part 3 - wimax air interface

Upload: rebin1988

Post on 03-Jun-2018

227 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/11/2019 Part 3 - WiMAX Air Interface

    1/38

    WiMAX Air Interface

    2007 Rohde & Schwarz

    1

    WiMAX Air Interface

    Heinz MELLEIN, R&S

    Technology Management Systems & Projects

    [email protected]

  • 8/11/2019 Part 3 - WiMAX Air Interface

    2/38

    WiMAX Air Interface

    2007 Rohde & Schwarz

    2

    List of content

    WiMAX TDD Reference Signal Maps

    OFDMA key parameters

    Permutation zones

    Map information

    PHY

    MAC

    MIMO

  • 8/11/2019 Part 3 - WiMAX Air Interface

    3/38

    WiMAX Air Interface

    2007 Rohde & Schwarz

    3

    c+9

    c+8

    c+7

    c+6

    c+5

    c+4

    c+2

    c+1

    c

    k+8k+7k+6k+5k+4k+3k+2k+1k

    OFDM(A) signal description

    Number

    of subchannels

    Number of OFDM

    symbols

    Dataregion

    Burst

    symbol

    offset

    sub channeloffset

    DL PUSC SLOT:

    Minimum possible data unit:

    2 symbols x 1 subchannel

    = 48 symbols

    = 96 Bits (QPSK)

    = 192 Bits (16QAM)= 288 Bits (64QAM)

    symbol

    index

    subchannel index

    Reminder: 1 subchannel = 24 not necessarily adjacent frequency carriers

  • 8/11/2019 Part 3 - WiMAX Air Interface

    4/38

    WiMAX Air Interface

    2007 Rohde & Schwarz

    4

    OFDMA frequency domain sub channelisation

    f

    ffc

    Sub

    channel

  • 8/11/2019 Part 3 - WiMAX Air Interface

    5/38

    WiMAX Air Interface

    2007 Rohde & Schwarz

    5

    MRCT default Frame structure: normal MAP

  • 8/11/2019 Part 3 - WiMAX Air Interface

    6/38

    WiMAX Air Interface

    2007 Rohde & Schwarz

    6

    OFDM key parameters BW = Nominal channel bandwidth

    Nused= No of used sub-carriers

    NFFT= Smallest power of 2 greater than Nused

    Sampling frequency Fs

    Sub-carrier spacing = Fs/NFFT (frequency bin)

    Useful symbol time Tb= 1/

    CP time Tg= G

    @

    Tb

    OFDMA symbol time Ts= Tb+ Tg= (1+G) @Tb

    Sampling time Tb/NFFT

  • 8/11/2019 Part 3 - WiMAX Air Interface

    7/38

    WiMAX Air Interface

    2007 Rohde & Schwarz

    7

    Multiple permutation zones

    1 TDD frame

  • 8/11/2019 Part 3 - WiMAX Air Interface

    8/38

    WiMAX Air Interface

    2007 Rohde & Schwarz

    8

    OFDMA sub carrier allocation modes for PHY layer

    scalability

    AdjacentAdjacentsubsubcarriercarrierpermutationpermutation

    ForForfixedfixed((ororlowlowmobilitymobility))channelschannels

    DistributedDistributedsubsubcarriercarrierpermutationpermutation

    For mobile (For mobile (multipathmultipath))channelschannels

    DistributedDistributedsubsubcarriercarrierpermutationspermutations FUSC (FUSC (FullyFullyUsedUsedSubSubchannelisationchannelisation) (DL) (DLonlyonly))

    AllAllsubsubchannelschannelsavailableavailable

    SubSubcarrierscarriersdistributeddistributedtotosubsubchannelschannelsbybypermutationpermutationmechanismmechanism

    MinimiseMinimisethetheprobabiliyprobabiliyofofsubsubcarriercarrierclashesclashes

    MaximiseMaximisefrequencyfrequencydiversitydiversitytotominimiseminimisefadingfadingimpactimpact

