part 3. part 3. spectrum spectrum …classweb.ece.umd.edu › enee630.f2012 › slides ›...

81
ENEE630 Part ENEE630 Part-3 Part 3. Part 3. Spectrum Spectrum Estimation Estimation 3.1 3.1 Classic Methods for Spectrum Estimation Classic Methods for Spectrum Estimation Electrical & Computer Engineering Electrical & Computer Engineering University of Maryland, College Park Acknowledgment: ENEE630 slides were based on class notes developed by Profs. K.J. Ray Liu and Min Wu. The slides were made by Prof. Min Wu, ith dt f M Wi H Ch C t t i @ d d UMD ENEE630 Advanced Signal Processing (ver.1211) with updates from Mr. Wei-Hong Chuang. Contact: minwu@umd.edu

Upload: others

Post on 07-Jun-2020

60 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

ENEE630 PartENEE630 Part--33

Part 3. Part 3. Spectrum Spectrum EstimationEstimation3.1 3.1 Classic Methods for Spectrum EstimationClassic Methods for Spectrum Estimation

Electrical & Computer EngineeringElectrical & Computer Engineering

University of Maryland, College Park

Acknowledgment: ENEE630 slides were based on class notes developed by Profs. K.J. Ray Liu and Min Wu. The slides were made by Prof. Min Wu,

ith d t f M W i H Ch C t t i @ d d

UMD ENEE630 Advanced Signal Processing (ver.1211)

with updates from Mr. Wei-Hong Chuang. Contact: [email protected]

Page 2: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

LogisticsLogistics

Last Lecture: lattice predictorcorrelation properties of error processes©

200

3)

– correlation properties of error processes– joint process estimator in lattice– inverse lattice filter structureat

ed b

y M

.Wu

inverse lattice filter structure

Today: S t ti ti b k d d l i l th d63

0 S

lides

(cre

– Spectrum estimation: background and classical methods

CP

ENEE

624/

6

Homework setUM

C

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [2]

Page 3: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

Summary of Related Readings on PartSummary of Related Readings on Part--IIII

2.1 Stochastic Processes and modelingHaykin (4th Ed) 1.1-1.8, 1.12-1.14 Hayes 3.3 – 3.7 (3.5); 4.7

2.2 Wiener filteringHaykin (4th Ed) Chapter 2Hayes 7.1, 7.2, 7.3.1

2 3 2 4 Li di ti d L i D bi i2.3-2.4 Linear prediction and Levinson-Durbin recursionHaykin (4th Ed) 3.1 – 3.3Hayes 7.2.2; 5.1; 5.2.1 – 5.2.2, 5.2.4– 5.2.5

2.5 Lattice predictorHaykin (4th Ed) 3.8 – 3.10

UMD ENEE630 Advanced Signal Processing (ver.1211) Parametric spectral estimation [3]

Hayes 6.2; 7.2.4; 6.4.1

Page 4: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

Summary of Related Readings on PartSummary of Related Readings on Part--IIIIII

Overview Haykins 1.16, 1.10

3 1 Non-parametric method3.1 Non-parametric methodHayes 8.1; 8.2 (8.2.3, 8.2.5); 8.3

3 2 P t i th d3.2 Parametric methodHayes 8.5, 4.7; 8.4

3.3 Frequency estimationHayes 8.6

Review – On DSP and Linear algebra: Hayes 2.2, 2.3

UMD ENEE630 Advanced Signal Processing (ver.1211) Parametric spectral estimation [4]

– On probability and parameter estimation: Hayes 3.1 – 3.2

Page 5: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

Spectrum Estimation: BackgroundSpectrum Estimation: Background

Spectral estimation: determine the power distribution in frequency of a random process©

200

3)

frequency of a random process– E.g “Does most of the power of a signal reside at low or high

frequencies?” “Are there resonances in the spectrum?”

ated

by

M.W

u ©

Applications:– Needs of spectral knowledge in spectrum domain non-causal

Wi fil i i l d i d ki b f i30 S

lides

(cre

a

Wiener filtering, signal detection and tracking, beamforming, etc.– Wide use in diverse fields: radar, sonar, speech, biomedicine,

geophysics, economics, …

CP

EN

EE

624/

63

g p y , ,

Estimating p.s.d. of a w.s.s. process is equivalent to estimate autocorrelation at all lags

UM

C

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [5]

Page 6: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

Spectral Estimation: ChallengesSpectral Estimation: Challenges

When a limited amount of observation data are available– Can’t get r(k) for all k and/or may have inaccurate estimate of r(k)©

200

3)

Can t get r(k) for all k and/or may have inaccurate estimate of r(k)– Scenario-1: transient measurement (earthquake, volcano, …) – Scenario-2: constrained to short period to ensure (approx.)

ated

by

M.W

u ©

stationarity in speech processing

30 S

lides

(cre

a

N

Mkknunukr 10][][1)(ˆ

Ob d d t h b t d b iCP

EN

EE

624/

63

kn

MkknunukN

kr1

,1,0 ],[][)(

Observed data may have been corrupted by noise

UM

C

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [6]

Page 7: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

Spectral Estimation: Major ApproachesSpectral Estimation: Major Approaches

Nonparametric methods– No assumptions on the underlying model for the data

© 2

003)

p y g– Periodogram and its variations (averaging, smoothing, …)– Minimum variance method

ated

by

M.W

u ©

Parametric methods– ARMA, AR, MA models

M i t th d30 S

lides

(cre

a

– Maximum entropy method

Frequency estimation (noise subspace methods)For harmonic processes that consist of a sum of sinusoids orC

