part 2 - chapter 7 total system performance assessment

126
Chapter 7 Figures ccgqJf) cj'9$ %t (DCArN}N

Upload: others

Post on 14-May-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Part 2 - Chapter 7 Total System Performance Assessment

Chapter 7 Figures

c�cg��qJf) cj'9$ %t (DCArN}N

Page 2: Part 2 - Chapter 7 Total System Performance Assessment

Yucca Mountain

Tiva Canyon Welded

Paintbrush Nonwelded

t

Topopah Spring Welded

Calico Hills Nonwelded

Crater Flat Undifferentiated

Solitario Canyon Fault

Topopah Spring Welded (TSw)

Topopah Spring Welded, Vitric (TSw)

Calico Hills Nonwelded

(CHn)

Water Table

Crater Flat Undifferentiated (CFu)

TSw Basal Vitrophyre

Figure 7-1. Conceptual illustrations of hydrogeologic units, major faults, water movement, and radionuclide transport through the unsaturated tuffs at Yucca Mountain.

B00000000-01717-4301-00007 REVO0 F7-1 August 1998

Page 3: Part 2 - Chapter 7 Total System Performance Assessment

1.0

C Random number= 0.82 0

L6.

O.0

M

4_

x

E

Tim

.0 0

E 0

S•Particle Residence Time 0.0

Tim e

Figure 7-2. Use of the transfer function to determine the residence time of a particle in a cell for the RTTF particle tracking technique (Robinson et al. 1997; Figure 4-1).

B00000000-01717-4301-00007 REV0O F7-2 August 1998

Page 4: Part 2 - Chapter 7 Total System Performance Assessment

Matrix

Fracture

Equal flow through each fracture

_ y

Figure 7-3. Conceptual model for matrix diffusion. One-dimensional flow occurs in the fracture, with molecular diffusion into the rock matrix (Robinson et al. 1997; Figure 4-2)..

BOOOOOOOO-01717-4301-00007 REVOA August 1998

\

F7-3

Page 5: Part 2 - Chapter 7 Total System Performance Assessment

1.0

0.8

0

Pe=20 C 0.6 0= R , 2 0

0.4

0

z

0.2

0.00.0000 0.0001 0.0002 0.0003 0.0004

Time, days

Figure 7-4. Cumulative residence time distribution (RTD) curves produced by the RTTF particle tracking technique for one-dimensional dispersion (filled circles), compared to analytical solution (solid curves). In the curves without sorption, Pe was varied. For the dashed curve, linear sorption was included for Pe = 20 (Robinson et al. 1997; Figure 4-4).

BOOOOOOOO-01717-4301-00007 REVOO F7-4 August 1998

Page 6: Part 2 - Chapter 7 Total System Performance Assessment

to 10000 X 1,000 P articles

x Ux

S• x x x O

x E 5000

"0 x x C x

X K

x ×

0

0.0000 0.0001 0.0002 0.0003 0.0004

Time, days

Figure 7-5. Residence time distribution (RTD) curves calculated using the RTTF particle tracking technique (symbols) for different numbers of particles, compared to the analytical solution (solid curve). The RTD is a solute concentration normalized so that the area under the curve is unity (Robinson et al. 1997; Figure 4-5).

B00000000-01717-4301-00007 REVOO August 1998F7-5

Page 7: Part 2 - Chapter 7 Total System Performance Assessment

1.0

a 0 ,8

S0.6 0

U 0

0.4

E 0

0.2

0.0

05 10

Time, days

Figure 7-6. Cumulative RTD curves produced by the RTTF particle tracking technique for the matrix diffusion model (filled circles), compared to the analytical solution of Tang et al. (1981) (solid curves). Curve a) small amount of matrix diffusion; Curve b) moderate amount of matrix diffusion; Curve c) Matrix diffusion and sorption on fracture and in matrix; Curve d) Dispersion, matrix diffusion, and sorption on fracture and in matrix (Robinson et al. 1997; Figure 4-6).

B00000000-0 1717-4301-00007 REVO0 F7-6 August 1998

Page 8: Part 2 - Chapter 7 Total System Performance Assessment

Production4O0

300

0 z S200

100

.0 100 200 300 400

Meters East

Figure 7-7. Model geometry and finite element grid for the two-dimensional models of interwell tracer tests at the C-Wells, Yucca Mountain, Nevada. The solid circles are an injector and producer for the case of wells aligned with the grid, and the open circles are the same for the case of wells misaligned with respect to the grid (Robinson et al. 1997; Figure 4-8).

BOOOOOOOO-01717-4301-00007 REVOA

Iniection

F7-7 August 1998

Page 9: Part 2 - Chapter 7 Total System Performance Assessment

0.7

0.6 -------- Finite Element Solution, Dispersivity = I m

0.5

.2

0

0

U 0.3 *1-

V

E 0.2 0 z

0.1

0 5 10

Time, hr

Figure 7-8. Comparison of RTTF particle tracking simulation (solid curves) and finite element CD equation solution (dotted curve). The two particle tracking curves show the effect of varying the dispersivity (0 and 1 m) (Robinson et al. 1997; Figure 4-9).

B00000000-01717-4301-00007 REV0O F7-8 August 1998

Page 10: Part 2 - Chapter 7 Total System Performance Assessment

3X increase in flux

-t

I 10 100 1000 10000 100000

Time Since Change in Flux, vears

Figure 7-9. Water mass flow rate versus time exiting the two-dimensional model domain for the three transient cases considered. Changes in percolation rate occur at t = 0 (Robinson et al. 1997; Figure 8-31).

B00000000-01717-4301-00007 REVOO

1 e-03

Z c

-'.4

- -- - -- - d e c r e- s e in -- --

' " , ., , 3 X d e c re a s e in flu x

3X increase in flux (1/3 to I)

1 e-04

_..°_._...__- ........ . ...........

I I. I . . . . I I II i I . I I I I

F7-9 August 1998

Page 11: Part 2 - Chapter 7 Total System Performance Assessment

0.95

0.90 bf2z

S. // "• .. 3X decrease

a

co

So~ss _J3X increase

S0.85

1 10 100 1000 10000 100000

Time Since Change in Flux, years

Figure 7-10. Matrix saturations in the tsw5 and bf2z units in response to the long-term transients in percolation flux. Black curves: bf2z; dashed curves: tsw5 (Robinson et al. 1997; Figure 8-32).

BOOOOOOOO-01717-4301-00007 REVOO F7-10 August 1998

Page 12: Part 2 - Chapter 7 Total System Performance Assessment

0.70

0.66 - -t - -- -- - - - - - - - - - - -

.. .. .. .. .. .. .. .. .. .. .

12 3X increase 3X decrease 43 06 (I/3 to I1 / 3X increase

41 0.60

0.56

3X increase SX decrease (113 to I)

0 .5 0 7.. . . . . .I . . . . . . . .a . . . .

10 100 1000 10000 100000

Time Since Change in Flux, years

Figure 7-11. Matrix saturations in the ptn3 and ch4v units in response to the long-term transients in percolation flux. Black curves: ptn3; dashed curves: ch4v (Robinson et al. 1997; Figure 8-33).

B00000000-01717-4301-00007 REVOA F7-11 August 1998

Page 13: Part 2 - Chapter 7 Total System Performance Assessment

100 -- ------- Steady. Base Infil. Map

Steady, I13 Infil. Transient

----- Quasi-Steady

E 10

1-3 L -12D

ILL• 0.1

Climate scenario: 3X increase in infiltration at 5ky. •

•z Np Release: Constant Flux from 1ky to 31 ky.

I-'

9 0 .01 . . . . . . .= . . . .

01 4

1000 10000 100000 1000000

Time Since Release of Pulse, years

Figure 7-12. Breakthrough curve of 237 Np at the water table for the long-term transient scenario. Also shown are the steady state curves for the two infiltration rates, and the quasi

steady state method (Robinson et al. 1997; Figure 8-34).

B00000000-01717-4301-00007 REVOO F7-12 August 1998

Page 14: Part 2 - Chapter 7 Total System Performance Assessment

100-• Steady, Base Infil. Map

Steady, 1/3 Infil.

Transient o .... Quasi-Steady

E 10

I-,

L 0.1 ca

Climate scenario: 3X increase in infiltration at 6ky. 0. 237 z Np Release: Constant flux from Iky to 31 ky.

r-. im 0.01 ,

1000 10000

Time Since Release of Pulse, years

Figure 7-13. Breakthrough curve of 237 Np at the water table for the long-term transient scenario, shown on an expanded scale near the time of the change in percolation flux (Robinson et al. 1997; Figure 8-35).

B00000000-01717-4301-00007 REVOO F7-13 August 1998

Page 15: Part 2 - Chapter 7 Total System Performance Assessment

Case 6541 ,Base Infiltration Map, Green's FunctionL. I 0 E

A" 100

10 IL.

x 1

w0.i

S

o 0.01

'.i U

1000 10000 100000 1000000

Time Since Release, years

Case 6641, Base Infiltration Map, Green's Function

a)

10 100 1000 10000 100000 1000000

Time Since Release, years

b) Figure 7-14. Green's function for transport of radionuclides in the two-dimensional site scale model. Property set 6541, base infiltration map, a) present-day water table, b) elevated water table (Robinson et al. 1997; Figures 8-2 and 8-36).

BOOOOOOO-01717-4301-00007 REV0O

10 100

S10 75

I

V

a 0.1

10

SM OI0

Irc

F7-14 August 1998

Page 16: Part 2 - Chapter 7 Total System Performance Assessment

Case 6541, Base Infiltration Map. Cumulative Breakthrough

Case 6541, Base Infiltration Map, Cumulative Breakthrough

L)

0

0

U)

' 1

0.8

0.6

0.4

0.2

0

10 100

b) Figure 7-15. Accumulative residence time distributions for transport of radionuclides in the twodimensional site scale model. Property set 6541, base infiltration map, a) present-day water table; b) elevated water table (Robinson et al. 1997; Figures 8-3 and 8-37).

B00000000-01717-4301-00007 REVOO

U)

0)

2

0 U0

0

E 0 z

1

0.8

0.6

0.4

0.2

0

10 100

a)

1000 10000 100000 1000000

Time Since Release, years

1000 10000 100000 1000000

Time Since Release, years

F7-15 August 1998

Page 17: Part 2 - Chapter 7 Total System Performance Assessment

K K K

2 b

LaN U

y

Figure 7-16. Schematic of the fracture transport model (after Tang et al. 1981).