    PUSC (PUSC (PartiallyPartiallyUsedUsedSubSubchannelisationchannelisation))

  • 8/11/2019 Part 3 - WiMAX Air Interface

    9/38

    WiMAX Air Interface

    2007 Rohde & Schwarz

    9

    Partially Used Subchannelisation (PUSC) Distributed permutation type

    First divide available subcarriers into subchannels

    Allocate pilots within each subchannel

    Each subchannel contains ist own set of pilots

    Pilot permutation is designed to

    minimise the risk of physical subcarrier hits between adjacent cells/sectors

    maximise frequency diversity to minimise degradation due to fading

    DL PUSC

    Cluster structure (14 adjacent subcarriers per cluster incl. 2 pilots) Subchannels are assigned to 3 segments(e.g. representing 3 sectors of the same cell)

    UL PUSC

    Tile structure (3 symbols x 4 subcarriers incl. 4 pilots)

  • 8/11/2019 Part 3 - WiMAX Air Interface

    10/38

    WiMAX Air Interface

    2007 Rohde & Schwarz

    10

    Downlink PUSC symbol structure

    6 (3)30 (15)60 (30)120 (60)No of clusters Ncluster(subchannels)

    723607201440No of data subcarriers Ndata

    Scalable OFDMA (Rel. 16e)Rel. 2004

    642565121024DC subcarrier index

    1260120240No of pilot subcarriers Npilot

    844208401680No of used subcarriers Nused (excl. DC)

    22/2146/4592/91184/183Guard subcarriers (Left/Right)

    128 FFT(1.25 MHz)

    512 FFT(5 MHz)

    1024 FFT(10 MHz)

    2048 FFT(20 MHz)

    DL PUSC slot = 1 subchannel x 2 OFDMA symbols

    Cluster structure: 14 adjacent subcarriers incl. 2 pilots

    k k+1

    Pilot

    Data

    Symbol

    index

    Subcarrier

    index

  • 8/11/2019 Part 3 - WiMAX Air Interface

    11/38

    WiMAX Air Interface

    2007 Rohde & Schwarz

    11

    Uplink PUSC symbol structure

    Scalable OFDMA (Rel. 16e)Rel. 2004

    642565121024DC subcarrier index

    24102210420No of tiles Ntiles

    4173570No of subchannels Nsubchannels

    964088401680No of used subcarriers Nused (excl. DC)

    16/1552/5192/91184/183Guard subcarriers (Left/Right)

    128 FFT(1.25 MHz)

    512 FFT(5 MHz)

    1024 FFT(10 MHz)

    2048 FFT(20 MHz)

    Tile structure:

    (3 OFDM symbols) x (4 subcarriers)

    No of tiles per subchannel: 6

    Pilot

    Data

    1 slot = 1 subchannel x 3 OFDMA symbolsSymbol

    index

    Subcarrier

    index

  • 8/11/2019 Part 3 - WiMAX Air Interface

    12/38

    WiMAX Air Interface

    2007 Rohde & Schwarz

    12

    Subchannel group allocation

    N/A526 .. 295

    2420 .. 254N/A316 .. 193

    1210 .. 152

    N/A16 .. 91

    001280 .. 501024N/A552 .. 595

    10 .. 14440 .. 514

    N/A332 .. 393

    5 .. 9220 .. 312

    N/A112 .. 191

    0 .. 405120 .. 1102048

    Subchannel

    range

    Subchannel

    groupFFT size

    Subchannel

    range

    Subchannel

    groupFFT size

    Profile 1A

  • 8/11/2019 Part 3 - WiMAX Air Interface

    13/38

    WiMAX Air Interface

    2007 Rohde & Schwarz

    13

    WiMAX PHY signal processing chain

    Randomisation

    (energy dispersal) FEC

    Interleaving

    Symbol mapping

    Space Time Coding

    Beam Forming

    MIMO encoding

    Data from

    MAC

    Subchannelisation

    Pilot Insertion IFFT CP

    RF

    frontend

    SubchannelisationPilot Insertion

    IFFT CPRF

    frontend

    SISOOuter

    Coding

    Inter

    leaving

    Inner

    Coding

    CP = Cyclic Prefix

  • 8/11/2019 Part 3 - WiMAX Air Interface

    14/38

    WiMAX Air Interface

    2007 Rohde & Schwarz

    14

    Mobile WiMAX FEC channel coding schemes

    HARQ Incremental Redundancy

    OPTIONAL

    CTC:

    Convolutional Turbo CodeHARQ chase combining

    OPTIONAL

    CRC:

    Cyclic Redundancy Check (Block code)

    OPTIONALLDPC:

    Low Density Parity Check Code

    OPTIONALBTC:

    Block Turbo Code

    Coding rates: , 2/3, , 5/6

    MANDATORY

    RS-CC / CC:

    Concatenated Reed-Solomon convolutional code

    Mobile WiMAX Application

  • 8/11/2019 Part 3 - WiMAX Air Interface

    15/38

    WiMAX Air Interface

    2007 Rohde & Schwarz

    15

    ARQ and HARQ

  • 8/11/2019 Part 3 - WiMAX Air Interface

    16/38

    WiMAX Air Interface

    2007 Rohde & Schwarz

    16

    Example: DL Frame Prefix Processing

    24 Bits of Data containing DL Frame Prefix Information Elements

    Duplicate to 48 Bits (minimum FEC block length)

    CC 1:2 coding results in 96 Bits

    Repetition Factor 4 results in 384 Bits

    QPSK Modulation creates 192 Modulation OFDM Symbols

    Map onto FCH that spreads over 4 DL PUSC slots

    (1 slot = 2 OFDM Symbols x 1 subchannel a 24 physical channels)

    2 OFDM symbols x 4 x 24 subcarriers = 192 OFDM Symbols

  • 8/11/2019 Part 3 - WiMAX Air Interface

    17/38

    WiMAX Air Interface

    2007 Rohde & Schwarz

    17

    OFDMA DLFP Format and FCH mapping

    Segment 0

    Segment 1

    OFDM symbol index

    Segment 2

    FCH

    FCH

    FCH

    SubchannelIndex

    (1

    subchannel=

    24

    subcarriers

    )

    DL subframe

    FEC Input Block (48 Bits)

    Convolutional Coder

    Bit Interleaver

    96 Bit block

    4 X Repeater

    96 Bit block

    QPSK Modulator

    384 Bit Sequence

    24 Bit DLFP 24 Bit DLFP

    Slot 0

    Slot 1

    Slot 2

    Slot 3

    48 Symbols

    per slot

    DL_Frame_Prefix_Format (IEEE 802.16e-2005)

    Used subchannel bitmapBit#0 enables subchannel group #0

    Bit#5 enables subchannel group #5

    RESERVED

    Repetition Coding Indication for DL-MAP{ 0, 2, 4, 6 }

    Coding Indication for DL-MAP{ CC, BTC, CTC, ZTCC, LDPC }

    DL-MAP length(max. 255)

    RESERVED

    6

    Bits

    8Bits

    3Bits

    2

    1

    4

  • 8/11/2019 Part 3 - WiMAX Air Interface

    18/38

    WiMAX Air Interface

    2007 Rohde & Schwarz

    18

    OFDMA FCH: DL frame prefix (FP) (excerpt)