P E

NE

E62

4/63

– For harmonic processes that consist of a sum of sinusoids or complex-exponentials in noise

High-order statistics

UM

C

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [7]

g

Page 8: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

Spectral Estimation: Major ApproachesSpectral Estimation: Major Approaches

Nonparametric methods– No assumptions on the underlying model for the data

© 2

003)

p y g– Periodogram and its variations (averaging, smoothing, …)– Minimum variance method

ated

by

M.W

u ©

Parametric methods– ARMA, AR, MA models

M i t th d30 S

lides

(cre

a

– Maximum entropy method

Frequency estimation (noise subspace methods)For harmonic processes that consist of a sum of sinusoids orC

P E

NE

E62

4/63

– For harmonic processes that consist of a sum of sinusoids or complex-exponentials in noise

High-order statistics

UM

C

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [8]

g

Page 9: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

Example of Speech SpectrogramExample of Speech Spectrogramu

© 2

002)

eate

d by

M. W

u08

G S

lides

(cre

UM

CP

ENEE

40U

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [9]

Figure 3 of SPM May’98 Speech Survey

Page 10: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

)

8000

“Sprouted grains and seeds are used in salads and dishes such as chop suey”W

ilson

© 2

004)

6000

cy (k

Hz)

by C

arol

Esp

y-W

2000

4000

Freq

uenc

F2

lides

(cre

ated

b

1.0 2.0 3.0 4.0 0.0

Time (sec)

EN

EE

408G

Sl

6000

8000

(kH

z)

“S t d”

UM

CP

2000

4000

requ

ency

(“Sprouted”

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [10]

0.1 0.3 0.5

Fr

fricative stopconsonantglide vowel stopconsonantvowel

Page 11: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

Section 3.1 Classical Nonparametric MethodsSection 3.1 Classical Nonparametric Methods©

200

3) Recall: given a w.s.s. process {x[n]} with

ated

by

M.W

u ©

)(]][][[]][[

krknxnxEmnxE x

30 S

lides

(cre

a

The power spectral density (p.s.d.) is defined as

)(]][][[ krknxnxE

k

fkjekrfP 2)()(

CP

EN

EE

624/

63

21

21

f

k

As we can take DTFT on a specific realization of a random process,What is the relation between the DTFT of a specific signal and the

UM

C ):2or ( f

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [11]

What is the relation between the DTFT of a specific signal and the p.s.d. of the random process?

Page 12: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

Section 3.1 Classical Nonparametric MethodsSection 3.1 Classical Nonparametric Methods©

200

3) Recall: given a w.s.s. process {x[n]} with

ated

by

M.W

u ©

)(]][][[]][[

krknxnxEmnxE x

30 S

lides

(cre

a

The power spectral density (p.s.d.) is defined as

)(]][][[ krknxnxE

k

fkjekrfP 2)()(

CP

EN

EE

624/

63

21

21

f

k

As we can take DTFT on a specific realization of a random process,What is the relation between the DTFT of a specific signal and the

UM

C ):2or ( f

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [12]

What is the relation between the DTFT of a specific signal and the p.s.d. of the random process?

Page 13: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

Ensemble Average of Squared Fourier MagnitudeEnsemble Average of Squared Fourier Magnitude

p.s.d. can be related to the ensemble average of the squared Fourier magnitude |X()|2

© 2

003)

q g | ( )|

ated

by

M.W

u ©

22][

121)(Consider

M

fnjM enx

MfP

30 S

lides

(cre

a 12 Mn

M M

M M

mnfjemxnx )(2][][1

i.e., take DTFT on (2M+1) samples and CP

EN

EE

624/

63

Mn Mm

emxnxM

][][12

, ( ) pexamine normalized squared magnitude

Note: for each frequency f, PM(f) is a random variable

UM

C

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [13]

Page 14: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

Ensemble Average of Squared Fourier MagnitudeEnsemble Average of Squared Fourier Magnitude

p.s.d. can be related to the ensemble average of the squared Fourier magnitude |X()|2

© 2

003)

q g | ( )|

ated

by

M.W

u ©

22][

121)(Consider

M

fnjM enx

MfP

30 S

lides

(cre

a 12 Mn

M M

M M

mnfjemxnx )(2][][1

CP

EN

EE

624/

63

Mn Mm

emxnxM

][][12

i.e., take DTFT on (2M+1) samples and

UM

C , ( ) pexamine normalized squared magnitude

Note: for each frequency f, PM(f) is a random variable

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [14]

Page 15: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

Ensemble Average of PEnsemble Average of PMM(f)(f)©

200

3)

M M

mnfjM emnr

MfPE )(2)(

121)]([

ated

by

M.W

u © Mn MmM 12

M

fkjekrkMM

22)()12(

121

Mfkjekr

k22)(1

30 S

lides

(cre

a MkM 212

Mk

ekrM2

)(12

1

M

fkM

fk2

22

2 1CP

EN

EE

624/

63

Mk

fkj

Mk

fkj ekrkM

ekr2

2

2

2 )(12

1)(

UM

C

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [15]

Now, what if M goes to infinity?

Page 16: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

Ensemble Average of PEnsemble Average of PMM(f)(f)©

200

3)

M M

mnfjM emnr

MfPE )(2)(

121)]([

ated

by

M.W

u © Mn MmM 12

M

fkjekrkMM

22)()12(

121

30 S

lides

(cre

a

Mfkjekr

k22)(1

MkM 212

CP

EN

EE

624/

63

Mk

ekrM2

)(12

1

M

fkM

fk2

22

2 1

UM

C

Mk

fkj

Mk

fkj ekrkM

ekr2

2

2

2 )(12

1)(

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [16]

Now, what if M goes to infinity?