B00000000-01717-4301-00007 REVO0 F7-16 August 1998

Page 18: Part 2 - Chapter 7 Total System Performance Assessment

map of infiltration flux qIn1 (mm/yr)

25.0

22.5 w

20.0

~.17.5

I

E

0

12.5

10.0

236000

235000

234000

233000

232000

5.0

2.5

2800

2800

2400

2200

2000 E '1800

1600

1400

i1200

!1000

800

800

400

200

0

231000

0 200 400 600 800 1000 , . . Lateral distance (in ] 6'1i100001 1i1u1 11(

Easting (m)

a) b)

Figure 7-17. Definitions of the repository regions and water table zones. a) repository regions with contour map of infiltration flux. b) saturated zone regions.

BOOOOOOOO-01717-4301-00007 REVOO

Contour

0

I• 15.0

1311 nf% nn

F7-17 August 1998

Page 19: Part 2 - Chapter 7 Total System Performance Assessment

1 0 I I I 7 I

__EBS Release S_ SZ Region 1

10 .... . ... SZ Region 2 -- Sz Region 3 -" SZ Region 4 10° -- sz Region 5 1

- -... .. . . . .. . S Z R e g io n 6

0

•L.

0~~~~~~ 10- ... . . . . . . .

10-2 JunL. JI~

0 10,000 20,000 30,000 40,000 50,000

Time (years) Figure 7-18. Release of tracer at a rate of 6.65 Ci/yr from the NW repository region from 5,000 years to 10,000 years. Rate of tracer arrival at the water table by saturated zone region.

BOOOOOOOO-01717-4301-00007 REVOO F7-18 August 1998

Page 20: Part 2 - Chapter 7 Total System Performance Assessment

102

EBS Release - - SZ Region 1

_ 101 - SZ Region 2 0 Sz Region 3

-"SZ Region 4 CZ SZ Region 5

o 10° F. ..... . ........ ..... ... SZ Region 6

1 0 ... ... . ... ... ... ... o 10-1 .. . ..

F

10-2 , E, ,

0 10,000 20,000 30,000 40,000 50,000

Time (years)

Figure 7-19. Release of tracer at a rate of 7.85 Ci/yr from the NE repository region from 5,000 years to 10,000 years. Rate of tracer arrival at the water table by saturated zone region.

B00000000-01717-4301-00007 REVOO F7-19 August 1998

Page 21: Part 2 - Chapter 7 Total System Performance Assessment

102

__ EBS Release - - SZ Region 1

_ 101 ........ SZ Region 2 -- Sz Region 3 - - SZ Region 4

_U SZ Region 5 • 10° . ......... . SZ Region 6

U 0

10-1 2..

0 10,000 20,000 30,000 40,000 50,000

Time (years) Figure 7-20. Release of tracer at a rate of 12.2 Ci/yr from the CC repository region from 5,000 years to 10,000 years. Rate of tracer arrival at the water table by saturated zone region.

B00000000-01717-4301-00007 REV00 F7-20 August 1998

Page 22: Part 2 - Chapter 7 Total System Performance Assessment

1 0 2 - ' I I I

- - EBS Release .1 •SZ Region 1 S 1010' .... . SZ Region 2 r -- Sz Region 3 .6-0a) SZ Region4 CZ SZ Region 5 o 10 ....... SZ Region 6

o 10-1-... ....

10 -2' 111 i ,, ... L il

0 10,000 20,000 30,000 40,000 50,000

Time (years) Figure 7-21. Release of tracer at a rate of 14.95 Ci/yr from the SE repository region from 5,000 years to 10,000 years. Rate of tracer arrival at the water table by saturated zone region.

BOOOOOOOO-01717-4301-00007 REVOO F7-21 August 1998

Page 23: Part 2 - Chapter 7 Total System Performance Assessment

102

0

0

C.) Z H-

101

100

10-1 -

10-2

0

JI1 ,[II, I I I

10,000 20,000 30,000 40,000 50,000

Time (Nears) Figure 7-22. Release of tracer at a rate of 4.85 Ci/yr from the SC repository region from 5,000 years to 10,000 years. Rate of tracer arrival at the water table by saturated zone region.

BOOOOOOOO-01717-4301-00007 REVOO

EBS Release SZ Region 1 SZ Region 2 Sz Region 3 SZ Region 4 SZ Region 5 SZ Region 6

• " " ! " " ' I ' I

I

I .

F7-22 August 1998

Page 24: Part 2 - Chapter 7 Total System Performance Assessment

1 0 2 - I I I ' I

EBS Release - - •SZ Region 1

S 101. ............. ...... SZ Region 2 - Sz Region 3

a -- SZ Region 4 Z_ SZ Region 5

100 .... ... SZ Region 6 0

C1) 10 -1 • 1 . . .. . .. . .... . .. . ..

10-2

0 10,000 20,000 30,000 40,000 50,000

Time (years) Figure 7-23. Release of tracer at a rate of 3.45 Ci/yr from the SW repository region from 5,000 years to 10,000 years. Rate of tracer arrival at the water table by saturated zone region.

B00000000-01717-4301-00007 REVO0 F7-23 August 1998

Page 25: Part 2 - Chapter 7 Total System Performance Assessment

Total Total

EBS Release Release to the SZ

- I -� � *-� .1

0 10,000 20,000 30,000 40,000 50,000

Time (years) Figure 7-24. Release of tracer at a rate of 50 Ci/yr from the all regions of the repository from 5,000 years to 10,000 years. Rate of tracer arrival at the water table.

B00000000-01717-4301-00007 REV00

103

(7102

101

100

10-1 -

1-"

0

0D 0 ,1 H-

.,IL.

10-2

.. .. .. ..... ... ... .

- I I I B.....

, • , |

i

• " • • I

I

F7-24 August 1998

Page 26: Part 2 - Chapter 7 Total System Performance Assessment

saturated uncompacted Kunigel bentonite -.,<- D of Free Water

Kunigel VI bentonite (2.37 g/cm3) O0

PNC granite (2.60 g/cm3)

tone (2.72 g/cm3)

PNC tuff (1.34 g/cm3)

O soils, silts and clay O3 gravel

A whole rock cores

* Kunipia-F (Kozaki et al.) Apparent Sr-Ds corrected for Sr retardation (10e-1.8)

10 20 30 40 50 60

Volumetric Water Content (%) Figure 7-25. Diffusion coefficient data as a function of volumetric water content. This figure summarizes the UFA diffusion experimental data (LANL 1997b).

70

BOOOOOOOO-01717-4301-00007 REVOO

10-4

110-5 E

10-6 I

10-7

E

010-8

10-9

10-100

E3

F7-25 August 1998

Page 27: Part 2 - Chapter 7 Total System Performance Assessment

D (cml)

C! C! C C

0. X

CD

I_. R

C6

to

0)

a +

C2

CC

%15W

Figure 7-26. Diffusion coefficient parametric equation. This plot shows the parametric equation defined from UFA data for the diff usion coefficient as a function of volumetric water content (LANL 1997b).

B00000000-01717-4301-00007 REV00

b

F7 -26 August 1998

Page 28: Part 2 - Chapter 7 Total System Performance Assessment

0.0008

D - m = 1030 m2/s

0.0007 __ Dm = 10-14

m 2/s

100 Dm = 10-13 m2/s

t0 I-- Dm = 1012

m2/s

. Dm = 10"11 m 2/s ,6 0.0005/

'0.0004

0 S0.0003 /

S0.0002

0.0001 a, / - N .

0.0000 . .... 2'd 1 .. ""6 .. [.

Time (years)

Figure 7-27. Mass flow rate curves for different matrix diffusion coefficients using the 3-D model under a release period of 1,000 years.

BOOOOOOOO-01717-4301-00007 REVO0 F7ý27 August 1998

Page 29: Part 2 - Chapter 7 Total System Performance Assessment

1.U

D0.m 10"30 m2/s 0.9Dm 10-14 m2/s /, ,

2 - Dmn=10-12m 2/s 0 / 0.7 ~11 M/ Dm =10'm

20.6

0.5

0.4

80.3

80.1 /

0

0.0

Time (years)

Figure 7-28. The normalized accumulative breakthrough curves for different matrix diffusion coefficients using the 3-D model under a release period of 1,000 years.

B00000000-01717-4301-00007 REVOO

• ^

F7-28 August 1998

Page 30: Part 2 - Chapter 7 Total System Performance Assessment

0.0005

0 .00004 Om = 10 1 3 m 2/s r, Dm = 10-12 m2

/s

, tDm =1011 m2/s

0 .0003

00.0002

0 .000 1

0.0000 ,,

o 1ooo 1 'j6 4i6

Time (years)

Figure 7-29. Mass flow rate curves for the 2-D flow model using different matrix diffusion coefficients and a release period of 1,000 years.

B00000000-01717-4301-00007 REVO0

- D =1030 m 2/s

- Dm = 10-14 m2/s

F7-29 August 1998

Page 31: Part 2 - Chapter 7 Total System Performance Assessment

-- Dm = 10-3 0 M 2/s

- Dm = 101 4 m 2/s

-- Dm = 101 3 M 2/s

SDm = 1012 m 2/s

.Dm = 10.11 m 2/s

0•

1.0

0.9

0.80

0.7

0.6

0.5

0.4

0-3

0.2

0.1

0.0

Figure 7-30. The normalized accumulative breakthrough curves for the 2-D flow model using different matrix diffusion coefficients and a release period of 1,000 years.

BOOOOOOOO-01717-4301-00007 REVOA

1 01

/

Tim e (years)

IL

2 0

z

F7-30 August 1998

Page 32: Part 2 - Chapter 7 Total System Performance Assessment

P.)

In In

10000

9000

8000

7000

6000

5000

4000

3000

2000

10001

-30 I . . . I . . . . 1

-25 -20 -15 Matrix diffusion coefficient (log1 o)

-10

Figure 7-31. The relationship between matrix diffusion coefficient and the peak mass arrival time.

BO0000000-01717-4301-00007 REVOO

A A .

0 1,000Ayear release * 5,000 year release A 10,000 year release

A 10,00 yar rleas

F7-31 August 1998

. . . . . . . . . . . . . . .3

Page 33: Part 2 - Chapter 7 Total System Performance Assessment

0.0005

tý0. 0 0 0 41

C

. 0.0003 * 1,0OOyear release U 5,000 year release A 10,000 year release

C S0.0002

0.0001

o ooi A £

-30 -25 -20 -15 -10 Matrix diffusion coefficient (log1 o)

Figure 7-32. The relationship between matrix diffusion coefficient and the peak mass flow rate.

