path integrals for classical markov...

9
Path integrals for classical Markov processes Hugo Touchette National Institute for Theoretical Physics (NITheP) Stellenbosch, South Africa 2014 Chris Engelbrecht Summer School on Non-Linear Phenomena in Field Theory Stellenbosch, South Africa 21-31 January 2014 Slides: www.maths.qmul.ac.uk/~ht/talks.html Hugo Touchette (NITheP) Path integrals January 2014 1 / 18 Quantum path integral x i x f t i t f . . . Propagator: K (x f , t f |x i , t i )= hx f , t f |x i , t i i Propagation: ψ(x f , t f )= Z K (x f , t f |x i , t i ) ψ(x i , t i ) d x i Path integral: K (x f , t f |x i , t i )= Z x (t f ) x (t i ) D[x ] e iS [x ]/~ = X all paths e iS [path]/~ Hugo Touchette (NITheP) Path integrals January 2014 2 / 18

Upload: others

Post on 15-Jul-2020

15 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Path integrals for classical Markov processesappliedmaths.sun.ac.za/~htouchette/archive/talks/engelbrecht2014.pdfHugo Touchette (NITheP) Path integrals January 2014 15 / 18 Further

Path integrals for classical Markov processes

Hugo Touchette

National Institute for Theoretical Physics (NITheP)Stellenbosch, South Africa

2014 Chris Engelbrecht Summer School onNon-Linear Phenomena in Field Theory

Stellenbosch, South Africa21-31 January 2014

• Slides: www.maths.qmul.ac.uk/~ht/talks.html

Hugo Touchette (NITheP) Path integrals January 2014 1 / 18

Quantum path integral

xi

xf

ti tf

...

• Propagator:K (xf , tf |xi , ti ) = 〈xf , tf |xi , ti 〉

• Propagation:

ψ(xf , tf ) =

∫K (xf , tf |xi , ti )ψ(xi , ti ) dxi

• Path integral:

K (xf , tf |xi , ti ) =

∫ x(tf )

x(ti )D[x ] e iS[x]/~ =

∑all paths

e iS[path]/~

Hugo Touchette (NITheP) Path integrals January 2014 2 / 18

Page 2: Path integrals for classical Markov processesappliedmaths.sun.ac.za/~htouchette/archive/talks/engelbrecht2014.pdfHugo Touchette (NITheP) Path integrals January 2014 15 / 18 Further

Classical path integral

xi

xf

ti tf

...

• Propagator:P(xf , tf |xi , ti ) = Prob{x(ti )→ x(tf )}

• Propagation (Kolmogorov-Chapmann equation):

P(xf , tf ) =

∫P(xf , tf |xi , ti ) P(xi , ti ) dxi

• Path integral:

P(xf , tf |xi , ti ) =

∫ x(tf )

x(ti )D[x ] e−S[x]/ε =

∑all paths

e−S[path]/ε

Hugo Touchette (NITheP) Path integrals January 2014 3 / 18

Comparison

Quantum path integral

• K quantum amplitude

• Interference possible

• Schrodinger equation:

i~∂

∂tψ(x , t) = Hψ(x , t)

• H hermitian

• ~→ 0: semi-classical limit

Classical path integral

• P classical probability

• No interference

• Fokker-Planck equation:

∂tP(x , t) = LP(x , t)

• L non-hermitian in general

• ε→ 0: low-noise limit

Type of stochastic processes

• Continuous time Markov processes

• Stochastic differential equations

Hugo Touchette (NITheP) Path integrals January 2014 4 / 18

Page 3: Path integrals for classical Markov processesappliedmaths.sun.ac.za/~htouchette/archive/talks/engelbrecht2014.pdfHugo Touchette (NITheP) Path integrals January 2014 15 / 18 Further

Stochastic differential equations

• Deterministic dynamics (ODE):

x(t) = F (x)

• Perturbed dynamics (SDE):

Xε(t) = F (Xε) +√ε ξ(t)︸ ︷︷ ︸noise

0 τ

x0 x(t)

0 τ

x0 X (t)ǫ

xt+∆t = xt + F (xt)∆t Xt+∆t = Xt +F (Xt)∆t+√ε∆Wt

• Gaussian white noise:

∆Wt ∼ N (0,∆t)

Hugo Touchette (NITheP) Path integrals January 2014 5 / 18

Path integral(a)

t=0

x(t)

(b)

x(t)

t=τ

x0

x1

xn

Δt

x0

x2x

• Time discretization:

P[x ] = limn→∞

P(x1, x2, . . . , xn|x0)

= limn→∞

P(xn|xn−1) · · ·P(x2|x1)P(x1|x0)

