part 1: site selection planning

40
Technical Guidelines for the Development of Small Hydropower Plants DESIGN Part 1: Site Selection Planning SHP/TG 002-1: 2019

Upload: others

Post on 09-Jun-2022

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Part 1: site selection Planning

Technical Guidelines for the Development of Small Hydropower PlantsDesign

Part 1: site selection Planning

sHP/Tg 002-1: 2019

Page 2: Part 1: site selection Planning

D I S C L A I M E R

This document has been produced without formal United Nations editing. The designations and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as “developed”, “industrialized” and “developing” are intended for statistical convenience and do not necessarily express a judgement about the stage reached by a particular country or area in the development process. Mention of company names or commercial products does not constitute an endorsement by UNIDO. Although great care has been taken to maintain the accuracy of information herein, neither UNIDO nor its Member States assume any responsibility for consequences which may arise from the use of the material. This document may be freely quoted or reprinted but acknowledgement is requested.

© 2019 UNIDO / INSHP- All rights reserved

Page 3: Part 1: site selection Planning

Technical Guidelines for the Development of Small Hydropower PlantsDesign

Part 1: site selection Planning

sHP/Tg 002-1: 2019

Page 4: Part 1: site selection Planning

ACKNOWLEDGEMENTS

The technical guidelines (TGs) are the result of a collaborative effort between the United Nations Industrial Development

Organization (UNIDO) and the International Network on Small Hydro Power (INSHP). About 80 international experts and 40

international agencies were involved in the document’s preparation and peer review, and they provided concrete comments

and suggestions to make the TGs professional and applicable.

UNIDO and the INSHP highly appreciate the contributions provided during the development of these guidelines and in

particular those delivered by the following international organizations:

- The Common Market for Eastern and Southern Africa(COMESA)

- The Global Network of Regional Sustainable Energy Centres (GN-SEC), particularly the ECOWAS Centre for Renewable

Energy and Energy Efficiency (ECREEE), the East African Centre for Renewable Energy and Energy Efficiency (EACREEE),

the Pacific Centre for Renewable Energy and Energy Efficiency (PCREEE) and the Caribbean Centre for Renewable Energy

and Energy Efficiency (CCREEE).

The Chinese government has facilitated the finalization of these guidelines and was of great importance to its completion.

The development of these guidelines benefited greatly from the valuable inputs, review and constructive comments as well as

contributions received from Mr. Adnan Ahmed Shawky Atwa, Mr. Adoyi John Ochigbo, Mr. Arun Kumar, Mr. Atul Sarthak, Mr.

Bassey Edet Nkposong, Mr. Bernardo Calzadilla-Sarmiento, Ms. Chang Fangyuan, Mr. Chen Changjun, Ms. Chen Hongying , Mr.

Chen Xiaodong, Ms. Chen Yan, Ms. Chen Yueqing, Ms. Cheng Xialei, Ms. Chileshe Kapaya Matantilo, Ms. Chileshe Mpundu

Kapwepwe, Mr. Deogratias Kamweya, Mr. Dolwin Khan, Mr. Dong Guofeng, Mr. Ejaz Hussain Butt, Ms. Eva Kremere, Ms. Fang

Lin, Mr. Fu Liangliang, Mr. Garaio Donald Gafiye, Mr. Guei Guillaume Fulbert Kouhie, Mr. Guo Chenguang, Mr. Guo Hongyou,

Mr. Harold John Annegam, Ms. Hou ling, Mr. Hu Jianwei, Ms. Hu Xiaobo, Mr. Hu Yunchu, Mr. Huang Haiyang, Mr. Huang

Zhengmin, Ms. Januka Gyawali, Mr. Jiang Songkun, Mr. K. M. Dharesan Unnithan, Mr. Kipyego Cheluget, Mr. Kolade Esan, Mr.