BOOOOOOOO-01717-4301-00007 REVOO F7-32 August 1998

Page 34: Part 2 - Chapter 7 Total System Performance Assessment

0.0002

''0.0001

0.0000 79fl *irr

A' I

*1

.7 I

- D = 1030 m 2/s

-- Dm = 1O' mr/s -- Dm = 10-1 3 m2 /s

-- Dm= 10-1 2

m2/s

•Dn = 10"11 m2/s

I0 0 1 0 I .1b0 . .2 " ,6- 16, Time (years)

Figure 7-33. Mass flow rate curves for the 2-D model using different matrix diffusion coefficients and a release period of 5,000 years.

BOOOOOOOO-01717-4301-00007 REVO0

7>....,..- -.-.-. ,..,..

F7-33 August 1998

Page 35: Part 2 - Chapter 7 Total System Performance Assessment

Dm =10"30 m 2/s

Dm =1014 m2/s

DDm =10-13 m2/s

- Dm 10 12 rn2/s

Dr 10-11 m2/s

0Tirdl

T

7 I.

A,

d

8

0 zm

ime (years)

Figure 7-34. The normalized accumulative breakthrough curves for the 2-D flow model using different matrix diffusion coefficients and a release period of 5,000 years.

B00000000-01717-4301-00007 REVOO

1.0

4'

0.7

0.6

05

0.4

0.3

0.2

0.1

0.0 'i'64

F7-34 August 1998

Page 36: Part 2 - Chapter 7 Total System Performance Assessment

0.0001

0

I

4-

0.0000 i 4'LTime (years)

Figure 7-35. Mass flow rate curves for the 2-D flow model using different matrix diffusion coefficients and a release period of 10,000 years.

B00000000-01717-4301-00007 REVOO

-Dm = 10"30 m2/s

-Dm =10-14 mr/s

D- -_ 10-13 m2/s

SDm = 10-12

m2/s

D D= 10"11 m2/s

ft /

/ /

/ 4/

"-i1'65 . . .... -i'

F7-35 August 1998

Page 37: Part 2 - Chapter 7 Total System Performance Assessment

1.0

0.9

0.8

0.7

0.6 ý-

0.5

0.4

0.3

0.2

0.1

0.0 If

-- Dn = 10"30 m2/s

-- Drm = 10"-14 m 2/s SDDm= 10-13 m2/s

-- Dm= 1012 m2/s

Dm = 1011 m2/s

-2

-4.

I j

4 1'

.1

�1 I

I I

i 9

I S

,, , , ; .. . . . . .. . . . . . . . .

'ime (years)

Figure 7-36. The normalized accumulative breakthrough curves for the 2-D flow model using different matrix diffusion coefficients and a release period of 10,000 years.

BOOOOOOOO-01717-4301-00007 REVOO

2

°u 2

0 Z

16'i 4 ' . . .. .. i' d . .' ' ' i',

F7-36 August 1998

Page 38: Part 2 - Chapter 7 Total System Performance Assessment

0.0002

SDm = 10.30 m2/s - Dm= 10-14 m2/s

- m = 10-13 mr/s

"-Dm 1012 m2/s

IDm= 1011 mr2/s

8

0.0001 0

o I'2

S.- .

// .. •".

0.0000 . . ..0 • • ¢ . .. . .. .121 . . " " " "

Time (years)

Figure 7-37. Mass flow rate curves for the 2-D model using 1/3 of the Flint infiltration and a release period of 1,000 years.

B00000000-01717-4301-00007 REVOA F7-37 August 1998

Page 39: Part 2 - Chapter 7 Total System Performance Assessment

- Dm = 10"30 m2/s

-- Dm= 10-14 m2/s

- Dm = 10"13 m 2/s

-- Dm = 10-12 m2/s

D D = 10-1' m2/s

!',

if I,

-to 2

-,o

0 Z

Time (years)

Figure 7-38. The normalized accumulative breakthrough curves for the 2-D model using 1/3 the Flint infiltration and a release period of 1,000 years.

B00000000-01717-4301-00007 REVOO

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0 II? r . ....j 1i. • . .... C • . .,

August 1998F7-38

Page 40: Part 2 - Chapter 7 Total System Performance Assessment

11000'

110000

9000

"8000

7000

* 6000

5000

4000

3000

S2000

1000

-3 0 -25 -2o -i5 Matrix diffusion coefficient (log1 o)

Figure 7-39. The relationship between matrix diffusion coefficient and the peak mass arrival time using 1/3 Flint infiltration.

B00000000-01717-4301-00007 REVOO

A 1,000 year release * 5,000 year release A 10,000 year release

U U

-10

F7-39 August 1998

Page 41: Part 2 - Chapter 7 Total System Performance Assessment

0.0002

* 1,000year release 0 5,000 year release

10,000 year release

0.0001

0

A A A

0-30 -25 -20 -15 -10

Matrix diffusion coefficient (log1 0 )

Figure 7-40. The relationship between matrix diffusion coefficient and.the peak mass flow rate using 1/3 Flint infiltration.

BOOOOOOOO-01717-4301-00007 REVOO F7-40 August 1998

Page 42: Part 2 - Chapter 7 Total System Performance Assessment

O.O0008• 0.O S Dm = 10 14 /s

0.0007 Dm=10 r'n/s -Dm = 101' m2/s

' 0.0006 , -- Dm= 10-12 m2/s

SDm, = 10-11 m2 /s

0 0.0005 E

0.0004

Cr 0.0003

0.0002

0.0001 7 o o oo . .... ... . 'j'" ' 2" . ...i'3 1".. .... ..ý' 4 1 '" "f7•,r65 ' 166

Time (years)

Figure 7-41. Mass flow rate curves for the 2-D model using 3 times the Flint infiltration and a

release period of 1,000 years.

BOOOOOOOO-01717-4301-00007 REVOA F"/-41 August 1998

Page 43: Part 2 - Chapter 7 Total System Performance Assessment

- Om =10"30m 2/S

- Drm= 10-14 m2/s D m = 10-13 M2/S

- m = 10-12 m2/s '0= =10"11 m2

/s

. , I . . . .. i,

4-

I I

I

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0",'i'6s 6

Time (years)

Figure 7-42. The normalized accumulative breakthrough curves for the 2-D model using 3 times the Flint infiltration and a release period of 1,000 years.

BOOOOOOOO-01717-4301-00007 REVOO

0)

-o

C

"j'6 4

F7-42 August 1998

Page 44: Part 2 - Chapter 7 Total System Performance Assessment

10000 A L a

9000

a 8000

d 7000

"• 6000 * 1,000 year release U 5,000 year release

"" 5000 A 10,000year release

4000

3000

2000

011 -40' -15' -'•0 '-1'5 '10

Matrix diffusion coefficient (log1 O)

Figure 7-43. The relationship between matrix diffusion coefficient and the peak mass arrival time. The infiltration rate is 3 times the Flint infiltration rate.

BOOOOOOOO-01717-4301-00007 REVOO F7-43 August 1998

Page 45: Part 2 - Chapter 7 Total System Performance Assessment

0.0009

0.0008

t 0.0007

S0.0006a.) I-I

0 C

0.0005

0.0004

0.0003

0.0002

0.0001

0 1 -30 -25

Matrix diffusion coefficient (log 10 )

Figure 7-44. The relationship between matrix diffusion coefficient and the peak mass flow rate. The infiltration rate is 3 times the Flint infiltration rate.

BOOOOOOOO-01717-4301-00007 REVOO

* 1,000 year release a 5,000 year release A 10,000 year release

A A A A

I -20 i -15 40

August 1998F7-44

Page 46: Part 2 - Chapter 7 Total System Performance Assessment

0.0005

0.0004 - Kd = 2.5 -a-'

-- Kd=lO

d *. Kd=50

-KdlOO0

0 0.0003

- lKd, mVg

B 0.0002

0 .0 001

0.0000, 0121

Time (years)

Figure 7-45. The mass flow rate curves for the 2-D model using Flint infiltration rate and a release period of 1,000 years. Matrix sorption coefficients are the only parameters that are varied.

BOOOOOOOO-01717-4301-00007 REVOO F7-45 August 1998

Page 47: Part 2 - Chapter 7 Total System Performance Assessment

1 .0

0.9 - Kd=0

- Kd=lI •) 0.8 9 Kd =2.5

2 -- Kd=10

0.7 .. Kd=50

u - Kd = 100 S0.6

.• 0.5 Kd ml/g

"8 0.4

8 0.3

0 0.2

0.1 0 Z

0 .0 . . .. .....

Time (years)

Figure 7-46. The normalized accumulative breakthrough curves for the 2-D model using Flint infiltration rate and a release period of 1,000 years. Matrix sorption coefficients are the only parameters that are varied.

BOOOOOOOO-01717-4301-00007 REVOO F7-46 August 1998

Page 48: Part 2 - Chapter 7 Total System Performance Assessment

0.0001

-g -- Kd=10

K, = 100

E

lKd, mug

0.0000 0, 1 2 1 j13 1 1 1l64 1 . .Y656 1 1 1 1 1 1 1

Time (years)

Figure 7-47. The mass flow rate curves for the 2-D model using Flint infiltration rate and a release period of 10,000 years. Matrix sorption coefficients are the only parameters that are varied.

B00000000-01717-4301-00007 REVOO F7 -47 August 1998

Page 49: Part 2 - Chapter 7 Total System Performance Assessment

Time (years)

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Kd, mVg

2

B

0

N

z

Page 50: Part 2 - Chapter 7 Total System Performance Assessment

V

a.)

S '-4

S

10000 I

9000

80004

7000

6000±

5000±

4000-.

3000 F 2000

lO000

0 " 0

* 1,000 year release N 5,000 year release A 10,000 year release

IIIA A

-i

A

U

I ,I I I ... ......I I ...... .IIII I , I -i t IIIIIIIIIIIIII III I III 1 I #I1 II I I II I I111 I I I iii

30 40 50 60 70 80 90 100Matrix adsorption coefficient

mrng

Figure 7-49. Relationships between peak mass arrival time and the matrix sorption coefficient under a Flint infiltration condition.