    Indicates length of DL map message in terms

    of slots

    8 bitsDL MAP length

    000b = CC encoding used on DL-MAP

    001b = BTC encoding

    010b = CTC encoding

    011b = ZT CC encoding

    100b = CC encoding with interleaver

    101b = LDPC encoding

    3 bitsCoding indication

    Flag indicating change of ranging regions1 bitRanging change indication

    Bit #0: subchannel group 0

    Bit #1: subchannel group 1

    Bit #2: subchannel group 2

    Bit #3: subchannel group 3

    Bit #4: subchannel group 4

    Bit #5: subchannel group 5

    6 bitsUsed subchannel bitmap

    RemarksSize/RangeParameter

    CC = Convolutional Code

    BTC = Block Turbo Coding

    CTC = Convolutional Turbo Coding

    ZT = Zero Tailing

    LDPC = Low Density Parity Check

  • 8/11/2019 Part 3 - WiMAX Air Interface

    19/38

    WiMAX Air Interface

    2007 Rohde & Schwarz

    19

    DL-MAP management message

    DL_MAP MAC Management

    Management

    Message Type

    OFDMA PHY SYNC field

    Frame duration codeFrame Number ( mod 224)

    DCD count

    Base Station Identifier

    Number of OFDMA symbols inthe dowlink subframe

    DL-MAP_IE #1

    describes burst #1

    DL-MAP_IE #n

    DL_MAP_IE

    DIUCDownlink Interval Usage Code

    CID(MAC) Connection Identifier

    OFDMA Symbol Offset

    Subchannel Offset

    Boosting

    Number of OFDMA symbols

    Number of subchannels

    Repetition Coding Indication

    SymbolOffset

    Subchannelindex

    0

    Subchannel

    Offset

    Number

    of symbols

    Numbero

    f

    subchanne

    ls

    OFDMA symbol index

  • 8/11/2019 Part 3 - WiMAX Air Interface

    20/38

    WiMAX Air Interface

    2007 Rohde & Schwarz

    20

    OFDMA DL-MAP Format and mapping

    SubchannelIndex

    (1

    subchannel=

    24

    subcarrier

    s)

    DL subframe

    Min FEC block size

    Padding

    FEC (rate r)(as indicated in FCH)

    j Bit block

    Bit Interleaver

    j / r Bit block

    Repeater (R)(as indicated in FCH)

    j / r Bit block

    2N-QAM Modulator

    R x j / r Bit sequence

    i Bits DL_MAP message

    Slot 4

    Slot 5

    ...Slot n

    R x j / r / N symbols:

    48 symbols per slot

    Number of required DL-MAP slots:

    n = R x j / r / N / 48

    DL_MAP MAC Management

    Management

    Message Type

    OFDMA PHY SYNC fieldFrame duration code

    Frame Number ( mod 224)

    DCD count

    Base Station Identifier

    Number of OFDMA symbols in

    the dowlink subframe

    DL-MAP_IE #1

    describes burst #1

    DL-MAP_IE #n

  • 8/11/2019 Part 3 - WiMAX Air Interface

    21/38

    WiMAX Air Interface

    2007 Rohde & Schwarz

    21

    UL-MAP management message

    Reserved Bits; Set to 0

    UL_MAP MAC Management

    Management

    Message Type

    UCD count

    UL allocation start time

    [physical slots 4/Fs]

    Number of OFDMA symbols in

    the uplink subframe

    UL-MAP_IE #1describes burst #1

    UL-MAP_IE #n

    UL_MAP_IE: Ranging zone

    UIUC = 12Uplink Interval Usage Code

    CID(MAC) Connection Identifier

    OFDMA Symbol Offset

    Subchannel Offset

    Number of OFDMA symbols

    Number of subchannels

    Ranging method

    (initial, periodic)

    UL_MAP_IE: Burst allocation

    UIUC = 1..10Uplink Interval Usage Code

    CID(MAC) Connection Identifier

    Duration

    (number of slots!)

    Repetition coding

    (0,2,4,6)

  • 8/11/2019 Part 3 - WiMAX Air Interface

    22/38

    WiMAX Air Interface

    2007 Rohde & Schwarz

    22

    MRCT default Frame structure: normal MAP

    Data

  • 8/11/2019 Part 3 - WiMAX Air Interface

    23/38

    WiMAX Air Interface

    2007 Rohde & Schwarz

    23

    Downlink Preamble structure

    36143284568No of pilot subcarriers per set

    (size of modulating PN series)

    10/1042/4186/86172/172Guard subcarriers (Left/Right)

    128 FFT512 FFT1024 FFT2048 FFT

    3 sets of preamble carriers are defined, i.e. 1 set per segment.