• Infinitesimal propagator:

P(x ′, t + ∆t|x , t) =1√

2πε∆texp

(−∆t

[x ′ − x

∆t− F (x)

]2)

• Path distribution:

P[x ] = c e−S[x]/ε, S [x ] =

∫ τ

0L(x , x) dt, L =

1

2[x − F (x)]2

Hugo Touchette (NITheP) Path integrals January 2014 6 / 18

Page 4: Path integrals for classical Markov processesappliedmaths.sun.ac.za/~htouchette/archive/talks/engelbrecht2014.pdfHugo Touchette (NITheP) Path integrals January 2014 15 / 18 Further

Dominant path approximation

• Low-noise approximation:

P(xf , tf |xi , ti ) =

∫D[x ] e−S[x]/ε

≈ e−min S[x]/ε ε→ 0

= e−S[x∗]/ε

• Final result:

P(xf , tf |xi , ti ) ≈ e−V (xf ,tf |xi ,ti )/ε

V (xf , tf |xi , ti ) = minx(t):x(ti )=xi ,x(tf )=xf

S [x ]

• Dominant path:

x∗(t) : min S [x ] ⇒ δS = 0

• Euler-Lagrange equation:

d

dt

∂L

∂x− ∂L

∂x= 0, x(ti ) = xi , x(tf ) = xf

Hugo Touchette (NITheP) Path integrals January 2014 7 / 18

Applications

• Stationary distribution:

P(x) ≈ e−V (x)/ε

V (x) = minx(t):x(−∞)=0,x(0)=x

S [x ]

• Exit time:

τε ≈ eV ∗/ε in probability

V ∗ = minx∈∂D

mint≥0

V (x , t|x0, 0)

• Exit path = dominant path = instanton

• Exit location = x(τε)

• Semiclassical or WKB approximation

0

0

x(t)x

...

...

−∞

D

∂D

t

Hugo Touchette (NITheP) Path integrals January 2014 8 / 18

Page 5: Path integrals for classical Markov processesappliedmaths.sun.ac.za/~htouchette/archive/talks/engelbrecht2014.pdfHugo Touchette (NITheP) Path integrals January 2014 15 / 18 Further

Example: Ornstein-Uhlenbeck process

• SDE:x(t) = −γx(t) +

√ε ξ(t)

• Stationary distribution:

P(x) ≈ e−V (x)/ε, V (x) = minx(t):x(0)=x0,x(∞)=x

S [x ]

• Euler-Lagrange equation:

x − γ2x = 0, x(−∞) = 0, x(0) = x

• Instanton solution:

x∗(t) = xeγt , (x∗ = γx∗)

• Solution:V (x) = S [x∗] = γx2

• P(x) Gaussian• Instanton = time reverse of deterministic dynamics (ε = 0)

Hugo Touchette (NITheP) Path integrals January 2014 9 / 18

Example: Noisy van der Pol oscillator

• SDE:x = v

v = −x + v(α− x2 − v2) +√ε ξ(t)

• Bifurcation:• Stable fixed point: α < 0• Stable limit cycle: α > 0

0 10 20 30 40

�1

0

1

2

t�2 �1 0 1 2

�2

�1

0

1

2

x

v

• Stationary distribution: P(r , θ) ≈ e−W (r)/ε

• W (r) given by Hamilton-Jacobi equation

Hugo Touchette (NITheP) Path integrals January 2014 10 / 18

Page 6: Path integrals for classical Markov processesappliedmaths.sun.ac.za/~htouchette/archive/talks/engelbrecht2014.pdfHugo Touchette (NITheP) Path integrals January 2014 15 / 18 Further

Noisy van der Pol oscillator (cont’d)

• Solution:

W (r) = −αr2 +r4

2

�2�1

01

2 �2

�1

0

1

2

010203040

�2�1

01

2 �2

�1

0

1

2

05101520

�2�1

01

2 �2

�1

0

1

2

�2024

�4 �2 0 2 4�4

�2

0

2

4

�4 �2 0 2 4�4

�2

0

2

4

�4 �2 0 2 4�4

�2

0

2

4

Hugo Touchette (NITheP) Path integrals January 2014 11 / 18

Gradient vs non-gradient

Gradient system

x = F (x) +√ε ξ(t), F (x) = −∇U(x)

• V (x) = 2U(x)

• Instanton = time-reversed deterministic dynamics

• Instanton equation: x∗ = ∇U(x∗)

Non-gradient system

• F 6= −∇U

• Instanton 6= time-reversed deterministic dynamics

• Instanton dynamics: x∗ = F (x) +∇V (x)