B00000000-01717-4301-00007 REVOO

0

)20

F7-49 August 1998

Page 51: Part 2 - Chapter 7 Total System Performance Assessment

0.0005

>0.0004

0

,0.0003 0 1,oo0 year release U 5,000 year release A 10,000 year release

0

4 0.0002

* 0.0001 SL•,AA A

0 ,,, ,, ,W.. ,...l. • , . l • , , , l , , , . l , ...•..,., ..t, , ,.. ..... b. •.. .. .

0 10 20 3040 50 60 70 80 90 100 Matrix adsorption coefficient

mu/g

Figure 7-50. Relationships between peak mass flow rate and the matrix sorption coefficient under the Flint infiltration condition.

BOOOOOOOO-01717-4301-00007 REVOO F?-50 August 1998

Page 52: Part 2 - Chapter 7 Total System Performance Assessment

0.0005

0.0004 1r . R ,OoI

oV

E0.0003 (

_O0.0002

0.0001 /

0.0000 -6"

Time (years)

Figure 7-51. Mass flow rate curves under the Flint infiltration condition and a release period of 1,000 years for different fracture surface retardation factors.

BOOOOOOOO-01717-4301-00007 REVOO F'7-51 August 1998

Page 53: Part 2 - Chapter 7 Total System Performance Assessment

1.0

0.9 Rf = 0

R1 =50

0.8 RI = 100

R0 = 500 0.7 .Rf = 1000

0.6

.• 0.5 0.4

0.3

N 0.2

0.1

0 1 2 ' -"13 4 . ' S . . 10 10 .00 0 '010010

Time (years)

Figure 7-52. The corresponding normalized accumulative breakthrough curves for the simulations in Figure 7-51.

B00000000-01717-4301-00007 REV00 F7-52 August 1998

Page 54: Part 2 - Chapter 7 Total System Performance Assessment

0.0001

- Rf=0

-R 1=50 -RI = 100

A- I -- Rf =500

R••=1000 >1

o 1, ' I • '°

0.0000 2 ,.0, 3 ,, "a 4 . 6 11 .. . ' '''' '"'

Time (years)

Figure 7-53. Mass flow rate curves under the Flint infiltration condition and a release period of 10,000 years with different fracture surface retardation factors.

BOOOOOOOO-01717-4301-00007 REVOO F7-53 August 1998

Page 55: Part 2 - Chapter 7 Total System Performance Assessment

-- Rf=0 - Rf = 50

-- Rf = 100

-- R,= 500

Rf = 1000

'i'•

.1

1

lit

1��

ji,62

1 3 IT /T

Time (years)I I. .1 ,1 5 1.1.1.1. ,

Figure 7-54. The corresponding normalized accumulative breakthrough curves for the simulations shown in Figure 7-53.

B00000000-01717-4301-00007 REVOO

C.

2

E

0

1 .0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.01 0 6

I

August 1998F7-54

Page 56: Part 2 - Chapter 7 Total System Performance Assessment

11000

10lOOOO Axt& AALAj & &A,~ & A A AAAL AA 9000A A &

"8000 : 1,000 year release •5,000 year release

7000 A 10,000 year release

S6000*

5000 EN Eum m

S4000- *

E 3000

2000o

1000 ".* .. *

0 100 200 300 400 500 600 700 800 900 1000 Fracture surface retardation factor

Figure 7-55. Relationships between the peak mass arrival time and the fracture surface retardation factors under a Flint infiltration condition.

BOOOOOOOO-01717-4301-00007 REVOO F7-55 August 1998

Page 57: Part 2 - Chapter 7 Total System Performance Assessment

0.0005

,0.0004

0

*~0.0003

0

U,

S

0.0002:

0.0001 "

r-10 ri.S... .s e e** "

* 1,000 year release * 5,000 year release A 10,000 year release

O nW ui No n n mo n M

S&L*A& AA &A A ALA A A & AAAA AAA& A&, AAA A•A&A A A A&A*

m iillu u m anuii n rnM n M M xuu

00 100 200 300 400 500 600 700 800 900 1000

Fracture surface retardation factor

Figure 7-56. Relationships between the peak mass flow rate and the fracture surface retardation factors under a Flint infiltration condition.

BOOOOOOOO-01717-4301-00007 REVOO

I ...................................................................................................I I P le J I

sea i~l ll | ll l l

F7-56 August 1998

Page 58: Part 2 - Chapter 7 Total System Performance Assessment

0.0005

0 .0 0 0 4 -- ,m , 11 1.• -- Dm = 10.13 m 2

/s

-I _ Dm =10-12 m2/s

,• .Dm,= 10-11 M 2/S

0.0003

0 0.0002

0.0001

0.0000 . .. . .lo I• T 12 'i'j'3 4 ""- ' " '- S "

Time (years)

Figure 7-57. Mass flow rate curves under Flint infiltration condition, a Kd of 0.5 mVg, and a release period of 1,000 years.

B00000000-01717-4301-00007 REVOO F7-57 August 1998

Page 59: Part 2 - Chapter 7 Total System Performance Assessment

- Dm = 10"30 m 2/s

-- Dm = 10-14 mI/s

- Dm = 10-13 m 2/s

-- = 10-12 m 2/s

D . Dm=10-1'm 2/s

10 1 2

4 .7

,1

I,

I)

- 1 - I -. - -

Time (years)1i"4 . . .... .j'5

Figure 7-58. The corresponding normalized accumulative breakthrough curves under Flint infiltration condition, a Kd of 0.5 m/g, and a release period of 1,000 years.

B00000000-01717-4301-00007 REVOO

1 .0

0.9

0.7

M..0 '6

E• 0.4

-e

E

03

S0.2

0 z0.0 E

16iI

F7-58 August 1998

Page 60: Part 2 - Chapter 7 Total System Performance Assessment

I.

I,

Time (years)

Dm = 1030 m2/s

D- 0=10 14 m 2/s

D= 10.13 m2/s

-- m = 10.12 m2/s

D * . Dm = 10"11 m2 /s

" ni ...... -

Figure 7-59. Mass flow rate curves under Flint infiltration condition, a Kd of 2.5 mVg, and a release period of 1,000 years.

B00000000-01717-4301-00007 REVOO

0.0005

0.0004

E 0.0043

0.0002

CO

0.0001

0.0000U 1t1 6

F7-59 August 1998

Page 61: Part 2 - Chapter 7 Total System Performance Assessment

1 .0

.09

"000.8

c.oO .6 2 -= 0.7

0.6

.•0.5

S0o.4

0 .3

N0.2

0.1 0 z 0.0

Dm = 10.3° m 2/s

D = 10-14 m 2/s

Dm = 10 1 3 m 2/s

Dm = 10-1 2

m 2/s

Dm=10' 11 m2/s

' 10 . C • 'T ... (e. as3 ' Tim e (years)

Figure 7-60. The normalized accumulative breakthrough curves under the Flint infiltration condition, a Kd of 2.5 ml/g, and a release period of 1,000 years.

B00000000-01717-4301-00007 REVOO

/

/ I,

I' I.

/t

'a

It †53

"..ij'6 4 .1 5 )6Il

F7-60 August 1998

Page 62: Part 2 - Chapter 7 Total System Performance Assessment

D = 10-12 m2/s M Dm=101) 2/S

0.0003

0.0002

0,0001

0.000010 i 2

Time (years)

Figure 7-61. Mass flow rate curves under Flint infiltration condition, a Kdof 10 mVg, and a release period of 1,000 years.

B00000000-01717-4301-00007 REVOO F7-61 August 1998

Page 63: Part 2 - Chapter 7 Total System Performance Assessment

-- Dm = 10 30 m

2/s

-- D = 1014 m2/s

Dm = 10-13m 2/s

-- rn= 10"12 m2/s

D * . D=10-1O1 m2/s

/I

/

I,

/, Ii

/,

I

•0.9

G0.

_0.7

•0.6

" 0.4

•0.3

0.2

•0.1 -o

C

20.4 0.

. ....,61 . . .... i62 - . ....i 3 ( e Time (years)

Figure 7-62. Normalized accumulative breakthrough curves under Flint infiltration condition, a Kd of 10 ml/g, and a release period of 1,000 years.

BOOOOOOOO-01717-4301-00007 REVOO

1.0

16a " T j64 . .. ý... i -65 . I. 1....i,

F7-62 August 1998

Page 64: Part 2 - Chapter 7 Total System Performance Assessment

Dm = 10' mr2/S Dm = 10'14 m2/s -D, = 10"1' m2/s

-- Dm=10"12 m2/s

* Dm = 10-1' mi/s

0.0001

-0

0.00 00 ii

/�,' ,, ,

K 1

I'

/*

162 1'63 Time (years)

i14 i6 II

Figure 7-63. Mass flow rate curves under Flint infiltration condition, a Kd of 2.5 ml/g, and a release period of 10,000 years.

B00000000-01717-4301-00007 REVOO

i 610o

F'/-63 August 1998

Page 65: Part 2 - Chapter 7 Total System Performance Assessment

1.0

0.7

0o.6

.0 5 E 0.4

80.3

S0.2

°)

20.1 ~0 O.0

z 0.0

ba .........I'10 12 . . .11111 3 . .. .. 1 .4 o•, . ... 5 . . .... 1 16

Time (years)

Figure 7-64. The normalized accumulative breakthrough curves under Flint infiltration condition, a Kd of 2.5 mVg, and a release period of 10,000 years.

BOOOOOOOO-01717-4301-00007 REVOO

.5SD = 10"3° m2/s

Dm = 10"1' m2/s

Dm = 10"13 m2/s

- Dm = 10-12 m2/s

mD = 10" m2/s

August 1998

S. . . . . ... . . . I I I

-'S

F7-64

Page 66: Part 2 - Chapter 7 Total System Performance Assessment

10000 A

S9000 * 1,000 year release A U 5,000 year release

v 8000 A 10,000 year release A

S7000

"" 6000

$5000;P 4000

S3000

2000

S1000

0 1' 2 3 0 50 60 70 80 90 100 Matrix adsorption coefficient

(mu/g)

Figure 7-65. Relationships between Kd and peak mass arrival time for Dm = 10-11 m2/s and Flint infiltration rate.

B00000000-01717-4301-00007 REVOO F7-65 August 1998

Page 67: Part 2 - Chapter 7 Total System Performance Assessment

0.0005

0

V)

0.0004

0.0003

0.0002

0.0001-

0 6 i 20 0 .40. 50 . 60 . 70 80 90 i00 Matrix adsorption coefficient

(mtug)

Figure 7-66. Relationships between the peak mass flow rate and Kd for Dm = 1011 m 2/sec and Flint infiltration rate.