Page 17: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

P.S.D. and Ensemble Fourier MagnitudeP.S.D. and Ensemble Fourier Magnitude©

200

3) If the autocorrelation function decays fast enough s.t.

ated

by

M.W

u ©

)for rapidly 0 (i.e., )(

kr(k)krkk

fkj 2

30 S

lides

(cre

a

then

k

fkjMM

fPekrfPE )()()]([lim 2

p.s.d.

)( ][12

1lim)(2

2

M

Mn

fnj

Menx

MEfP

CP

EN

EE

624/

63

Thus

Mn

UM

C

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [17]

Page 18: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

P.S.D. and Ensemble Fourier MagnitudeP.S.D. and Ensemble Fourier Magnitude©

200

3) If the autocorrelation function decays fast enough s.t.

ated

by

M.W

u ©

th

fkj 2

)for rapidly 0 (i.e., )(

kr(k)krkk

30 S

lides

(cre

a then

k

fkjMM

fPekrfPE )()()]([lim 2

p.s.d.

CP

EN

EE

624/

63

Thus )( ][12

1lim)(2

2

M

Mn

fnj

Menx

MEfP

UM

C Mn

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [18]

Page 19: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

3.1.1 Periodogram Spectral Estimator3.1.1 Periodogram Spectral Estimator©

200

3) (1) This estimator is based on (**)

ated

by

M.W

u ©

Given an observed data set {x[0], x[1], …, x[N-1]},the periodogram is defined as

30 S

lides

(cre

a p g21

2PER ][1)(

N

fnjenxN

fP

CP

EN

EE

624/

63

0)(

nNf

UM

C

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [19]

Page 20: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

3.1.1 Periodogram Spectral Estimator3.1.1 Periodogram Spectral Estimator©

200

3) (1) This estimator is based on (**)

ated

by

M.W

u ©

Given an observed data set {x[0], x[1], …, x[N-1]},the periodogram is defined as

30 S

lides

(cre

a 21

0

2PER ][1)(

N

fnjenxN

fP

CP

EN

EE

624/

63 0nN

UM

C

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [20]

Page 21: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

An Equivalent Expression of PeriodogramAn Equivalent Expression of Periodogram20

04) The periodogram estimator can be given in terms of )(kr

N 1

d by

M.W

u ©

2

fkjN

NkekrfP 2

1

)1(PER )()(

0for )()( ];[][1)(1

0

kkrkrknxnxN

krkN

nSlid

es (c

reat

ed

where0n

– The quality of the estimates for the higher lags of r(k) may be poorer since they involve fewer terms of lag products in theM

CP

ENEE

630

poorer since they involve fewer terms of lag products in the averaging operation

Exercise: to show this from the periodogram definition in last page

UM

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [21]

Exercise: to show this from the periodogram definition in last page

Page 22: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

An Equivalent Expression of PeriodogramAn Equivalent Expression of Periodogram20

04) The periodogram estimator can be given in terms of )(kr

N 1

d by

M.W

u ©

2

fkjN

NkekrfP 2

1

)1(PER )()(

Slid

es (c

reat

ed

where 0for )()( ];[][1)(1

0

kkrkrknxnxN

krkN

n

– The quality of the estimates for the higher lags of r(k) may be poorer since they involve fewer terms of lag products in theM

CP

ENEE

630 0n

poorer since they involve fewer terms of lag products in the averaging operation

Exercise: to show this from the periodogram definition in last page

UM

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [22]

p g p g

Page 23: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

(2) Filter Bank Interpretation of Periodogram(2) Filter Bank Interpretation of Periodogram©

200

3)

For a particular frequency of f0:21

2 ][1)( 0

N

kfj kfP

ated

by

M.W

u ©

0

20PER ][)( 0

k

kfj kxeN

fP

21 N

30 S

lides

(cre

a

00

][][

nk

kxknhN

where

h i0

;0,1),...,1(for )2exp(1][ 0 Nnnfj

Nnh

CP

EN

EE

624/

63 where

otherwise0

– Impulse response of the filter h[n]: a windowed version of a

UM

C

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [23]

complex exponential

Page 24: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

(2) Filter Bank Interpretation of Periodogram(2) Filter Bank Interpretation of Periodogram©

200

3)

For a particular frequency of f0:21

2 ][1)( 0

N

kfj kfP

ated

by

M.W

u ©

0

20PER ][)( 0

k

kfj kxeN

fP

21 N

30 S

lides

(cre

a

00

][][

nk

kxknhN

where

CP

EN

EE

624/

63

h i0

;0,1),...,1(for )2exp(1][ 0 Nnnfj

Nnh where

– Impulse response of the filter h[n]: a windowed version of a

UM

C otherwise0

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [24]

complex exponential

Page 25: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

Frequency Response of h[n]Frequency Response of h[n]©

200

3) )()1(exp)(i)(sin)( 0

0 ffNjffNffNfH

ated

by

M.W

u ©

)()(p)(sin

)( 00

ffjffN

f

sinc-like function centered at f0:

H(f) is a bandpass filterC f i f30

Slid

es (c

rea 0:

– Center frequency is f0

– 3dB bandwidth 1/N

CP

EN

EE

624/

63U

MC

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [25]