    PreambleCarrierSet(n) = n + 3k ; n = {0,1,2}; k = {0 .. 567} Note: DC carrier not used (n=0)

    0xADBC1B844

    Map 1B -1 and 0B +1

    1234

    PN series (e.g. FFT-128)Segment 0 .. 2IDcell 0.. 31Index 0 .. 113

    0 3 6 9 1695 1698 1701

    38 PN series per segment.

  • 8/11/2019 Part 3 - WiMAX Air Interface

    24/38

    WiMAX Air Interface

    2007 Rohde & Schwarz

    24

    Cell searchSpectral power detection

    C

    Signal Bandwidth

    (Carrier spacing: FFT size)

    C

    Position estimate of pilots(3 optionsB Segment number, FCH position)

    C

    Preamble set search(38 possible PN series)

    CPN series correlation process

    (Knowledge: BPSK)

    C

    IDCellDefines subcarrier permutation for first PUSC zone:

    Used as DL_PermBase

    Segment 1

    Preamble set 1

    PN index 36

    IDCell 4

    Segment 2

    Preamble set 2

    PN index 76

    IDCell 12

    Segment 0

    Preamble set 0

    PN 9

    IDCell 9

  • 8/11/2019 Part 3 - WiMAX Air Interface

    25/38

    WiMAX Air Interface

    2007 Rohde & Schwarz

    25

    WIMAX Protocol Architecture

    PHY

    MAC-CSConvergence Sublayer*:ATM and packet

    MAC-CPSCommon Part Sublayer

    MAC-SSSecurity Sublayer

    MAC SAP

    PHY SAP

    CS SAP

    Higher layers:

    ATMIEEE 802.3 (Ethernet)

    ISO/IEC 8802-3 (CSMA/CD)

    *Vendor specific MAC-CS applicable to

    support vendor specific higher layers

    SAP = Service Access Point

    Classification of higher layer data (e.g. for QoS purposes)

    Payload header suppression (PHS) 16 Bit CID assignment (output of classification procedure)

    Layer for IP connection

    Defines multiple access: PtP, multicast, broadcast

    Duplexing: FDD, TDD Framing, fragementation, packing, etc.

    Issue/Analyse MAC management messages

    Hyphering

  • 8/11/2019 Part 3 - WiMAX Air Interface

    26/38

    WiMAX Air Interface

    2007 Rohde & Schwarz

    26

    WiMAX MAC features

    MAC provides intelligence to PHY

    Designed for point-to-multipoint communication

    Supporting continuous and bursty traffic

    Connection oriented: 16 Bit CID (connection identifier)

    Independant handling of downlink and uplink CIDs

    Dynamic bandwidth allocation

    48 Bit MAC address = Equipment identifier

  • 8/11/2019 Part 3 - WiMAX Air Interface

    27/38

    WiMAX Air Interface

    2007 Rohde & Schwarz

    27

    WiMAX PMP connection overview

    MandatoryMandatorymanagementmanagementconnectionsconnectionsat SSat SSinitialisationinitialisation

    3 different3 differentlevelslevelsofofQoSQoSforfor managementmanagementtraffictrafficPMP = Point to Multipoint

  • 8/11/2019 Part 3 - WiMAX Air Interface

    28/38

    WiMAX Air Interface

    2007 Rohde & Schwarz

    28

    MAC connection types

    Basic CID: 0x0001 m

    Primary Management CID: m+1 2m

    BSBase

    Station

    SS

    (MS)Subscriber

    (Mobile)