B00000000-01717-4301-00007 REVOO

* 1,000 year release * 5,000 year release A 10,000 year release

K A A

A

- t . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .

F7-66 August 1998

Page 68: Part 2 - Chapter 7 Total System Performance Assessment

0.0002

IC- Dm=10-12m 2

/s

11 2 . Dm 10- mr/s

0

00.0001

10 1

0.0000 10 -- ,11 1 016

Time (years)

Figure 7-67. Mass flow rate curves under 1/3 of Flint infiltration condition, a Kdof 2.5 ml/g, and a release period of 1,000 years.

BOOOOOOOO-01717-4301-00007 REVOA

- Dm = 10. m 2/s

--- Dm = 10"14 m2/s - " -= In13 M2/s

August 1998F7-67

Page 69: Part 2 - Chapter 7 Total System Performance Assessment

Dm = 10"30 m2/s

Dm =10"14 m2/s

Dm =10-13 m2/s

-- Dm = 10 12 m2/s

SDm= 10-11 m2/s

.i1:I

Figure 7-68. The normalized accumulative breakthrough curves under 1/3 of Flint infiltration condition, a Kd of 2.5 ml/g, and a release period of 1,000 years.

B00000000-01717-4301-00007 REVOO

10

0.9

0.7

90.6

0.5 =E 0.4

•0.3

N 0.2

0 z 0.0

ii

i?,

A

...ii10 "1' ."62 ' ' 'T i '6m e' (y ea s ) Tim e (years)

- I I I I 1 . . . .

F7-68 August 1998

Page 70: Part 2 - Chapter 7 Total System Performance Assessment

0.0002

"�-Dm=1012 m2/s

Din 10-" m2/s

4 00.001

'.0 0 0 1. .1 Ili . . .. r.I.

Time (years)

Figure 7-69. Mass flow rate curves under 1/3 of Flint infiltration condition, a Kdof 10 mlig, and a 1,000 year release period.

BOOOOOOOO-01717-4301-00007 REVOO F7-69 August 1998

Page 71: Part 2 - Chapter 7 Total System Performance Assessment

I-Dm = 10i30m 2/s

Dm = 10-4 m2/s Dm = 10- m 2/s

-- Dm = 1012 m2/s

S.Dm = 10.11 m2/s

1.0

"0.9

2 --0.7

20.6

._Z 0.5 4)

80.4

0.3

.' 0.2

"•0.1 0

0.0i b2 �53

Time (years)

Figure 7-70. The normalized accumulative breakthrough curves under 1/3 of Flint infiltration condition, a Kd of 10 ml/g, and a release period of 1,000 years.

B00000000-01717-4301-00007 REVOO

t/

/,

/

I

) .U6, 16

'I

" "..I .

F7-70 August 1998

Page 72: Part 2 - Chapter 7 Total System Performance Assessment

10000 '.b & A'A

- 9000 -t L A

a8000

~7000

6000 •

p. 5000

4000 Ln S3000 q

2000 .0.I

U ,D:D yt: etrltfIt • 1000 1 D.oDDDy..t...t..

0 10 20 30 40 50 60 70 80 90 100 Matrix adsorption coefficient

(mVg)

Figure 7-71. Relationships between Kdand peak mass arrival time for Dm = 1011 m2/s and 1/3 of Flint infiltration rate.

B00000000-017174301-00007 REVOO August 1998F7-71

Page 73: Part 2 - Chapter 7 Total System Performance Assessment

0.0001 -

0 10 20 30 40 50 60 70 80 90 100Matrix adsorption coefficient

(mu/g)

Figure 7-72. Relationships between Kdand the peak mass flow rate for Dm = 1011 m2/s and 1/3 of Flint infiltration.

B00000000-01717-4301-00007 REVOA

0.0002 -I

i

-5

* 1,000 year release * 5,000 year release A 10,000 year release

- A A I

A

0

August 1998

... i

F7-72

Page 74: Part 2 - Chapter 7 Total System Performance Assessment

0.0003

0.0007

c> 0.0006

E20.0005

0.0004

0 0.0003

U,

S0.0002

0.0001

0.0000

- Dm = 1030 m2/s

- Dm = 10-14 m2/s

- Dm = 10"13 m2/s

-- Dm = 10' 2 m 2/s

Dm = 10-11m

2/s

1 b0 Time (years)

1 6, 10 1

Figure 7-73. Mass flow rate curves under 3 time Flint infiltration condition, a Kd of 2.5 ml/g, and a 1,000 year release period.

B00000000-01717-4301-00007 REVOO

01 1020I0

August 1998F7-73

Page 75: Part 2 - Chapter 7 Total System Performance Assessment

I,

L

.'

1.0

0.9

2 • 0.7

20.6

.0.5

80.3

NO.2

0

z 00

10 i4 ;5 t0 10

Figure 7-74. The normalized accumulative breakthrough curves under 3 times Flint infiltration condition, a Kd of 2.5 ml/g, and a release period of 1,000 years.

B00000000-01717-4301-00007 REVOO

Dm = 10-30 m 2/s

Dm = 101' m2/s

Dm =10 1 3 m2/s

Dm 10-12 m2/s

SD,, 10"11 m2/s

S....1 1'63 ' "

Time (years)0o "f. 2 0j,.i 6

F7-74 August 1998

Page 76: Part 2 - Chapter 7 Total System Performance Assessment

0.0001

- ~Dm =10-12 M2/S

S D_ = 10-11 m2/s

-0 _o

t.1

Figure 7-75. Mass flow rate curves under 3 times F=lint infiltration condition, a Kd of 10 ml/g, and a 10,000 year release period.

B00000000-01717-4301-00007 REVOO F7-75 August 1998

Page 77: Part 2 - Chapter 7 Total System Performance Assessment

Dm = 10O30 m2/s

Dm = 10-14 m2/s

-Dm = 10"13 m2/s

-- Dm= 10-12 m2 /S

D " • = 10-11m 2/s

"--V

I, /

1 .a

0~.9

2 •0.8

-90.6

. 0.5

.04

0.3

N0.2

•0.1

0 z 0.0

Figure 7-76. The normalized accumulative breakthrough curves under 3 times Flint infiltration condition, a Kdof 10 ml/g, and a.release period of 10,000 years.

BOOOOOOOO-01717-4301-00007 REVOO

Time;3 ( e r Time (years)

U 6

August 1998

',i'61 "'id .... i'V T

F7-76

Page 78: Part 2 - Chapter 7 Total System Performance Assessment

10000

9000 -AA A _ A

S8000 A * 1,000 year release

0 5,000 year release S7000 A 10,000 year release E

S6000

5000 E *

S4000 E

3000

2000

10000

0- I

0 10 20 30 40 50 60 70 80 90 100

Matrix adsorption coefficient

(mt/g)

Figure 7-77. Relationships between the peak mass arrival time and Kd for Dm = 10"11 m 2/sec and 3 times Flint infiltration rate.

BOOOOOOOO-01717-4301-00007 REVOO F7-77 August 1998

Page 79: Part 2 - Chapter 7 Total System Performance Assessment

0.0008

"j0.0007

"- 0.0006

"•0.0005

S0.0004C

0.0003

S0.0002

S0.0001

0-0 10 20 30 40 50 60 70 80 90

Matrix adsorption coefficient

(ml/g)

Figure 7-78. Relationships between Kd and the peak mass flow rate for Dm = 1011 times Flint infiltration rate.

m2/sec and 3

BOOOOOOOO-01717-4301-00007 REVOO

* 1,000 year release

1 1,000 year release K 5,000 year release . 10,000year release

E N A ,L,

100

August 1998

I

I

F7-78

Page 80: Part 2 - Chapter 7 Total System Performance Assessment

0.0002

0.0001

- no diffusion or sorption - matrix diffusion only - matrix sorption only

-- matrix diffusion and sorp tion

',//

V1,

Time (years)

Figure 7-79. Mass flow rate curves of parameter set 1; 5,000 year release period.

BOOOOOOOO-01717-4301-00007 REVOO

L.a

0

L.a

F7-79 August 1998

Page 81: Part 2 - Chapter 7 Total System Performance Assessment

S- no diffusion or sorption matrix diffusion only matrix sorption only

- - matrix diffusion and sorption

0.00003

0.000015

0.000 1 0 : .. , 1

Time (years)

Figure 7-80. Mass flow rate curves of parameter set 2; 5,000 year release period.

B00000000-01717-4301-00007 REVOO

L..

0 W

/jt

I ° p

F7-80 August 1998

Page 82: Part 2 - Chapter 7 Total System Performance Assessment

3.5e-6

3.0e-6

S2.5e-6

E (D 2.0e-6

o 1.5e-6

Co E 1.0e-6

I

5.0e-7

0.0

0 2e+5 4e+5 6e+5 8e+5 1 e+6

Time (years)

Figure 7-81. Tc mass flow rate curves using the 3-D model and a release period of 400,000 years. Sensitivity to different climates (infiltration) and matrix diffusion coefficients.

B00000000-01717-4301-00007 REVO1

-Dm = 1030 m2/s; LTA climate

Dm = 3.2 x 1011 m 2/s; LTA climate

SDm = 10.30 m2/s; PD climate

Dm = 3.2 x 10-11 m 2/s; PD climate

- Dm = 10-30 m2/s; SP climate

Dm = 3.2 x 1011 m2/s; SP climate

F7-81 August 1998

AJA&,•ut

Page 83: Part 2 - Chapter 7 Total System Performance Assessment

_0 -c N M E. .0 Z

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0 2e+5 4e+5I

6e+5I

8e+5 1 e+6

Time (years)

Figure 7-82. The normalized accumulative breakthrough curves for Tc using the 3-D model and a release period of 400,000 years. Sensitivity to different climates (infiltration) and matrix diffusion coefficients.

BOOOOOOOO-01717-4301-00007 REVOO

- Dm = 10.3o m2/s; LTA climate

• D = 3.2 x 10.11 m2/s; LTA climate --- Dm = 10.30 m 2/s; PD climate

Dm = 3.2 x 10- m 2/s; PD climate

- Dm = 10-30 m2/s; SP climate

-- DrD = 3.2 x 101' m2/s; SP climate

F

F7-82 August 1998

Page 84: Part 2 - Chapter 7 Total System Performance Assessment

3e-6

2e-6

CU

S2e-6 E C)

2e-6

Co

u le-6 E

5 z 5e-7

00 2e+5 4e+5 6e+5 8e+5 1 e+6

Time (years)

Figure 7-83. Np mass flow rate curves using the 3-D model and a release period of 400,000 years. Sensitivity to different climates (infiltration).

