performance of pyramidal fin arrays

Upload: nbaddour

Post on 08-Aug-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/23/2019 Performance of Pyramidal Fin Arrays

    1/31

    Performance of

    Pyramidal Fin ArraysYannickCormier

    April 12th,2013

  • 8/23/2019 Performance of Pyramidal Fin Arrays

    2/31

    Outline

    Background

    Objectives

    Experimental Procedure and Testing

    Calculation Method

    Heat Transfer and Pressure Drop Results

    Conclusion

    2

  • 8/23/2019 Performance of Pyramidal Fin Arrays

    3/31

    Background Heat Exchanger

    Important parameters of an heat exchanger

    Heat transfer Pressure drop across the fin array Dimensions

    Background 3

    Global Heat Transfer, Cooler Design, http://www.ghtthx.com/Design.aspx , Consulted March2013

    http://www.ghtthx.com/Design.aspxhttp://www.ghtthx.com/Design.aspxhttp://www.ghtthx.com/Design.aspxhttp://www.ghtthx.com/Design.aspx
  • 8/23/2019 Performance of Pyramidal Fin Arrays

    4/31

    Background Straight Cut

    Braytons Wire Mesh Heat Exchanger (WMHE) with

    straight cut fins

    Background 4

  • 8/23/2019 Performance of Pyramidal Fin Arrays

    5/31

    Background Pyramidal Fins

    Manufactured using cold spray

    Pure aluminium Good thermal conductivity

    Melting point at 933 K

    Stainless steel 304L Melting point at 1673 K

    Background 5

  • 8/23/2019 Performance of Pyramidal Fin Arrays

    6/31

    Background - Nomenclature

    The nomenclature used to characterize the fin array tested

    12x12x0.035x1.3 AlFin per inch (x axis)

    Z

    X

    Fin per inch (z axis)

    Wire diameter in inches Fin height in millimeters

    Fin material

    Background 6

  • 8/23/2019 Performance of Pyramidal Fin Arrays

    7/31

    Background - Nomenclature

    Background 7

  • 8/23/2019 Performance of Pyramidal Fin Arrays

    8/31

    Objectives

    Characterize the heat transfer and pressure dropperformances of the pyramidal fins

    Compare these performances with traditional fins (straight

    cut currently used at Brayton Energy Canada)

    Help the design process by providing accurate empirical

    correlations

    Objectives 8

  • 8/23/2019 Performance of Pyramidal Fin Arrays

    9/31

    Experimental Procedure

    Fin Sample

    2" x 2" Sample 2" x 4" Sample

    PureAluminium Stainless Steel304L PureAluminium Stainless Steel304L

    Thermal

    Conductance &Total Pressure

    Drop

    Fin Pressure

    Drop

    Friction Factor

    Experimental Procedure and Testing 9

  • 8/23/2019 Performance of Pyramidal Fin Arrays

    10/31

    Experimental Procedure Pressure Drop

    Total Pressure Drop for a 2" x 2" Sample

    Fin Pressure Drop on 2" x 4" Sample

    10Experimental Procedure and Testing

  • 8/23/2019 Performance of Pyramidal Fin Arrays

    11/31

    Testing Apparatus

    Experimental Procedure and Testing 11

  • 8/23/2019 Performance of Pyramidal Fin Arrays

    12/31

    Testing Apparatus Accuracy

    Comparison with Kays and London experiment for an

    unfinned surface (flat plate) Maximum of 20% of error on the Colburn factor

    0 1 2 3 4 5 6 7 8 9 100.000

    0.002

    0.004

    0.006

    0.008

    0.010

    0.012

    0.014

    0.016

    0.018

    ExperimentalResults

    Kays andLondonExperimentalResults

    ReD

    StPr2/3

    Experimental Procedure and Testing 12

  • 8/23/2019 Performance of Pyramidal Fin Arrays

    13/31

    Calculations Method Heat Transfer

    Reynolds

    Number

    Hydraulic Diameter

    Heat Transfer

    Coefficient

    Log Mean Temperature

    Difference

    Calculation Method 13

  • 8/23/2019 Performance of Pyramidal Fin Arrays

    14/31

    Calculations Method Heat Transfer

    Thermal

    Conductance

    Heat Flux

    Colburn FactorNusselt Number

    Calculation Method 14

  • 8/23/2019 Performance of Pyramidal Fin Arrays

    15/31

    Heat Transfer (HT) Results

    Traditional straight cut fins are presently used at Brayton

    Energy Canada

    The theory of bank of tubes is similar to the pyramidal fintested in the point of view of their discontinuity

