. uncertaintiesrel. syst. uncertaintiesrel. syst. uncertainties

    PH ENIXpreliminary

    α

    1

    1.2

    1.4

    1.6

    1.8

    2

    0-20%

    20-40%

    +π+π+-π-π = 39 GeV, NNsPHENIX Au+Au

    0-20%

    20-40%

    ]2 [GeV/cTm0.3 0.4 0.5 0.6 0.7

    α/α δ -0.1

    00.1 rel. syst. uncertaintiesrel. syst. uncertainties

    PH ENIXpreliminary

    M. Csanád for PHENIX Balaton Workshop 2017 25 / 30

  • PHENIX BEC Lévy HBT PHENIX results√sNN & centrality dep. Summary

    Lévy scale R : similar trends for all√sNN and cent.

    ]2 [GeV/cTm0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

    ]2[1

    /fm 2

    / R 1

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3 = 200 GeVNNsPHENIX Au+Au

    +π+π+-π-π

    freeα

    linear fit

    = 200 GeVNNsPHENIX Au+Au

    +π+π+-π-π

    freeα

    linear fit

    = 200 GeVNNsPHENIX Au+Au

    +π+π+-π-π

    freeα

    linear fit

    = 200 GeVNNsPHENIX Au+Au

    +π+π+-π-π

    freeα

    linear fit

    = 200 GeVNNsPHENIX Au+Au

    +π+π+-π-π

    freeα

    linear fit

    0-10%10-20%20-30%30-40%40-50%50-60%

    PH ENIXpreliminary

    ]2 [GeV/cTm0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

    ]2[1

    /fm 2

    / R 1

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3 = 200 GeVNNsPHENIX Au+Au

    +π+π+-π-πlinear fit

    = 200 GeVNNsPHENIX Au+Au

    +π+π+-π-πlinear fit

    = 200 GeVNNsPHENIX Au+Au

    +π+π+-π-πlinear fit

    = 200 GeVNNsPHENIX Au+Au

    +π+π+-π-πlinear fit

    = 200 GeVNNsPHENIX Au+Au

    +π+π+-π-πlinear fit

    = 1.096 fixedα0-10% , = 1.247 fixedα10-20% , = 1.373 fixedα20-30% , = 1.422 fixedα30-40% , = 1.403 fixedα40-50% , = 1.348 fixedα50-60% ,

    PH ENIXpreliminary

    R [f

    m]

    2

    3

    4

    5

    6

    7

    8

    9

    0-10%10-20%20-30%30-40%

    +π+π+-π-π = 62 GeV, NNsPHENIX Au+Au

    0-10%10-20%20-30%30-40%

    +π+π+-π-π = 62 GeV, NNsPHENIX Au+Au

    0-10%10-20%20-30%30-40%

    +π+π+-π-π = 62 GeV, NNsPHENIX Au+Au

    0-10%10-20%20-30%30-40%

    ]2 [GeV/cTm0.2 0.3 0.4 0.5 0.6 0.7

    R/R

    δ

    -0.2-0.1

    00.10.2 rel. syst. uncertaintiesrel. syst. uncertaintiesrel. syst. uncertaintiesrel. syst. uncertainties

    PH ENIXpreliminary

    R [f

    m]