BOOOOOOOO-01717-4301-00007 REVOO F7-83 August 1998

Page 85: Part 2 - Chapter 7 Total System Performance Assessment

IrA1 0

S0.9 .

a){: 0.8 // . Z

0.7 I•

S0.6 .(

. 0.5

E0.4 -PD climate S-• LTA climate 0 0.3 -. 0U- SP climate

S0.2 /

Z 0.1 o

0 2e+5 4e+5 6e+5 8e+5 le+6

Time (years)

Figure 7-84. The normalized accumulative breakthrough curves for Np using the 3-D model and a release period of 400,000 years. Sensitivity to different climates (infiltration).

B00000000-01717-4301-00007 REVO0 F7-84 August 1998

Page 86: Part 2 - Chapter 7 Total System Performance Assessment

3.5e-6

3.0e-6 DM = 10- m'/s; Kd = 0

•Dm = 10.30 m2/s; mean Kd

2) .-- Dm = 10-30 m2/s; max Kd S2.5e-6 77D Dm =1.6x10 1

° m 2 s; Kd = 0 2.0e-• Dm =1.6 x 10.10 m 2/s; mean Kd

O2.e-6 .. Dm =1.6 x 10.10 m 2/s; max Kd

0 1.5e-6

5.0e-7 /

0.0e- I

0 2e+5 4e+5 6e+5 8e+5 le+6

Time (years)

Figure 7-85. Np mass flow rate curves using the 3-D model and a release period of 400,000 years. Sensitivity to matrix diffusion and matrix sorption.

BOOOOOOOO-01717-4301-00007 REVOO F7-85

1

August 1998

Page 87: Part 2 - Chapter 7 Total System Performance Assessment

11n109

- 0.9

0 D 0.8 .•

- 0.7

Ca / 0.6 -/ Dm = 10.30 m2/s; Kd=O

a) 0.5Dm = 10'3 m2/s; mean Kd --O / -Dm = 10"30 m2/s; max Kd

E0.4 -1 /04./ Dn= 1.6x 10-10 m2/s; Kd=0

o0.3 / * Dm= 1.6 x 10-10 m2/s; mean Kd "" /. D, = 1.6 x 10-10 m2/s; max Kd 0 0.2 _

0 Z 0.0

0 2e+5 4e+5 6e+5 8e+5 le+6

Time (years)

Figure 7-86. The normalized accumulative breakthrough curves for Np using the 3-D model and a release period of 400,000 years. Sensitivity to matrix diffusion and matrix sorption.

BOOOOOOOO-01717-4301-00007 REVOO F7-86 August 1998

Page 88: Part 2 - Chapter 7 Total System Performance Assessment

1.8e-6

1.6e-6 -

CU

E

co

0

CU,

E 3_

1.4e-6 -

1.2e-6

1.0e-6

8.0e-7

6.0e-7

4.0e-7 -

2.0e-7

0.0

0 2e+5 4e+5 6e+5 8e+5 1 e+6

Time (years)

Figure 7-87. Pu mass flow rate curves using the 3-D model and a release period of 400,000 years. Sensitivity to different climates (infiltration).

BOOOOOOOO-01717-4301-00007 REVOO

-PD Climate .... LTA Climate / -- SP Climate

/

/

/

/

I

(I

I,'

/

/

I...

F7-87 August 1998

Page 89: Part 2 - Chapter 7 Total System Performance Assessment

-PD climate LTA climate

-- SP climate

(D

0.9€-00.8

- 0.7

0 0.6-D

. 0.5

E 0.4

C5 C- 0.3

N 0.2

E 0.1 0 o

2e+5

/ / ,

4e+5 6e+5 8e+5

Time (years)

Figure 7-88. The normalized accumulative breakthrough curves for Pu using the 3-D model and a release period of 400,000 years. Sensitivity to different climates (infiltration).

BOOOOOOOO-01717-4301-00007 REVOO

1 t)

/ / /

7

0.0 -I.

0 1 e+6

F7-88 August 1998

Page 90: Part 2 - Chapter 7 Total System Performance Assessment

2.5e-6

a)

E 0

a)

0

CO) Ca)

E o~

2.0e-6

1.5e-6

1.0e-6

5.0e-7 -

0.0

0 2e+5 4e+5 6e+5 8e+5 1 e+6

Time (years)

Figure 7-89. Pu mass flow rate curves using the 3-D model and a release period of 400,000 years. Sensitivity to matrix diffusion and matrix sorption.

B00000000-01717-4301-00007 REVOO

SDm= 1030 m2/s; min Kd

Dm= 1030 m2/s; mean Kd

- Dm = 10.30 m2/s; max Kd

Dm = 1.6 x 10-10 m2/s; min Kd

- Dm = 1.6 x 10.10 m2/s; mean Kd

Dm = 1.6 x 101 0 m2/s; max Kd

F7-89 August 1998

Page 91: Part 2 - Chapter 7 Total System Performance Assessment

S1.0 Dm= 1.6 x 10u m2/s; min Kd a)- Dm- = 1.6 x 1010 m2/s; mean Kd S0.9 o - Dm =1.6 x 10-° m2/s; maxKd

0) 0.8 .

2 -.- 0.7

20.6

.2 0.5

= 0.4 -

0.3

N0.2

•E o.1 0

-z o.•-' oL• _/ .

Z 0.0,,,,

0 2e+5 4e+5 6e+5 8e+5 le+6

Time (years)

Figure 7-90. The normalized accumulative breakthrough curves for Pu using the 3-D model and a release period of 400,000 years. Sensitivity to matrix diffusion and matrix sorption.

B00000000-01717-4301-00007 REVOO

-- Dm = m2/s; min Kd

Dm = 10.30 m2/s; mean Kd -- Dm = 1030 m2/s; max Kd

F7-90 August 1998

Page 92: Part 2 - Chapter 7 Total System Performance Assessment

2.5e-6

- 2.0e-6 -. - C=

M*". Mean K,

- 15 -- Max K, o) / 0 t 1.5e-6

_o / (D

E

5.0e-7

0.0

0 2e+5 4e+5 6e+5 8e+5 le+6

Time (years)

Figure 7-91. Pu mass flow rate curves using the 3-D model and a release period of 400,000 years. Sensitivity to aqueous/colloid partitioning.

BOOOOOOOO-01717-4301-00007 REVOO F7-91 August 1998

Page 93: Part 2 - Chapter 7 Total System Performance Assessment

1 n

S0.9 o - K0=0 - •

o• 0.8 --- Mean K.

2 -- MaxK, 0- 07 _- .

S0.6 / -a/ . .

E 0.4 / o /

o0. / z/

S0.1 // , .

0 2e+5 4e+5 6e+5 8e+5 1e+6

Time (years)

Figure 7-92. The normalized accumulative breakthrough curves for Pu using the 3-D model and a release period of 400,000 years. Sensitivity to aqueous/colloid partitioning.

BOOOOOOOO-01717-4301-00007 REVOO F7-92 August 1998

Page 94: Part 2 - Chapter 7 Total System Performance Assessment

-- Np, base - Tc, base

Pu, base Np, DKM Weeps Tc, DKM Weeps Pu, DKM Weeps

I

0

'I

I 2e+5

1 49+5

I 6e+5 8e+5 1 e+6

Time (years)

Figure 7-93. Mass flow rate curves using the 3-D model and a release period of 400,000 years. Sensitivity to flow fields; base case and DKM Weeps flow fields.

B00000000-01717-4301-00007 REVOO

3.5e-6

3.0e-6

2.5e-6

2.0e-6

1.5e-6

1.0e-6 -

0 U)

0 E

U)

0

U) Ca 2

5.0e-7

0.0

F7-93 August 1998

PI,

Page 95: Part 2 - Chapter 7 Total System Performance Assessment

U) 1.0 _

() 0.9 ,

t- -- Np, base S0.8 . Tc, base o -- Pu, base S0.7- Np, DKM Weeps -M - Tc, OKM Weeps

• 0.6//- - Pu, DKM Weeps ..

2 0.5 6 .CO

= 0.4 5

Ca)

o 0.3 I /

-o / 7

S0.2 o • 0.0 - . -' ._. t

0 2e+5 4e+5 6e+5 8e+5 le+6

Time (years)

Figure 7-94. Normalized accumulative breakthrough curves using the 3-D model and a release period of 400,000 years. Sensitivity to flow fields; base case and DKM Weeps flow fields.

BOOOOOOOO-01717-4301-00007 REVOO August 1998F7-94

Page 96: Part 2 - Chapter 7 Total System Performance Assessment

1 e-4

-Z 8e-5 -- =, ; Zd V O -- dKd = 0; vKd = 0; zKd =4

CD -- , dKd=l;vKd=I;zKd=4

-E 69-5

o (' = 4e-5 / Cn Vt) 0 / E /

Z 2e-5 /

/ /

0le+1 le+2 le+3 le+4 le+5

Time (years)

Figure 7-95. Np mass flow rate curves using the 3-D model and a release period of 10,000 years. Sensitivity to sorption as a function of rock type. dKd = devitrified rock Kd; vKd = vitric rock Kd; zKd = zeolitic rock Kd; all in mVg.

BOOOOOOOO-01717-4301-00007 REVOO

dKd = 1; vKd = 0; zKd =0

F7-95 August 1998

Page 97: Part 2 - Chapter 7 Total System Performance Assessment

"1.0 (D)

0.9 - dKd = 1; vKd = O; zKd= 0

0 -. dKd = O; vKd = 1; zKd= 0 0) 0.8 - I

•=3-- dKd =O;vKd =O;zKd =4 0 S0.7 - dKd O;vKd=0;zKd=4

0.6 /

a) • - 0.5

E 0.4 0 = 03 Q

0.3 /

N 0.2 /

S0.1 0 1 Z •

0.0 1.0e+2 1.0e+3 1.0e+4 1.0e+5 1.0e+6

Time (years)

Figure 7-96. Normalized accumulative breakthrough curves for Np using the 3-D model and a release period of 10,000 years. Sensitivity to sorption as a function of rock type. dKd = devitrified rock Kd; vKd = vitric rock Kd; zKd = zeolitic rock Kd; all in ml/g.