Page 26: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

Frequency Response of h[n]Frequency Response of h[n]©

200

3) )()1(exp)(i)(sin)( 0

0 ffNjffNffNfH

ated

by

M.W

u ©

)()(p)(sin

)( 00

ffjffN

f

sinc-like function centered at f0:

H(f) is a bandpass filterC f i f30

Slid

es (c

rea 0:

– Center frequency is f0

– 3dB bandwidth 1/N

CP

EN

EE

624/

63U

MC

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [26]

Page 27: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

Periodogram: Filter Bank PerspectivePeriodogram: Filter Bank Perspective

Can view the periodogram as an estimator of power spetrum that has a built-in filterbank©

200

3)

p– The filter bank ~ a set of bandpass filters– The estimated p.s.d. for each frequency f0 is the power of one

ated

by

M.W

u ©

p q y 0 poutput sample of the bandpass filter centering at f0

30 S

lides

(cre

aC

P E

NE

E62

4/63

21

0PER ][][)(

N

kxknhNfP

UM

C

00

n

k

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [27]

Page 28: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

Periodogram: Filter Bank PerspectivePeriodogram: Filter Bank Perspective

Can view the periodogram as an estimator of power spetrum that has a built-in filterbank©

200

3)

p– The filter bank ~ a set of bandpass filters– The estimated p.s.d. for each frequency f0 is the power of one

ated

by

M.W

u ©

p q y 0 poutput sample of the bandpass filter centering at f0

30 S

lides

(cre

aC

P E

NE

E62

4/63

21

0PER ][][)(

N

kxknhNfP

UM

C

00

n

k

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [28]

Page 29: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

E.g. White Gaussian ProcessE.g. White Gaussian Process[Lim/Oppenheim Fig.2.4] Periodogram of zero-mean white Gaussian noise using N-point data record: N=128, 256, 512, 1024

© 2

003)

ated

by

M.W

u ©

30 S

lides

(cre

aC

P E

NE

E62

4/63

The random fluctuation (measured by variance) of the i d d t d ith i i N

UM

C

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [29]

periodogram does not decrease with increasing N periodogram is not a consistent estimator

Page 30: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

(3) How Good is Periodogram for Spectral Estimation?(3) How Good is Periodogram for Spectral Estimation?00

3/20

04)

?)( p.s.d. will, If PER fPPN

Estimation: Tradeoff between bias and varianced by

M.W

u ©

20

Slid

es (c

reat

ed

For white Gaussian process, we can show that at fk = k/N

ENE

E62

4/63

0 U

MC

P E

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [30]

Page 31: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

Performance of Periodogram: SummaryPerformance of Periodogram: Summary

The periodogram for white Gaussian process is an unbiased estimator but not consistent

© 2

003)

– The variance does not decrease with increasing data length– Its standard deviation is as large as the mean (equal to the quantity

to be estimated)ated

by

M.W

u ©

to be estimated)

Reasons for the poor estimation performance– Given N real data points, the # of unknown parameters {P(f0), … 30

Slid

es (c

rea

p , p { ( 0),P(fN/2)} we try to estimate is N/2, i.e. proportional to N

Similar conclusions can be drawn for processes withCP

EN

EE

624/

63

Similar conclusions can be drawn for processes with arbitrary p.s.d. and arbitrary frequencies– Asymptotically unbiased (as N goes to infinity) but inconsistent

UM

C

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [31]

Page 32: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

3.1.2 Averaged Periodogram3.1.2 Averaged Periodogram

As one solution to the variance problem of periodogram– Average K periodograms computed from K sets of data records

© 2

003)

g p g p

ated

by

M.W

u ©

1 (m)

PERPER AV )(1)(K

fPfP

30 S

lides

(cre

a 0

V )()(m

fK

f

where 212

(m)

PER ][1)(

L

fnjenxfP

CP

EN

EE

624/

63

0PER ][)(

n

m enxL

fP

And the K sets of data records are

UM

C

... ;10 ],[ ];1[ ..., ],0[{ 100 LnnxLxx}10 ],1[{ 1 LnnxK

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [32]

}],[{ 1K

Page 33: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

Performance of Averaged PeriodogramPerformance of Averaged Periodogram

– If K sets of data records are uncorrelated with each other,we have: ( fi = i/L )

© 2

003)

( fi )

ated

by

M.W

u ©

1

30 S

lides

(cre

a

)(1 2ifP

K

CP

EN

EE

624/

63

KK for 0Varand,Var i.e., KK for 0Var and ,Var i.e.,

UM

C

KK for 0Varand,Var i.e., ,,i.e., consistent estimatei.e., consistent estimate

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [33]

,,i.e., consistent estimate

Page 34: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

Performance of Averaged PeriodogramPerformance of Averaged Periodogram

– If K sets of data records are uncorrelated with each other,we have : ( fi = i/L )

© 2

003)

( fi )

ated

by

M.W

u ©

1

30 S

lides

(cre

a

)(1 2ifP

K

CP

EN

EE

624/

63U

MC

KK for 0Var and ,Var i.e.,i e consistent estimate

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [34]

i.e., consistent estimate

Page 35: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

Practical Averaged PeriodogramPractical Averaged Periodogram

Usually we partition an available data sequence of length Ninto K non overlapping blocks each block has length L (i e N=KL)©

200

3)

– into K non-overlapping blocks, each block has length L (i.e. N=KL)

ated

by

M.W

u ©

i.e. 1 ..., ,1 ,0 ,][][ LnmLnxnxm

110 K

Since the blocks are contiguous, the K sets of data records 30 S

lides

(cre

a 1...,,1,0 Km

gmay not be completely uncorrelated– Thus the variance reduction factor is in general less than K

CP

EN

EE

624/

63

Periodogram averaging is also known as the Bartlett’s method

UM

C

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [35]

Page 36: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

Averaged Periodogram for Fixed Data SizeAveraged Periodogram for Fixed Data Size

Given a data record of fixed size N, will the result be better if we segment the data into more and more subrecords?