    Station

    unique

    MAC

    address48 bit

    unique

    MAC

    address48 bit

    according to

    IEEE 802-2001

    according to

    IEEE 802-2001

    Transport CID: 2m+1 0xFEFE

    Initial ranging CID: 0x0000

    AAS initial Ranging CID: 0xFEFF

    Multicast Polling CID: 0xFF00 0xFFFC

    Broadcast CID: 0xFFFF

    Padding CID: 0xFFFE

    Fragmentable Broadcast CID: 0xFFFD

    Secondary Management CID: 2m+1 0xFEFE

  • 8/11/2019 Part 3 - WiMAX Air Interface

    29/38

    WiMAX Air Interface

    2007 Rohde & Schwarz

    29

    INITIAL SS REGISTERING

    BROADCAST: FP, UCD, DCD, DL-MAP, UL-MAP

    RNG-REQRNG-RSP

    REG-REQPKM-REQ

    REG-RESP

    PKM-RSP

    BASIC MANAGEMENT

    PRIMARY MANAGEMENT

    Description of downlink and uplink

    Ranging to determine power and burst profile changes

    Registration and Privacy management

    Own CID

    for eachconnection!

    REG = Registry

    PKM = Private Key Management aquivalent to SIM cards

  • 8/11/2019 Part 3 - WiMAX Air Interface

    30/38

    WiMAX Air Interface

    2007 Rohde & Schwarz

    30

    SERVICE FLOW HANDLING

    CREATE SERVICE FLOW: DSA-REQ : DSA-RSP : DSA-ACK

    CHANGE SERVICE FLOW: DSC-REQ : DSC-RSP : DSC-ACK

    DELETE SERVICE FLOW: DSD-REQ : DSD-RSP

    BASIC MANAGEMENTRNG-RSP RNG-REQ

    BROADCAST: FP, UCD, DCD, DL-MAP, UL-MAP

    DSA = Dedicated Service Access

  • 8/11/2019 Part 3 - WiMAX Air Interface

    31/38

    WiMAX Air Interface

    2007 Rohde & Schwarz

    31

    Default Service flow setup

    BS DDD DCD (Downlink Channel Descriptor, CID 0xFFFF) DDDDE SS

    BS DDD UCD (Uplink Channel Descriptor, CID 0xFFFF) DDDDDDE SS

    BS FDDDDDDD RNG-REQ (Ranging Request, CID 0x0000) DDDDDDD SSBS DDDDDDDD RNG-RSP (Ranging Response, CID 0x0000) DDDDDDDE SS

    BS FDDDDDDDDD SBC-REQ (SS Basic Capability Request) DDDDDD SS

    BS DDDDDDDDDD SBC-RSP (SS Basic Capability Response) DDDDDE SS

    BS FDDDDDDDDDD REG-REQ (Registration Request) DDDDDDDDDDD SS

    BS DDDDDDDDDDD REG-RSP (Registration Response) DDDDDDDDDDE SSBS DDDDD DSA-REQ (Dynamic Service Addition Request) DDDDDE SS

    BS FDDDD DSA-RSP (Dynamic Service Addition Response) DDDDDD SS

    BS D DSA-ACK (Dynamic Service Addition Acknowledgement) DE SS

    BS DDD REP-REQ (Channel Measurement Report Request) DDDDDE SS

    BS FDDDD REP-RSP (Channel Measurement Report Response) DDDD SS

  • 8/11/2019 Part 3 - WiMAX Air Interface

    32/38

    WiMAX Air Interface

    2007 Rohde & Schwarz

    32

    MAC Formats: Generic MAC Header(GMH)

    Generic

    MAC header

    PAYLOAD

    (optional)

    CRC

    (optional)

    HT EC Type (6)

    LEN LSB (8)

    CID LSB (8)

    CID MSB (8)

    HCS (8)

    CI Rsv LEN MSB

    EK

    S

    (2)

    CI CRC Indicator

    CID Connection Identifier (16 Bits)

    EC Encryption Control

    EKS Encryption Key Sequence

    HCS Header Check Sequence

    (for header protection)HT Header Type

    LEN Length (bytes) of PDU

    Type subheader, payload indicator

    ESF Extended subheader field (16e)