• Equilibrium vs nonequilibrium systems

• Detailed balance vs non-detailed balance

Hugo Touchette (NITheP) Path integrals January 2014 12 / 18

Page 7: Path integrals for classical Markov processesappliedmaths.sun.ac.za/~htouchette/archive/talks/engelbrecht2014.pdfHugo Touchette (NITheP) Path integrals January 2014 15 / 18 Further

Example: Linear, non-gradient system

x = Bx +√ε ξ, B =

(−1 −11 −1

)• Non-gradient: x 6= −∇U

• Stationary distribution:

P(x) ≈ e−V (x ,y)/ε

• Quasi-potential:

V (x , y) = x2 + y2

• Instanton:

x = (−Bs + Ba)x = B∗x

B∗ =

(1 −11 1

)= −BT

�1.0 �0.5 0.0 0.5 1.0

�1.0

�0.5

0.0

0.5

1.0

Hugo Touchette (NITheP) Path integrals January 2014 13 / 18

Summary

P(xf , tf |xi , ti ) =

∫ x(tf )

x(ti )D[x ] P[x ], P[x ] = e−S[x]/ε

• Action:

S [x ] =

∫ tf

ti

[xt − F (xt)]TA(xt)[xt − F (xt)] dt

• Dominant path approximation:

V (xf , tf |xi , ti ) = minx(t):x(ti )=xi ,x(tf )=xf

S [x ]

• Calculate all sorts of transition, escape probabilities

• Similar to semiclassical or WKB approximation

• Nonlinear equations difficult to solve in general

• Other noises: colored, Poisson, etc.

Hugo Touchette (NITheP) Path integrals January 2014 14 / 18

Page 8: Path integrals for classical Markov processesappliedmaths.sun.ac.za/~htouchette/archive/talks/engelbrecht2014.pdfHugo Touchette (NITheP) Path integrals January 2014 15 / 18 Further

Applications

Physics

• Brownian motion

• Diffusion, transport

• Irreversible processes

• Noisy systems

• Biophysics

Engineering

• Control, reliability

• Signal analysis, filtering

• Queueing

• Statistics, sampling

• Finance

Hugo Touchette (NITheP) Path integrals January 2014 15 / 18

Further reading

H. Kleinert

Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, andFinancial Markets

World Scientific, 2005 [Chaps. 2, 4 and 20]

M. I. Freidlin, A. D. Wentzell

Random Perturbations of Dynamical Systems

Springer, New York, 1984, Chap. 4 [for the braves!]

R. Graham

Macroscopic potentials, bifurcations and noise in dissipative systems

F. Moss, P. V. E. McClintock (eds), Noise in Nonlinear Dynamical Systems,Cambridge University Press, 1989 [ask me a copy]

H. Touchette

The large deviation approach to statistical mechanics

Physics Reports 478, 1-69, 2009 [Sec. 6.1]

Hugo Touchette (NITheP) Path integrals January 2014 16 / 18

Page 9: Path integrals for classical Markov processesappliedmaths.sun.ac.za/~htouchette/archive/talks/engelbrecht2014.pdfHugo Touchette (NITheP) Path integrals January 2014 15 / 18 Further

Reading on stochastic processes

N. G. van KampenStochastic Processes in Physics and ChemistryNorth-Holland, 1992

B. ØksendalStochastic Differential EquationsSpringer, 2000 [recommended]

K. JacobsStochastic processes for Physicists: Understanding Noisy SystemsCambridge, 2010 [recommended]

D. J. HighamAn algorithmic introduction to numerical simulation of stochasticdifferential equationsSIAM Review 43, 525-546, 2001

Hugo Touchette (NITheP) Path integrals January 2014 17 / 18

Exercises

1 Re-do the calculation of page 6 to obtain the path distribution and thecorresponding action.

2 Derive the expression of the propagator’s quasi-potential V (xf , tf ; xi , ti ) forthe Ornstein-Ulhenbeck process using the dominant path approximation.[Hint: Follow the stationary solution on page 9.] Check that the propagatorverifies the time-dependent Fokker-Planck equation exactly.

3 Derive the stationary quasi-potential W (r) for the noisy van der Poloscillator (page 10). Can you write down another dynamical system havingthe same quasi-potential?

4 Show for a gradient system that the instanton is the time-reverse of thedeterministic path.

5 Derive the general result for the stationary quasi-potential shown on page 12.

6 What is the expression of the classical action S [x ] using the Stratonovitchcalculus convention? Is there any choice of calculus convention in quantummechanics?

Hugo Touchette (NITheP) Path integrals January 2014 18 / 18