    2

    3

    4

    5

    6

    7

    8

    9

    0-20%

    20-40%

    +π+π+-π-π = 39 GeV, NNsPHENIX Au+Au

    0-20%

    20-40%

    ]2 [GeV/cTm0.3 0.4 0.5 0.6 0.7

    R/R

    δ

    -0.2-0.1

    00.10.2 rel. syst. uncertaintiesrel. syst. uncertainties

    PH ENIXpreliminary

    M. Csanád for PHENIX Balaton Workshop 2017 26 / 30

  • PHENIX BEC Lévy HBT PHENIX results√sNN & centrality dep. Summary

    “Hole” in λ: all energies and centralities

    ]2 [GeV/cTm0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

    λ

    0.5

    1

    1.5

    2

    2.5 = 200 GeVNNsPHENIX Au+Au

    +π+π+-π-π freeα

    = 200 GeVNNsPHENIX Au+Au

    +π+π+-π-π freeα

    = 200 GeVNNsPHENIX Au+Au

    +π+π+-π-π freeα

    = 200 GeVNNsPHENIX Au+Au

    +π+π+-π-π freeα

    = 200 GeVNNsPHENIX Au+Au

    +π+π+-π-π freeα

    0-10%10-20%20-30%30-40%40-50%50-60%

    PH ENIXpreliminary

    ]2 [GeV/cTm0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

    max

    λ / λ

    0.6

    0.7

    0.8

    0.9

    1

    1.1

    1.2

    1.3 = 200 GeVNNsPHENIX Au+Au

    +π+π+-π-π

    = 200 GeVNNsPHENIX Au+Au

    +π+π+-π-π

    = 200 GeVNNsPHENIX Au+Au

    +π+π+-π-π

    = 200 GeVNNsPHENIX Au+Au

    +π+π+-π-π

    = 200 GeVNNsPHENIX Au+Au

    +π+π+-π-π

    = 1.096 fixedα0-10% , = 1.247 fixedα10-20% , = 1.373 fixedα20-30% , = 1.422 fixedα30-40% , = 1.403 fixedα40-50% , = 1.348 fixedα50-60% ,

    PH ENIXpreliminary

    λ

    0.4

    0.6

    0.8

    1

    1.2

    1.40-10%10-20%20-30%30-40%

    +π+π+-π-π = 62 GeV, NNsPHENIX Au+Au 0-10%10-20%20-30%30-40%

    +π+π+-π-π = 62 GeV, NNsPHENIX Au+Au 0-10%10-20%20-30%30-40%

    +π+π+-π-π = 62 GeV, NNsPHENIX Au+Au 0-10%10-20%20-30%30-40%

    ]2 [GeV/cTm0.2 0.3 0.4 0.5 0.6 0.7

    λ/λ δ -0.4-0.20

    0.20.4 rel. syst. uncertaintiesrel. syst. uncertaintiesrel. syst. uncertaintiesrel. syst. uncertainties

    PH ENIXpreliminary

    λ

    0.4

    0.6

    0.8

    1

    1.2

    1.40-20%

    20-40%

    +π+π+-π-π = 39 GeV, NNsPHENIX Au+Au

    0-20%

    20-40%

    ]2 [GeV/cTm0.3 0.4 0.5 0.6 0.7

    λ/λ δ -0.4-0.20

    0.20.4 rel. syst. uncertaintiesrel. syst. uncertainties

    PH ENIXpreliminary

    M. Csanád for PHENIX Balaton Workshop 2017 27 / 30

  • PHENIX BEC Lévy HBT PHENIX results√sNN & centrality dep. Summary

    R̂ scaling for all energies & centralities

    ]2 [GeV/cTm0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

    [1/fm

    ]

    R 1

    /

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    )α(1+⋅λR = R

    = 200 GeVNNsPHENIX Au+Au

    +π+π+-π-π

    freeα

    linear fit

    )α(1+⋅λR = R

    = 200 GeVNNsPHENIX Au+Au

    +π+π+-π-π

    freeα

    linear fit

    )α(1+⋅λR = R

    = 200 GeVNNsPHENIX Au+Au

    +π+π+-π-π

    freeα

    linear fit

    )α(1+⋅λR = R

    = 200 GeVNNsPHENIX Au+Au

    +π+π+-π-π

    freeα

    linear fit

    )α(1+⋅λR = R

    = 200 GeVNNsPHENIX Au+Au

    +π+π+-π-π

    freeα

    linear fit

    )α(1+⋅λR = R

    0-10%10-20%20-30%30-40%40-50%50-60%

    PH ENIXpreliminary

    ]2 [GeV/cTm0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

    [1/fm

    ]

    R 1

    /

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    )α(1+⋅λR = R

    = 200 GeVNNsPHENIX Au+Au

    +π+π+-π-π

    linear fit

    )α(1+⋅λR = R

    = 200 GeVNNsPHENIX Au+Au

    +π+π+-π-π

    linear fit

    )α(1+⋅λR = R

    = 200 GeVNNsPHENIX Au+Au

    +π+π+-π-π

    linear fit

    )α(1+⋅λR = R

    = 200 GeVNNsPHENIX Au+Au

    +π+π+-π-π

    linear fit

    )α(1+⋅λR = R

    = 200 GeVNNsPHENIX Au+Au

    +π+π+-π-π

    linear fit

    )α(1+⋅λR = R

    = 1.096 fixedα0-10% , = 1.247 fixedα10-20% , = 1.373 fixedα20-30% , = 1.422 fixedα30-40% , = 1.403 fixedα40-50% , = 1.348 fixedα50-60% ,