    Rsv ReservedCRC Cyclic Redundancy Check

    (for payload protection)

    ESF

    16e

    16e: Additional subheader types introduced (extended subheaders) incl. appropriate indicator bit ESF

    MAC PDU (Protocol Data Unit) of length LEN bytes

    Rsv

  • 8/11/2019 Part 3 - WiMAX Air Interface

    33/38

    WiMAX Air Interface

    2007 Rohde & Schwarz

    33

    MIMO and friends

    SISO

    SIMO1xMM

    ISO

    Nx1

    Single/MultipleOutput

    Transm

    itter

    1

    N Single/MultipleOutput

    Recei

    ver

    1

    M

    MIMONxM

  • 8/11/2019 Part 3 - WiMAX Air Interface

    34/38

    WiMAX Air Interface

    2007 Rohde & Schwarz

    34

    WiMAX types of MIMO

    STBC Space Time Block Coding Referred to as Matrix A in IEEE 802.16e-2005

    Same data is space-time coded and transmitted through different antennas

    Impoving downlink SNR and increasing coverage areas

    Invented by Mr. Alamouti

    SM Spatial Multiplexing Referred to as Matrix B in IEEE 802.16e-2005 Delivers parallel data streams on different antennas

    Increases downlink throughput

    Uplink collaborative MIMO link Two MS transmit collaboratively on the same uplink subchannel

    Increasing uplink throughput without need for mulitple power PA in MS devices

  • 8/11/2019 Part 3 - WiMAX Air Interface

    35/38

    WiMAX Air Interface

    2007 Rohde & Schwarz

    35

    MISO: STBC according to Alamouti(increase performance, i.e. coverage)

    TX

    Ant 1

    TX

    Ant 2

    Time

    RX

    Ant

    h1

    h2

    n

    r2*

    r1

    HH

    de2

    de1

    Estimates

    Space

    Time

    Space

    -d2

    *

    d1

    *

    d1

    d2

    de

    Space-Time-Block

    LO

    ( ) ' 21 nIhhnHdHHrHd HHHe rr

    r

    r

    r

    ++=+==

    ( )( )

    2221

    *

    211

    *

    22

    1121*

    221*

    11

    '

    '

    ndhhrhrhd

    ndhhrhrhd

    e

    e

    ++=+=

    +

    +=

    +

    =

  • 8/11/2019 Part 3 - WiMAX Air Interface

    36/38

    WiMAX Air Interface

    2007 Rohde & Schwarz

    36

    True MIMO: Spatial Multiplex(increase throughput or coverage)

  • 8/11/2019 Part 3 - WiMAX Air Interface

    37/38

    WiMAX Air Interface

    2007 Rohde & Schwarz

    37

    WiMAX MIMO DL PUSC profile

    Open-Loop 2 transmit MIMO at BS

    Matrix A or Matrix B mode

    Vertical* STBC transmit matrix A (Alamouti)

    Vertical* spacial multiplexing of transmit of matrix B

    Multiple receive antennas at MS

    Maximum ratio combining techniques

    2 receive antennas mandatory

    4 receive antennas as applicable (e.g. in notebooks)

    Increasing SNR and thus coverage area, primarily

    *Vertical Encoding: Single FEC encoded stream over multiple antennas

    Matrix

    A or B

    Pilot

  • 8/11/2019 Part 3 - WiMAX Air Interface

    38/38

    WiMAX Air Interface

    2007 Rohde & Schwarz

    38

    WiMAX MIMO UL PUSC profile

    Open-loop collaborative MIMO

    2 MS transmit on the same subchannel

    Horizontal** spatial multiplexing transmit on

    matrix B BS to perform Maximum Likelihood detection

    Increasing the uplink capacity (throughput)

    Conventional single PA at MS

    OFDM symbol

    Subcarriers

    Pilot

    Data

    MS #1 MS #2

    Uplink PUSC tile structure

    **Horizontal Encoding:

    Multiple separately FEC encoded streams over multiple antennas

    Matrix

    B