    Pyramidal FinsStraight Cut Fins Bank of Tubes

    Heat Transfer and Pressure Drop Results 15

  • 8/23/2019 Performance of Pyramidal Fin Arrays

    16/31

    0 1 2 3 4 5 6 7 8 9 100

    2

    4

    6

    8

    10

    12

    14

    1618

    20

    12x12x0.035x1.35Al

    ReD

    Nu

    HT Results- Bank of Tubes

    ukauskas separated data in three regimes: Laminar (0 < < 1000) Sub-critical ( 500 < < 200 000) Critical ( > 200 000)

    Sub-critical

    Heat Transfer and Pressure Drop Results 16

  • 8/23/2019 Performance of Pyramidal Fin Arrays

    17/31

    HT Results Comparison with traditional fin

    0 1 2 3 4 5 6 7 8 9 100

    50

    100

    150

    200

    250

    300

    350

    400

    24x24x0.014x1.4 Al

    Straight Cut Al

    ReD

    h(W/m2K)

    Sub-critical regime

    Heat Transfer and Pressure Drop Results 17

    Laminar regime

  • 8/23/2019 Performance of Pyramidal Fin Arrays

    18/31

    HT Results Comparison with traditional fin

    Higher convective heat transfer coefficient due to theincrease in turbulence

    Pyramidal Fins Straight Cut Fins

    Heat Transfer and Pressure Drop Results 18

  • 8/23/2019 Performance of Pyramidal Fin Arrays

    19/31

    19

    0 1 2 3 4 5 6 7 8 9 100.0

    0.5

    1.0

    1.5

    2.0

    2.5

    Unfinned Surface

    12x12x0.035x1.8 Al

    16x16x0.028x2.2 Al

    24x24x0.014x1.4 Al

    ReD

    UA(W/K)

    0 1 2 3 4 5 6 7 8 9 100.0

    0.5

    1.0

    1.5

    2.0

    2.5

    ReD

    UA(W/K)

    Fin density effect on the aluminium samples

    Higher fin density results in better thermalconductance

    HT Results Aluminium Fins

    Heat Transfer and Pressure Drop Results

  • 8/23/2019 Performance of Pyramidal Fin Arrays

    20/31

    HT Results Stainless Steel Fins

    Fin density effect on the stainless steel samples Same trend as aluminium samples

    Heat Transfer and Pressure Drop Results 20

    0 1 2 3 4 5 6 7 8 9 100.0

    0.5

    1.0

    1.5

    2.0

    2.5

    Unfinned Surface12x12x0.035x2.0SS16x16x0.028x1.5SS24x24x0.014x1.1SS

    ReD

    UA(W/K)

    0 1 2 3 4 5 6 7 8 9 100.0

    0.5

    1.0

    1.5

    2.0

    2.5

    ReD

    UA(W/K)

  • 8/23/2019 Performance of Pyramidal Fin Arrays

    21/31

    HT Results Aluminium Fins

    Height effect on the aluminium samples

    Heat Transfer and Pressure Drop Results 21

    0 1 2 3 4 5 6 7 8 9 100.0

    0.5

    1.0

    1.5

    2.0

    2.5

    Unfinned Surface12x12x0.035x1.8 Al

    12x12x0.035x2.4 Al

    12x12x0.035x1.3 Al

    ReD

    UA(W/K)

    0 1 2 3 4 5 6 7 8 9 100.0

    0.5

    1.0

    1.5

    2.0

    2.5

    ReD

    UA(W/K)

  • 8/23/2019 Performance of Pyramidal Fin Arrays

    22/31

    HT Results Aluminium Fins

    Compromise between the heat transfer convective

    coefficient (h) and the total area (Atot)

    Heat Transfer and Pressure Drop Results 22

    0 1 2 3 4 5 6 7 8 9 100

    100

    200

    300

    400

    500

    600

    700

    Unfinned Surface

    12x12x0.035x1.8Al

    12x12x0.035x2.4Al

    12x12x0.035x1.3Al

    ReD

    h(W/m2K)

    0 1 2 3 4 5 6 7 8 9 100

    100

    200

    300

    400

    500

    600

    700

    ReD

    h(W/m2K)

  • 8/23/2019 Performance of Pyramidal Fin Arrays

    23/31

    HT Results Aluminium Fins

    Compromise between the heat transfer convective

    coefficient (h) and the total area (Atot)