© 2

003)

We examine for a real-valued stationary process:

ated

by

M.W

u ©

1 1 )(K m

30 S

lides

(cre

a )(ˆ)(1)( )0(PER

0

)(

PERPER AV fPEfPK

EfPEm

CP

EN

EE

624/

63

identical stat. mean for all mNote

1

2)0()0(PER )(ˆ)(ˆ

LfljelrfP

UM

C

where

)1(Ll

lL

lnxnxlr1

)0( ][1)(ˆ

an equivalent expression to definition in terms of x[n]

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [36]

n

lnxnxL

lr0

][)( of x[n]

Page 37: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

Mean of Averaged PeriodogramMean of Averaged Periodogram©

200

3)at

ed b

y M

.Wu

©30

Slid

es (c

rea

CP

EN

EE

624/

63U

MC

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [37]

Page 38: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

Mean of Averaged PeriodogramMean of Averaged Periodogram©

200

3)at

ed b

y M

.Wu

©30

Slid

es (c

rea

CP

EN

EE

624/

63U

MC

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [38]

Page 39: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

Mean of Averaged Periodogram (cont’d)Mean of Averaged Periodogram (cont’d)©

200

3) fkrkwfPE )}(][{DTFT)](ˆ[ PER AV 1

multiplication in time

ated

by

M.W

u ©

dPfW )()(21

21

)( fP

convolution in frequency

Biased estimate (both averaged and regular periodogram)– The convolution with the window function w[k] lead to the mean of30

Slid

es (c

rea )( fP

– The convolution with the window function w[k] lead to the mean of the averaged periodogram being smeared from the true p.s.d

Asymptotic unbiased as L

CP

EN

EE

624/

63

– To avoid the smearing, the window length L must be large enough so that the narrowest peak in P(f) can be resolved

This gives a tradeoff between bias and variance

UM

C

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [39]

gSmall K => better resolution (smaller smearing/bias) but larger variance

Page 40: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

Mean of Averaged Periodogram (cont’d)Mean of Averaged Periodogram (cont’d)©

200

3) fkrkwfPE )}(][{DTFT)](ˆ[ PER AV 1

multiplication in time

ated

by

M.W

u ©

dPfW )()(21

21

)( fP

convolution in frequency

Biased estimate (both averaged and regular periodogram)– The convolution with the window function w[k] lead to the mean of30

Slid

es (c

rea )( fP

– The convolution with the window function w[k] lead to the mean of the averaged periodogram being smeared from the true p.s.d

Asymptotic unbiased as L

CP

EN

EE

624/

63

– To avoid the smearing, the window length L must be large enough so that the narrowest peak in P(f) can be resolved

This gives a tradeoff between bias and variance

UM

C

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [40]

gSmall K => better resolution (smaller smearing/bias) but larger variance

Page 41: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

NonNon--parametric Spectrum Estimation: Recapparametric Spectrum Estimation: Recap

Periodogram– Motivated by relation between p.s.d. and squared magnitude of DTFT

of a finite-size data record– Variance: won’t vanish as data length N goes infinity ~ “inconsistent”– Mean: asymptotically unbiased w r t data length N in generalMean: asymptotically unbiased w.r.t. data length N in general

equivalent to apply triangular window to autocorrelation function(windowing in time gives smearing/smoothing in freq. domain)

unbiased for white Gaussian (flat spectrum) unbiased for white Gaussian (flat spectrum)

Averaged periodogram– Reduce variance by averaging K sets of data record of length L eachReduce variance by averaging K sets of data record of length L each– Small L increases smearing/smoothing in p.s.d. estimate thus higher

bias equiv. to triangular windowing

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [41]

Windowed periodogram: generalize to other symmetric windows

Page 42: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

Case Study on NonCase Study on Non--parametric Methodsparametric Methods Test case: a process consists of narrowband components

(sinusoids) and a broadband component (AR)– x[n] = 2 cos(1 n) + 2 cos(2 n) + 2 cos(3 n) + z[n]

where z[n] = a1 z[n-1] + v[n], a1 = 0.85, 2 = 0.1 /2 = 0 05 /2 = 0 40 /2 = 0 421/2 = 0.05, 2/2 = 0.40, 3/2 = 0.42

– N=32 data points are available periodogram resolution f = 1/32

Examine typical characteristics of various non-parametric pspectral estimators

(Fig.2.17 from Lim/Oppenheim book)

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [42]

Page 43: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [43]

Page 44: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

3.1.3 Periodogram with Windowing3.1.3 Periodogram with Windowing

Review and Motivation

© 2

003)

The periodogram estimator can be given in terms of )(k

ated

by

M.W

u © The periodogram estimator can be given in terms of )(kr

1

2PER )()(

NfkjekrfP

30 S

lides

(cre

a )1( Nk

where )()( ];[][1)(1

kN

krkrknxnxN

kr

– The higher lags of r(k), the poorer estimates since the estimates

CP

EN

EE

624/

63

)()(][][)(0nN 0for k

g g ( ) pinvolve fewer terms of lag products in the averaging operation

Solution: weigh the higher lags less

UM

C

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [44]