    PH ENIXpreliminary

    [1/fm

    ]R

    1/

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    )α(1+⋅λR = R

    0-10%10-20%20-30%30-40%

    +π+π+-π-π = 62 GeV, NNsPHENIX Au+Au

    )α(1+⋅λR = R

    0-10%10-20%20-30%30-40%

    +π+π+-π-π = 62 GeV, NNsPHENIX Au+Au

    )α(1+⋅λR = R

    0-10%10-20%20-30%30-40%

    +π+π+-π-π = 62 GeV, NNsPHENIX Au+Au

    )α(1+⋅λR = R

    0-10%10-20%20-30%30-40%

    ]2 [GeV/cTm0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

    -1R/

    -1Rδ -0.2-0.1

    00.10.2 rel. syst. uncertaintiesrel. syst. uncertaintiesrel. syst. uncertaintiesrel. syst. uncertainties

    PH ENIXpreliminary

    [1/fm

    ]R

    1/

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    )α(1+⋅λR = R

    0-20%

    20-40%

    +π+π+-π-π = 39 GeV, NNsPHENIX Au+Au

    )α(1+⋅λR = R

    0-20%

    20-40%

    ]2 [GeV/cTm0.1 0.2 0.3 0.4 0.5 0.6 0.7

    -1R/

    -1Rδ -0.2-0.1

    00.10.2 rel. syst. uncertaintiesrel. syst. uncertainties

    PH ENIXpreliminary

    M. Csanád for PHENIX Balaton Workshop 2017 28 / 30

  • PHENIX BEC Lévy HBT PHENIX results√sNN & centrality dep. Summary

    Outline

    1 The PHENIX experiment

    2 Bose-Einstein correlations

    3 Lévy-type HBT and the critical point

    4 PHENIX Lévy HBT results:√sNN = 200 GeV, MinBias

    5 PHENIX Lévy HBT results:√sNN & centrality dependence

    6 Summary

    M. Csanád for PHENIX Balaton Workshop 2017 29 / 30

  • PHENIX BEC Lévy HBT PHENIX results√sNN & centrality dep. Summary

    Summary

    I B-E correlation functions, run-10 200 GeV Au+Au, ∼7 billion evts.I Levy fits yield statistically acceptable description

    I Fine mT binned Levy source parameters (R, λ, α)I Nearly constant α, away from 2, 1 and 0.5 ↔ distance to CEP?I Linear scaling of 1/R2(mT )↔ hydro?I Low-mT decrease in λ(mT )↔ resonances, η′ in-medium mass?

    I New empirically found scaling parameter R̂ = R/(λ · (1 + α))I Centrality and

    √sNN dependence also explored

    I No α decrease down to√sNN = 39 GeV

    I Non-monotonic α vs Npart dependenceI “Hole” in λ(mT ) present down to

    √sNN = 39 GeV (c.f. SPS result!)

    I No change in 1/R2 and R̂ scaling

    M. Csanád for PHENIX Balaton Workshop 2017 30 / 30

  • Outline

    M. Csanád for PHENIX Balaton Workshop 2017 31 / 30

  • Run4 preliminary&Gauss → Run10 preliminary&Lévy

    λ (π+ π+) RUN4 200GeV Au+Au

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 mT

    m*η’ = 958 MeVm*η’ = 600 MeVm*η’ = 500 MeVm*η’ = 400 MeVm*η’ = 300 MeVm*η’ = 200 MeV

    Gauss fit

    PHENIX PRELIMINARY

    ]2 [GeV/cTm0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

    max

    λ/λ

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4 = 200 GeVNNsMinBias Au+Au @

    PRL105:182301(2010),

    PRC83:054903(2011)

    2(0.5-0.7) GeV/c〉λ〈 = maxλ

    -π-π+π+π

    =958 MeV'ηm=900 MeV'ηm=700 MeV'ηm=500 MeV'ηm=250 MeV'ηm= 50 MeV'ηm

    freeα

    PH ENIXpreliminary(data only)

    M. Csanád for PHENIX Balaton Workshop 2017 32 / 30

  • Correlation strength λ with fixed α = 1.134

    ]2 [GeV/cTm0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

    λ

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    = 1.134α

    = 200 GeVNNsMinBias Au+Au @

    = 1.134α

    -π-π+π+π

    PH ENIXpreliminary

    I More smooth trend

    I Smaller systematic errors

    I Saturation at large mTI Decrease (“hole”) for smaller mT values

    M. Csanád for PHENIX Balaton Workshop 2017 33 / 30

  • Backup slides

    [STAR] Abelev et al., PRC80, 024905[NA44] Beker et al., PRL74, 3340

    STAR centrality dependent results (left) and the comparison of STARresults in different energye with NA44 data (right)

    M. Csanád for PHENIX Balaton Workshop 2017 34 / 30

    The PHENIX experimentBose-Einstein correlationsLévy-type HBT and the critical pointPHENIX Lévy HBT results: sNN=200 GeV, MinBiasPHENIX Lévy HBT results: sNN & centrality dependenceSummary