    Heat Transfer and Pressure Drop Results 23

    ReD = 500

    ReD = 1500

  • 8/23/2019 Performance of Pyramidal Fin Arrays

    24/31

    HT Results Stainless Steel Fins

    Height effect on the stainless steel samples

    Heat Transfer and Pressure Drop Results 24

    0 1 2 3 4 5 6 7 8 9 100.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0

    Unfinned Surface

    12x12x0.035x1.0 SS

    12x12x0.035x1.4 SS

    12x12x0.035x1.9 SS

    12x12x0.035x2.0 SS

    ReD

    UA(W/K)

    0 500 1000 1500 2000 2500 30000.0

    0.5

    1.0

    1.5

    2.0

    ReD

    UA(W/K)

    0 1 2 3 4 5 6 7 8 9 100.0

    0.5

    1.0

    1.5

    2.0

    ReD

    UA(W/K)

    0 1 2 3 4 5 6 7 8 9 100.0

    0.5

    1.0

    1.5

    2.0

    ReD

    UA(W/K)

    0 1 2 3 4 5 6 7 8 9 100.0

    0.5

    1.0

    1.5

    2.0

    ReD

    UA(W/K)

    0 1 2 3 4 5 6 7 8 9 100.0

    0.5

    1.0

    1.5

    2.0

    ReD

    UA(W/K)

  • 8/23/2019 Performance of Pyramidal Fin Arrays

    25/31

    HT Results Aluminium vs. Stainless Steel

    Aluminium is more efficient in terms of heat transfer for

    the same fin geometry

    0 1 2 3 4 5 6 7 8 9 100.0

    0.5

    1.0

    1.5

    2.0

    2.5

    Unfinned Surface

    12x12x0.035x1.3 Al

    12x12x0.035x1.4 SS

    ReD

    UA(W/K)

    Heat Transfer and Pressure Drop Results 25

    Pressure Drop (PD) Results

  • 8/23/2019 Performance of Pyramidal Fin Arrays

    26/31

    Pressure Drop (PD) Results Comparison with traditional fin

    Similar total pressure drop even if the thermal conductance

    for the pyramidal fin is higher

    Heat Transfer and Pressure Drop Results 26

    0 2 4 6 8 10 12 14 160

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    24X24X0.014X1.4 Al

    Straight Cut Al

    ReD

    DifferentialPressure(Pa)

  • 8/23/2019 Performance of Pyramidal Fin Arrays

    27/31

    PD Results Total Aluminium

    Better thermal conductance results in higher pressure

    drop

    Heat Transfer and Pressure Drop Results 27

    0 500 1000 1500 2000 2500 30000

    1000

    2000

    3000

    4000

    5000

    6000

    Unfinned Surface

    12x12x0.035x1.8 Al

    16x16x0.028x2.2 Al

    24X24X0.014X1.4 Al

    ReD

    DifferentialPressure(P

    a)

    0 500 1000 1500 2000 2500 30000

    1000

    2000

    3000

    4000

    5000

    6000

    ReD

    DifferentialPressure(Pa)

  • 8/23/2019 Performance of Pyramidal Fin Arrays

    28/31

    0 500 1000 1500 2000 2500 30000

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    Unfinned Surface

    12x12x0.035x1.8 Al

    12x12x0.035x2.4 Al

    12x12x0.035x1.3 Al

    ReD

    DifferentialPressure(Pa)

    PD Results Total Aluminium

    Heat Transfer and Pressure Drop Results 28

    Height effect on the aluminium samples

    0 500 1000 1500 2000 2500 30000

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    ReD

    DifferentialPressure(Pa)

  • 8/23/2019 Performance of Pyramidal Fin Arrays

    29/31

    PD Results Friction Factor

    Useful design tool Similar to the Moody chart

    Laminar drop at low Reynolds number Close to constant friction factor in the turbulence

    region

    Heat Transfer and Pressure Drop Results 29

    0 2 4 6 8 10 12 14 160.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    12x12x0.035x1.3 Al

    16x16x0.028x1.4 Al

    24x24x0.014x1.8 Al

    ReD

    DarcyFrictionFactor(f)

  • 8/23/2019 Performance of Pyramidal Fin Arrays

    30/31

    Conclusion

    The pyramidal fins outperform traditional straight cut

    fins at the same fin density while having the samepressure drop

    For the pyramidal fins, higher thermal conductanceresults in higher pressure drop, which is expected

    Fin density increases the thermal conductance andthe pressure drop

    Fin height influence depends on the compromisebetween the total area and the convective heat

    transfer coefficient

    Conclusion 30

  • 8/23/2019 Performance of Pyramidal Fin Arrays

    31/31

    Future Work

    Need an efficiency index that includes the thermal

    performance and the pressure drop effects

    Obtain samples at same height with different fin

    densities

    Conclusion 31