– Trade variance with bias

Page 45: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

WindowingWindowing Use a window function to weigh the higher lags less

© 2

003)

ated

by

M.W

u ©

30 S

lides

(cre

a

w(0)=1 preserves variance r(0)

CP

EN

EE

624/

63

Effect: periodogram smoothing – Windowing in time Convolution/filtering the periodogram

UM

C

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [45]

g g p g– Also known as the Blackman-Tukey method

Page 46: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

Common Lag WindowsCommon Lag Windows Much of the art in non-parametric spectral estimation is in

choosing an appropriate window (both in type and length)

© 2

003)

ated

by

M.W

u ©

30 S

lides

(cre

aC

P E

NE

E62

4/63

UM

C

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [46]

Table 2.1 common lag window (from Lim-Oppenheim book)

Page 47: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

Discussion: Estimate r(k) via Time AverageDiscussion: Estimate r(k) via Time Average Normalizing the sum of (N-k) pairs

by a factor of 1/N ? v.s. by a factor of 1/(N-k) ?Biased (low variance) Unbiased (may not non-neg. definite)

• Hints on showing the non-negative definiteness: using )(kr

definiteness: using to construct correlation matrix

)(1 kr

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [47]

HW#8)(For 2 kr

Page 48: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

Discussion: Estimate r(k) via Time AverageDiscussion: Estimate r(k) via Time Average Normalizing the sum of (N-k) pairs

by a factor of 1/N ? v.s. by a factor of 1/(N-k) ?Biased (low variance) Unbiased (may not non-neg. definite)

• Hints on showing the non-negative definiteness: using )(kr

HW#8

definiteness: using to construct correlation matrix

)(1 kr

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [48]

HW#8)(For 2 kr

Page 49: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

3.1.43.1.4 Minimum Variance Spectral Estimation Minimum Variance Spectral Estimation (MVSE)(MVSE)

Recall: filter bank perspective of periodogram– The periodogram can be viewed as estimating the p s d byThe periodogram can be viewed as estimating the p.s.d. by

forming a bank of narrowband filters with sinc-like response– The high sidelobe can lead to “leakage” problem:

large output power due to p.s.d outside the band of interest

MVSE designs filters to minimize the leakage from out-of-MVSE designs filters to minimize the leakage from out ofband spectral components– Thus the shape of filter is dependent on the frequency of interest

d d t d tiand data adaptive(unlike the identical filter shape for periodogram)

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [49]

– MVSE is also referred to as the Capon spectral estimator

Page 50: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

Main Steps of MVSE MethodMain Steps of MVSE Method

1. Design a bank of bandpass filters Hi(f) with center frequency fi so thati

– Each filter rejects the maximum amount of out-of-band power– And passes the component at frequency fi without distortion

2. Filter the input process { x[n] } with each filter in the filter bank and estimate the power of each output processbank and estimate the power of each output process

3. Set the power spectrum estimate at frequency fi to be the power estimated above divided by the filter bandwidth

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [50]

Page 51: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

Formulation of MVSEFormulation of MVSE

The MVSE designs a filter H(f) for each f f i t t ffrequency of interest f0

minimize the output power

dffPfH )()( 221

1

minimize the output power

dffPfH )()(21

subject to 1)( 0 fH

(i.e., to pass the components at f0 w/o distortion)

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [51]

Page 52: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

Formulation of MVSEFormulation of MVSE

The MVSE designs a filter H(f) for each f f i t t ffrequency of interest f0

minimize the output powerminimize the output power

dffPfH )()( 221

1

subject to

dffPfH )()(21

1)( 0 fH

(i.e., to pass the components at f0 w/o distortion)

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [52]

Page 53: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

Deriving MVSE SolutionsDeriving MVSE Solutions

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [53]

Page 54: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

Output Power From H(f) filterOutput Power From H(f) filter

From the filter bank perspective of periodogram:0

)1(

2][)(Nn

fnjenhfH

Thus

dffPelhekh fljfkj )(][][0

221

1

02

0 0

21

)(2)(][][ klfj dfefPlhkh

ffNlNk

)(][][)1(2

1)1(

)1( )1( 2

1 )(][][Nk Nl

dfefPlhkh

0 0

)(][][ klrlhkhEquiv. to filter r(k) with { h(k) h*(-k) } and evaluate at

)1( )1(

)(][][Nk Nl

klrlhkh

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [54]

and evaluate at output time k=0

Page 55: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

Output Power From H(f) filterOutput Power From H(f) filter

From the filter bank perspective of periodogram:0

)1(

2][)(Nn

fnjenhfH

Thus

dffPelhekh fljfkj )(][][0

221

1

02 ff

NlNk)(][][

)1(21

)1(

0 0

21

)(2)(][][ klfj dfefPlhkh

Equiv. to filter r(k) with { h(k) h*(-k) } and evaluate at

Equiv. to filter r(k) with { h(k) h*(-k) } and evaluate at

)1( )1( 2

1 )(][][Nk Nl

dfefPlhkh

0 0

)(][][ klrlhkh

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [55]

and evaluate at output time k=0and evaluate at output time k=0

)1( )1(

)(][][Nk Nl

klrlhkh

Page 56: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

MatrixMatrix--Vector Form of MVSE FormulationVector Form of MVSE Formulation

Define

The constraint can be written in vector form as 1ehH

)( 0fH

Thus the problem becomes

hRh THmin subject to 1ehH

hj

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [56]