BOOOOOOOO-01717-4301-00007 REVOO F7-96 August 1998

Page 98: Part 2 - Chapter 7 Total System Performance Assessment

1.2

1.1

1.0-- dispersivity = 0 m dispersivity = 15 m

"-" 0.9 --- dispersivity = 25 m - dispersivity = 50 m

S0.8 - dispersivity = 75 m

E 0.7

S0.6

~0.5 •• 0.4

S0.3

0.2 // 0.1 .

0.0 - I 0.1 0.2 0.4 0.6 0.8 1 2 4 6 8 10

Time (years)

Figure 7-97. Mass flow rate curves using the 3-D model and a pulse release. Sensitivity to dispersivity.

BOOOOOOOO-01717-4301-00007 REVOO F7 -97 August 1998

Page 99: Part 2 - Chapter 7 Total System Performance Assessment

10

1° 08 0.9 d 0.8 - dispersivity)= 1 m

odispersivity = 0 m

2o-- - dispersivity = 25 0. ipriiy 0m

S0.7 - dispersivity = 50 m U -dispersivity = 75 m 2 0.6 / ,.0

.0.5 / :3 0.4

0.3

N 0.2

E 0.1 0 Z 0.0- , , ,

0.1 1 10 100 1000 10000

Time (years)

Figure 7-98. Normalized accumulative breakthrough curves using the 3-D model and a pulse release. Sensitivity to dispersivity.

B00000000-01717-4301-00007 REVOO F7-98 August 1998

Page 100: Part 2 - Chapter 7 Total System Performance Assessment

a Itg~wm A.eeoge Fbw F:

235000

234030

2330•3-

b

Note: color scales ate different for the two plots.

Lbvlg-Twrn Amm•oe FI0(v Fi96

23*JW=ý

23-0M

1705C, 171000 170600 1710]0

Em1-bm

0 so 100 . 150 2W0

o.1%U1OQ b'ne. y

0 2W 40D 6]0 Moo I1O(W

5D% TPa11Two Vooat

Figure 7-99. Color contour plot showing travel times from the repository to the water table for hypothetical nonsorbing, nondiff using tracer particles (100,000 particles per grid cell). Using the base-case parameter set; long-term average climate and mean infiltration, a) time for 0.1 percent of the mass to reach the water table; b) time for 50 percent of the mass to reach the water table.

BOOOOOOOO-01717-4301-00007 REVOO August 1998F7-99

Page 101: Part 2 - Chapter 7 Total System Performance Assessment

a L.Q-Tam AigOeFbf u b Lrg.Tw- Amaue Fb•t FW~

235DOD 23MM

23.4"O 23400D)O

2313-0D- 23300D

17OE6M 171'000 17C•OM 1710M0

0 20000 40ý, 6 80000 IMMl la a) 10IWWO

Figure 7-100. Color contour plot showing travel times from the repository to the water table for hypothetical tracer particles having the characteristics of plutonium (100,000 particles per grid cell). Using the base-case parameter set; long-term average climate and mean infiltration, a) time for 0.1 percent of the mass to reach the water table; b) time for 50 percent of the mass to reach the water table.

BOOOOOOOO-01717-4301-00007 REVOO August 1998F7-100

Page 102: Part 2 - Chapter 7 Total System Performance Assessment

236000 a

235000

234000

233000-

64 0906 o .*0 o .

-004050S .0S

.a memo .. . *:

S.ooeoe.,moo* S*O Co585555

SgUESo cc s

232000 - L 'C 231000

170000 171000 172000

236000

235000

234000

233000-

232000

231000 170000

Easting, m

7-b

b

gO *

.2

171000 172000

Entlng, m

Figure 7-101. Average locations for hypothetical releases from each repository grid cell at the water table. Using the base-case parameter set; long-term average climate and mean infiltration. a) release locations with the colors denoting the repository subdomains; b) computed center of mass of releases at the water table for each of the release locations.

BOOOOOOOO-01717-4301-00007 REVOO

I

F7-101 August 1998

Page 103: Part 2 - Chapter 7 Total System Performance Assessment

le-01

le-02 H2CO3 HC03 __

le-03

0

E• le-04 E Co 0

' le-06

C ole-06

le-07 NpO 2(C 3)2 2

NpO 2(OH)2 Ie-08,, , , , , - /

3 4 5 6 7 8 9 10

pH Figure 7-102. 237Np speciation in J-1 3 water at 250 C with a solubility of 5x1 0 molVI (Robinson et al. 1997; Figure 11-3).

B00000000-01717-4301-00007 REVOO F7-102 August 1998

Page 104: Part 2 - Chapter 7 Total System Performance Assessment

1

0.9

0.8

0.7"C . 250

C, J-13 0 CL 0.6 - ----- 25'C, U E-26 p#1 z

C 0.5-S' ,J1 .2 -g9O'C, J-13

LL

0.3

0.2

0.1

0 ] .. . . . . .. . .

3 4 5 6 7 8 9 10

pH

of237 pH

Figure 7-103. Predicted fraction of Np as cation as a function of temperature and fluid composition (J-13 fluid versus UE-25 p#1 fluid) (Robinson et al. 1997; Figure 11-4).

BOOOOOOOO-01717-4301-00007 REVOA F7-103 August 1998

Page 105: Part 2 - Chapter 7 Total System Performance Assessment

6

7k Model

4

2

0 --4

0- . . . ..... i . . . .

0.001 0.01 0.1

Ha+ Concentration, moUl

Figure 7-104. 237Np sorption coefficient versus Na+ concentration in pure sodium bicarbonate solutions (data from Tait et al. 1996). The Xs with accompanying curve show the predicted ion exchange model result (Robinson et al. 1997; Figure 11-5).

B00000000-01717-4301-00007 REVO0

* Data

F7-104 August 1998

Page 106: Part 2 - Chapter 7 Total System Performance Assessment

11.5

11.0

10.5

10.0

0.5-r"

9.0

8.5

8.0

7.5

7.0-

In'-.'

0

-........... center of repository top of zeolites

2500 5000 7500 10000

Time Since Waste Emplacement, years

Figure 7-105. The effect of C0 2 degassing on pH at the center of the repository (heat-pipe front) and at the top of the zeolitic layers (Robinson et al. 1997; Figure 11-15).

B00000000-01717-4301-00007 REV00 August 1998F7-105

Page 107: Part 2 - Chapter 7 Total System Performance Assessment

.3 n.� n�3

I..• J..UI-UJ3 -t S. . .. pH 7

pH 8 * 2.5e-03 ..........- pH 9 o- -- carrier, 5000 E- carrier, 500 y,

S2.0e-03 .0

*i I- I

1.5e-03 ,

* 1.Oe-03 / x/

S5.0e-04

O.Oe+O0 1000 10000 100000 1000000

Figure 7-106. Influence of pH on the 237Np breakthrough curves at the water table. The "carrier plume" result assumes an elevated pH of 10 at the repository for a period of either 500 or 5,000 years due to cement-water reactions (Robinson et al. 1997; Figure 11-16).

BOOOOOOOO-01717-4301-00007 REVOO F7-106 August 1998

Page 108: Part 2 - Chapter 7 Total System Performance Assessment

S1.5e-03 S........... mm/Y

4 mm/y -- - -. limate change

E . 1.0e-03

5.0e-04 x

/ z

O.Oe÷+00 . . .,

1000 10000 100000 1000000

Time Since Waste Emplacement, years

Figure 7-107. Influence of transient infiltration and chemical conditions on the 237Np breakthrough curves at the water table. The "changing climate" result assumes an increase from 1 mm/y to 4 mm/y, accompanied by a four-fold decrease in cation concentrations. The 1 mm/y and 4 mm/y steady state results without geochemical transients are shown for comparison (Robinson et al. 1997; Figure 11-17).

BOOOOOOOO-01717-4301-00007 REVO0 F7-107 August 1998

Page 109: Part 2 - Chapter 7 Total System Performance Assessment

Station 57 -Top

1300-7 Z TCw

PTn

1200 - - l

G

o ESF

• • TSW

CHn

Boo

H7TW

Repository Station 35 Column

Top

TOw Top

1300 TGw 1300 PTn TPTn

12DO 12D0

or III 00 1100- Potential o ---JESF 0 -_ .- .4 Repository

a) low -- a 104

W1 TSw

S TSw

GHn

800 7: _CHn

700

Figure 7-108. Schematics of three columns used in one-dimensional model studies (Robinson et al. 1997; Figure 6-35).

BOOOOOOOO-01717-4301-00007 REVOO F7-108 August 1998

Page 110: Part 2 - Chapter 7 Total System Performance Assessment

100 too 90

80

70 k 60 4-1

0 40 U 1k 30 91

20

10

0

Time (years)

.4

PC

00

50

60

30

30

10

.0 .14

4,J

14 M

100

00

10

00

50

40

00

00

10

T0 100 1000 10000 1(0000 1000000 Time (years)

Hq

1000

00

00

70

i0

00

30

00

10

1 a0 100 a00000 100000 1000000

Time (years)10 100 1000 10000 100000

Figure 7-109. Breakthrough curves at ESF/potential repository level for a) Station 35, b) Station 57, c) the repository column, and d) a comparison of the three at 5 mm/yr. Steady state infiltration varying between 0.5 and 20 mm/yr, and parameter set 6541 a (Robinson et al. 1997; Figure 6-36).

B00000000-01717-4301-00007 REVOO F7-109 August 1998

Page 111: Part 2 - Chapter 7 Total System Performance Assessment

1 mm/yr

Pc t

600 I I I

a 0.a 0.2 0.75 1

Percent of Total Flow

(x 100)

0

-H

p•

13o0 0

12oo

9 100

700

10 mm/yr

r~m C7f

I, - - - a

0 0.32 0.3 0.75 1

Percent of Total Flow

(x 100)

Figure 7-110. Simulated flux distribution in the Station 35 Column for parameter set 6541a at 1 and 10 mm/yr infiltration rate (Robinson et al. 1997; Figure 6-38).

BOOOOOOOO-01717-4301-00007 REVO0

14a0 -

1300

S1100

•H 10 on

9 O0 r-I

200 -

F7-1 10 August 1998

Page 112: Part 2 - Chapter 7 Total System Performance Assessment

14 Do

019

1 100

1o g

S4i

IaQ

oaa

,aa

ma.