Page 57: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

MatrixMatrix--Vector Form of MVSE FormulationVector Form of MVSE Formulation

Define

The constraint can be written in vector form as 1ehH

)( 0fH

Thus the problem becomes

hRh THmin subject to 1ehH

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [57]

hj

Page 58: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

Solving MVSESolving MVSE )1(2Re ehhRhJ HTHdef

Use Lagrange multiplier approach for solving the constrained optimization problem

– Define real-valued objective function s.t. the stationary condition can be derived in a simple and elegant way based on the theorem for complex derivative/gradient operatorsp g p

)1()1(min*

,ehehhRhJ HHTH

h

)1()1( * heehhRh HHTH

00either * ehRJ T 1

00or

00either

**

*

eRhJ

ehRJTTH

h

h

1and

1

eh

eRhH

T

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [58]

00 ehRehR THT 1 and eh

Page 59: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

Solution to MVSESolution to MVSE *

,)1()1(min ehehhRhJ HHTH

h

)( 1 0or H*

ehJ

)( )(0 0or 1*

eRhehRJ TT

hh

The optimal filter and its output power:

T 1 RTH 11

Bring () into ():

e

eReRh

TH

T

MV 1

1

Filter’s output power:

eRe T

eRe TH 11

1eRRhhRh TTHTH

UMD ENEE630 Advanced Signal Processing (ver.1111) Nonparametric spectral estimation [59]

Page 60: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

MVSE: SummaryMVSE: Summary

If choosing the bandpass filters to be FIR of length q, its 3dB-b.w. is approximately 1/q

Thus the MVSE ismatrix ncorrelatio is ˆ qqR

eReqfP

TH 1MVˆ

)(

)2exp(

1fj

e

(i.e. normalize by filter b.w.)

))1(2exp( qfj

MVSE is a data adaptive estimator and provides improved resolution and reduced variance over periodogram– Also referred to as “High-Resolution Spectral Estimator”

UMD ENEE630 Advanced Signal Processing (ver.1111) Nonparametric spectral estimation [60]

Also referred to as High Resolution Spectral Estimator– Doesn’t assume a particular underlying model for the data

Page 61: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

MVSE vsMVSE vs. . PeriodogramPeriodogram

MVSE is a data adaptive estimator and provides improved resolution and reduced variance over periodogramp g

Periodogram MVSEEquivalent Bandpass Filter

h

e e

eReR

TH

T

1

1

hFilter is “universal” data-independent

Filter adapts to observation data via R

E i l t

Equivalent spectrum estimate eRe

qTH 1ˆ

)( fP eReq TH ˆ

UMD ENEE630 Advanced Signal Processing (ver.1111) Nonparametric spectral estimation [61]

Page 62: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

Recall: Case Study on NonRecall: Case Study on Non--parametric Methods parametric Methods Test case: a process consists of narrowband components

(sinusoids) and a broadband component (AR)– x[n] = 2 cos(1 n) + 2 cos(2 n) + 2 cos(3 n) + z[n]

where z[n] = a1 z[n-1] + v[n], a1 = 0.85, 2 = 0.1 /2 = 0 05 /2 = 0 40 /2 = 0 421/2 = 0.05, 2/2 = 0.40, 3/2 = 0.42

– N=32 data points are available periodogram resolution f = 1/32

Examine typical characteristics of various non-parametric pspectral estimators

(Fig.2.17 from Lim/Oppenheim book)

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [62]

Page 63: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [63]

Page 64: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

Ref. on Derivative and Gradient Operators for Ref. on Derivative and Gradient Operators for C lC l V i bl F tiV i bl F tiComplexComplex--Variable FunctionsVariable Functions

Ref: D.H. Brandwood, “A complex gradient operator and its application i d ti th ” i IEE P l 130 P t F d H 1in adaptive array theory,” in IEE Proc., vol. 130, Parts F and H, no.1, Feb. 1983. (downloadable from IEEEXplorer)

– Solving constrained optimization ith l l d bj ti f ti f l i blwith real-valued objective function of complex variables,

subject to constraint function of complex variables As seen in minimum variance spectral estimation and other As seen in minimum variance spectral estimation and other

array/statistical signal processing context.

UMD ENEE630 Advanced Signal Processing (ver.1211) Discussions [64]

Page 65: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

Liu

© 2

002)

ReferenceReferenceby M

.Wu

& R

.L

ReferenceReference

Slid

es (c

reat

ed b

P E

NE

E40

8G S

UM

CP

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [65]

Page 66: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

Recall: Filtering a Random ProcessRecall: Filtering a Random Process

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [66]

Page 67: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

ChiChi--Squared DistributionSquared Distribution

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [67]

Page 68: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

ChiChi--Squared Distribution (cont’d)Squared Distribution (cont’d)

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [68]

Page 69: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

Periodogram of White Gaussian ProcessPeriodogram of White Gaussian Process

See proof in Appendix 2 1 in Lim Oppenheim Book:

UMD ENEE630 Advanced Signal Processing (ver.1211) Nonparametric spectral estimation [69]

See proof in Appendix 2.1 in Lim-Oppenheim Book:- Basic idea is to examine the distribution of real and imaginary part of the DFT, and take the magnitude

Page 70: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

Liu

© 2

002)

Preview & WarmPreview & Warm upupby M

.Wu

& R

.L

Preview & WarmPreview & Warm--upup

Slid

es (c

reat

ed b

P E

NE

E40

8G S

UM

CP

UMD ENEE630 Advanced Signal Processing (ver.1111) Nonparametric spectral estimation [70]

Page 71: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

Model or Not?Model or Not? Implicit assumption by classical methods

– Classical methods use Fourier transform on either windowed d t i d d t l ti f ti (ACF)data or windowed autocorrelation function (ACF)

– Implicitly assume the unobserved data or ACF outside the window are zero => not true in reality

– Consequence of windowing: smeared spectral estimate(leading to low resolution)

If prior knowledge about the process is available If prior knowledge about the process is available– Can use prior knowledge and select a good model to

approximate the process– Usually need to estimate fewer model parameters (than non-

parametric approaches) using the limited data points we have– The model may allow to better describe the process outside

UMD ENEE630 Advanced Signal Processing (ver.1111) Parametric spectral estimation [71]

The model may allow to better describe the process outside the window (instead of assuming zeros)

Page 72: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

General Procedure of Parametric MethodsGeneral Procedure of Parametric Methods

Select a model (based on prior knowledge)

Estimate the parameters of the assumed model

Obtain the spectral estimate implied by the model (with the estimated parameters)

UMD ENEE630 Advanced Signal Processing (ver.1111) Parametric spectral estimation [72]

Page 73: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

Spectral Estimation using AR, MA, ARMA ModelsSpectral Estimation using AR, MA, ARMA Models

Physical insight: the process is generated/approximated by filtering white noise with an LTI filter of rational transfer func H(z)

Use observed data to estimate a few lags of r(k)– Larger lags of r(k) can be implicitly extrapolated by the model

Relation between r(k) and filter parameters {ak} and {bk}PARAMETER EQUATIONS f S ti 2 1 2(6) i thi– PARAMETER EQUATIONS from Section 2.1.2(6) review this

– Solve the parameter equations to obtain filter parameters– Use the p.s.d. implied by the model as our spectral estimatep p y p

Deal with nonlinear parameter equationsTry to “convert” or relate them to AR models that has linear equations

UMD ENEE630 Advanced Signal Processing (ver.1111) Parametric spectral estimation [73]

– Try to convert or relate them to AR models that has linear equations

Page 74: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

Review: Parameter EquationsReview: Parameter Equations

Yule-Walker equations (for AR process)

ARMA model MA model

UMD ENEE630 Advanced Signal Processing (ver.1111) Parametric spectral estimation [74]

Page 75: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

Spectrum Spectrum Estimation with Estimation with AR ModelingAR Modeling

• Use Levinson-Durbin recursion and solve for

where

– Approximate the observed data sequence {x[0] x[N]} with an ARApproximate the observed data sequence {x[0], …, x[N]} with an AR model (consider real-valued process here for simplicity)

– Use biased ACF estimate here to ensure nonnegative definiteness and ll i th bi d ti t (di idi b N k)

UMD ENEE630 Advanced Signal Processing (ver.1111) Nonparametric spectral estimation [75]

smaller variance than unbiased estimate (dividing by N-k)

Page 76: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

MA MA Spectral EstimationSpectral Estimation

An MA(q) modelqq

q

k

kk

q

kk zbzBknvbnx

00)( ][][

can be used to define an MA spectral estimator2

22 1)(ˆ q

fkjbfP

Recall: ( ) f f { ( )} f

1

22MA 1)(

k

fkjkebfP

(1) The problem of solving for bk given {r(k)} is to solve a set of nonlinear equations;

(2) An MA process can be approximated by an AR process of

UMD ENEE630 Advanced Signal Processing (ver.1111) Parametric spectral estimation [76]

( ) p pp y psufficiently high order.

Page 77: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

Basic Idea to Avoid Solving Nonlinear EquationsBasic Idea to Avoid Solving Nonlinear Equations

Consider two processes:

Process#1: we observed N samples and need to perform Process#1: we observed N samples, and need to perform spectral estimate– We first model it as a high-order AR process, generated by 1/A(z) filter

Process#2: an MA-process generated by A(z) filter– Since we know A(z), we can know process#2’s autocorrelation function;

UMD ENEE630 Advanced Signal Processing (ver.1111) Parametric spectral estimation [77]

– We model process#2 as an AR(q) process => the filter would be 1/B(z)

Page 78: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

Complex Exponentials in Additive NoiseComplex Exponentials in Additive Noise

UMD ENEE630 Advanced Signal Processing Frequency estimation [78]

Page 79: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

Correlation Matrix for the ProcessCorrelation Matrix for the Process

– Determine autocorrelation function

– Rs = ? Rw = ? Rx = ?

– Rank of correlation matrices?

UMD ENEE630 Advanced Signal Processing Frequency estimation [79]

Page 80: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

Correlation Matrix for the ProcessCorrelation Matrix for the Process

UMD ENEE630 Advanced Signal Processing Frequency estimation [80]

Page 81: Part 3. Part 3. Spectrum Spectrum …classweb.ece.umd.edu › enee630.F2012 › slides › part-3_sec1_F...Part 3. Spectrum Spectrum EstimationEstimation 3.1 Classic Methods for Spectrum

Correlation Matrix for the ProcessCorrelation Matrix for the Process

E[ x( ) w( ) ] = E[x( )] E[w( )] = 0

UMD ENEE630 Advanced Signal Processing Frequency estimation [81]

E[ x( ) w( ) ] = E[x( )] E[w( )] = 0this crosscorr term vanish because of uncorrelated *and* zero mean for either x( ) or w( ).