I mm/Vr

1 4. U

100 a

0 200

mo

VIt

D0

- ri

0 0 a.5 a.75 a

Percent of Total Flow

(x 100)

0 0a.23 a.m a0. ,m

140 a

0 -H IaaCoo

r a

"Zan

7 0 0

I

Percent of Total Flow

(x 100)

10 mrn/r

M alrix -- F racture

,., ,,~ o.P ,I J" Irr . =,I

a a.0a23 0.

Percent of Total Flow

(x 100)

Figure 7-111. Simulated flux distribution in the Station 57 column for parameter set 6541a at 1 and 10 mm/yr infiltration rate. Also shown is lowest 5 percent of total flow to highlight nonzero fracture fluxes in PTn. Layer resolution in Calico Hills not provided due to focus above ESF in these simulations (Robinson et al. 1997; Figure 6-39).

B00000000-01717-4301-00007 REVOO

6

F7-.I11 August 1998

Page 113: Part 2 - Chapter 7 Total System Performance Assessment

5 mm/yr

Station 35 Properties 6412b

10 100

140 n

13 11

12 an

S110go A no

,• luaD -

A

1000 10000 100000 1000000

Time (years)

_ _ M atrix ] ---- Fracture

3 a0 .1

G a 0 SUS 7 0. 25 3 D. o5 1

Fraction o f Total Flow

Figure 7-112. Breakthrough curve at ESF for property set 6412b at Station 35. Also shown is flux distribution for 5 mm/yr case (Robinson et al. 1997; Figure 6-40).

B00000000-01717-4301-00007 REV00

100

*1I

$4

ad

75

50

25

0

g

F7-112 August 1998

Page 114: Part 2 - Chapter 7 Total System Performance Assessment

6541a and 6541b Saturations at Repository Column

0 *rI 4 j

I0

P4

1400

1300

1200

1100

1000

0. 5 0.6 0. 7 0. 8 0. 9 1. 0

Matrix Saturation

Figure 7-113. Comparison of saturations simulated in upper section of repository column with property sets 6541a and 6541b for 10 mm/yr (Robinson et al. 1997; Figure 6-41).

BOOOOOOOO-01717-4301-00007 REVOO F7-113 August 1998

Page 115: Part 2 - Chapter 7 Total System Performance Assessment

100

9-1

,-4

14 14

4J

1,

10

I

0. I

10 100 1000 10000 100000

Time (years)

10 100

Time (years)

Figure 7-114. Station 35 breakthrough comparison for 10 mm/yr average annual infiltration rate. Three property sets (identified in legend) compared for steady-state (ss) and transient (trans) infiltration. Transient model, 10-5-10, is 10 mm/yr accumulation applied over 10 days every 5 years. Log plot on right illustrates component of early arrival (Robinson et al. 1997; Figure 6-42).

BOOOOOOOO-01717-4301-00007 REVOO

,-4

4J

14 4, 04

80

40

20

"-- 654 1a ss -- 6441b ss -- 6 14 fit ss

- 6541a trans -- 6541b trans -- 6541fit trans I - i

-I

= I I

1000

100

F7-114 August 1998

Page 116: Part 2 - Chapter 7 Total System Performance Assessment

-- 6541 a s -- 6441 b ss

6541flt ss -- 6541a trans -- 6541b trans

-- 6541flt trans

100

800

4 40

!14z 20

0* I ' I I I . I

1 10 100 1000 10000

100

10

1 1

0.1

100000 10 100

Figure 7-115. Station 57 breakthrough comparison for 3 property sets at steady state (ss) and in transient (trans) infiltration model, each with mean annual infiltration rate of 10 mm/yr. Property sets are 6541a, 6541 b, and 6541flt. Transient mode is 10 mm/yr accumulated over 10 days every 5 years (10-5-10) (Robinson et al. 1997; Figure 6-43).

B00000000-01717-4301-00007 REVOO

- 6541a ss - 6441b ss - 6541flt ss

-- 6541a trans --- 6541b trans

--- 6541flt trans --Aa

1

I a

I

1000

F7-115 August 1998

Page 117: Part 2 - Chapter 7 Total System Performance Assessment

100

i - m )41b ss H 6541b is 80 6-41f-t ss -I 654 ifit as

- 6- 6541a trans :) 1 - -- .6541a trans .1 trans41 tas * -- 6541b trans 654 1b trans

60 . .6541fiA trans --. 6541flt trans • 40 ~4. 1 .......------ I. •

40 j

U 20 0.1''

0-F

1 10 100 1000 10000 100000 10 100 1OOC

Time (years) Time (years)

Figure 7-116. Repository column breakthrough comparison for 3 property sets at steady state (ss) and in transient (trans) infiltration model, each with mean annual infiltration rate of 10 mm/yr. Property sets are 6541 a, 6541b, and 6541fIt. Transient mode is 10 mm/yr accumulated over 10 days every 5 years (10-5-10) (Robinson et al. 1997; Figure 6-44).

BOOOOOOOO-01717-4301-00007 REVOO

- 6541a as I

3

F7-116 August 1998

Page 118: Part 2 - Chapter 7 Total System Performance Assessment

.05010100 -100

6541a -- 6541b 10

10 --- 6541fit 6541a Id-- 6541b

." .H ---- 6541fit 64 1

0. 1 8j ~01 "k4 I 14 41 i 41 I I,,i

0.01 10.0a.

I . I 0.001- I I I I0. 0' I ' I I I

1 10 100 1.000 10000 100000 1 10 100 1000 10o000 1000

Time (years) Time (years)

Figure 7-117. Comparison of breakthrough curves at potential repository horizon for transient simulations with a) 20 mm/yr average and b) 50 mm/yr average. All water is applied for 10 days every 5 years (Robinson et al. 1997; Figure 6-45).

BOOOOOOOO-01717-4301-00007 REVOO

00

August 1998F7-117

Page 119: Part 2 - Chapter 7 Total System Performance Assessment

It+ 0 1

H

,( 14 le+0 o-o

.1*-o0 6541a - 90 U 6541 b - 90 S°- 6541 fit 90 41 6541a - 10

It- 0 2 6541b - 10

6541 fit -10

.1.-03 -I ' I A

1. 10 100 1000 10000 100000

Time (years)

Figure 7-118. Comparison of breakthrough curves for 10 day duration transient and 90 day duration transients. Average annual infiltration for all cases is 10 mm/yr (Robinson et al. 1997; Figure 6-46).

B00000000-01717-4301-00007 REVO0

le÷02

F7A118 August 1998

Page 120: Part 2 - Chapter 7 Total System Performance Assessment

12

$4 >i11

N%~

1

r24

0 200 400 600

I 800 1000

Time (years)

12

10

8 I I I I0 200 400 500 800 1000

Time (years)

12

14 > 11

90

D4

8

0 200 400 500 800 1000

Time (years)

Figure 7-119. Simulated flux variation responses at potential repository for 10-5-10 transient infiltration rate at the surface. 300 years of transient followed by 700 years of uniform 10 mm/yr infiltration. The shaded portion of the 6541f It curve represents the short-term transients at the repository horizon (Robinson et al. 1997; Figure 6-47).

BOOOOOOOO-01717-4301-00007 REVOO

6541a

6541bJ

F7-119 August 1998

Page 121: Part 2 - Chapter 7 Total System Performance Assessment

a

b

Figure 7-120. Antler Ridge cross section (a) hydrologic zones including rock with greater than 10 percent zeolitic abundance, (b) hydrologic zones including rock with greater than 20 percent zeolitic abundance (Robinson et al. 1997; Figure 12-1).

B00000000-01717-4301-00007 REVOO F7-120 August 1998

Page 122: Part 2 - Chapter 7 Total System Performance Assessment

Gravity Driven Flow Layered Case

a)

C 0 -o E a 0

z

0

170.0

160.0

150.0

140.0

130.0

120.0

110.0 100.0

90.0

50.0

70.0

50.0

50.0

40.0

30.0

20.0

10.0

0.0102 10-1 10"

Time (years)

b)

Figure 7-121. a) Layered and lensed geometries for the zeolitic tuff. b) Comparison of 237 Np breakthrough curves for the layer and lens cases (Robinson et al. 1997; Figures 12-2 and 12-3).

BOOOOOOOO-01717-4301-00007 REVOO

Vitric Tuff

Zeolitic Tuff

Vitric Tuff

Ze olitic

Tuff

Lens Case

10i

V

F7-121 August 1998

Page 123: Part 2 - Chapter 7 Total System Performance Assessment

Percent Zeolitic Abundance

Figure 7-122. Conditional simulation of percent zeolitic abundance mapped onto the refined computational mesh between the Solitario and Ghost Dance faults (Robinson et al. 1997; Figure 12-14).

B00000000-01717-4301-00007 REVOO F7-122 August 1998

Page 124: Part 2 - Chapter 7 Total System Performance Assessment

Distributed K Model, Green's Function d

P

Jr

0

ca I'

a.

,10

V

"o a'

10000 100000 1000000

Time Since Release, years

Figure 7-123. Conditional simulation with different Kd s compared to the 10 percent cutoff case with a Kdof 20 (Robinson et al. 1997; Figure 12-18).

BOOOOOOOO-01717-4301-00007 REVOO

100 o000

100

10

I

0.1

0.01

10

F7-123 August 1998

Page 125: Part 2 - Chapter 7 Total System Performance Assessment

Distributed K Model, Green's Function

03

E 6q 03

V

V

12

100 1000 10000 100000 1000000

Time Since Release, years

Figure 7-124. Conditional simulation using different Kd s with 1/3 the infiltration rate in Figure 7-123 (Robinson et al. 1997; Figure 12-19).

B00000000-01717-4301-00007 REVOO

100

10

I

0.1

0.01

10

August 1998F7-124

Page 126: Part 2 - Chapter 7 Total System Performance Assessment

Comparison or 10% Zeolite and Geostat. Model

:E

P

Grj

:3

WI

co

Ia

100000 1000000

Time Since Release, years

Figure 7-125. Modification of the 10 percent zeolite case to better match the conditional simulation. The dotted lines show the results when all rocks with zeolitic abundance less than 10 percent are assigned a Kdof 0.1*Kd (Robinson et al. 1997; Figure 12-20).

B00000000-01717-4301-00007 REVOO

100 1000 10000

100

10

I

0.1

0.01

10

F7-125 August 1998