Lamyser Castellanos Rigoberto, Mr. Li Zhiwu, Ms. Li Hui, Mr. Li Xiaoyong, Ms. Li Jingjing, Ms. Li Sa, Mr. Li Zhenggui, Ms. Liang

Hong, Mr. Liang Yong, Mr. Lin Xuxin, Mr. Liu Deyou, Mr. Liu Heng, Mr. Louis Philippe Jacques Tavernier, Ms. Lu Xiaoyan, Mr. Lv

Jianping, Mr. Manuel Mattiat, Mr. Martin Lugmayr, Mr. Mohamedain SeifElnasr, Mr. Mundia Simainga, Mr. Mukayi Musarurwa,

Mr. Olumide TaiwoAlade, Mr. Ou Chuanqi, Ms. Pan Meiting, Mr. Pan Weiping, Mr. Ralf Steffen Kaeser, Mr. Rudolf Hüpfl, Mr. Rui

Jun, Mr. Rao Dayi, Mr. Sandeep Kher, Mr. Sergio Armando Trelles Jasso, Mr. Sindiso Ngwenga, Mr. Sidney Kilmete, Ms. Sitraka

Zarasoa Rakotomahefa, Mr. Shang Zhihong, Mr. Shen Cunke, Mr. Shi Rongqing, Ms. Sanja Komadina, Mr. Tareqemtairah, Mr.

Tokihiko Fujimoto, Mr. Tovoniaina Ramanantsoa Andriampaniry, Mr. Tan Xiangqing, Mr. Tong Leyi, Mr. Wang Xinliang, Mr.

Wang Fuyun, Mr. Wang Baoluo, Mr. Wei Jianghui, Mr. Wu Cong, Ms. Xie Lihua, Mr. Xiong Jie, Ms. Xu Jie, Ms. Xu Xiaoyan, Mr. Xu

Wei, Mr. Yohane Mukabe, Mr. Yan Wenjiao, Mr. Yang Weijun, Ms. Yan Li, Mr. Yao Shenghong, Mr. Zeng Jingnian, Mr. Zhao

Guojun, Mr. Zhang Min, Mr. Zhang Liansheng, Mr. Zhang Zhenzhong, Mr. Zhang Xiaowen, Ms. Zhang Yingnan, Mr. Zheng Liang,

Mr. Mr. Zheng Yu, Mr. Zhou Shuhua, Ms. Zhu Mingjuan.

Further recommendations and suggestions for application for the update would be highly welcome.

Page 5: Part 1: site selection Planning

TableofContents

Foreword Ⅲ……………………………………………………………………………………………………

Introduction Ⅳ………………………………………………………………………………………………

1 Scope 1……………………………………………………………………………………………………

2 Normativereferences 1…………………………………………………………………………………

3 Termsanddefinitions 1…………………………………………………………………………………

4 Generalprovisions 1………………………………………………………………………………………

4.1 Planningprinciples 1…………………………………………………………………………………

4.2 Planningscope 2………………………………………………………………………………………

4.3 Planningmethodsandsteps 3………………………………………………………………………

5 Basicdatacollectionandanalysis 4……………………………………………………………………

5.1 Datacollection 4……………………………………………………………………………………

5.2 Dataanalysis 5………………………………………………………………………………………

6 Computationofriverbasinorsub-basinhydropowerpotential 6……………………………………

7 Preliminaryplanningofsite 8……………………………………………………………………………

7.1 Planningcontentandmainconsiderations 8………………………………………………………

7.2 TypesofSHPstationsandapplicableconditionsfordevelopment 9…………………………

7.3 Utilizationofseveralspecialgeographicalconditionsofrivers 9………………………………

7.4 Estimationofthedevelopmentscaleofahydropowerstation 10………………………………

8 Sitesurveysandinvestigations 11………………………………………………………………………

8.1 Hydrologicalsurveys 11……………………………………………………………………………

8.2 Surveysontheplanningsite 12……………………………………………………………………

8.3 Preliminarydeterminationofavailablewaterheadsforthehydropowerstation 12…………

8.4 Otherconstructionconditionsforinvestigation 12………………………………………………

9 Preparationofsiteconstructionplan 13………………………………………………………………

9.1 Selectionofinstalledcapacity 13…………………………………………………………………

9.2 Selectionofturbinetypes 13………………………………………………………………………

9.3 Numberofunits 13…………………………………………………………………………………

9.4 Selectionofdamtype 14……………………………………………………………………………

9.5 Selectionofspillwaystructures 14…………………………………………………………………

9.6 Selectionofwaterintakestructures 15……………………………………………………………

9.7 Selectionofdiversionstructures 15………………………………………………………………

9.8 Typesofpowerhouse 16……………………………………………………………………………

9.9 Locationofswitchyard 16…………………………………………………………………………

9.10 Locationoftailrace 16………………………………………………………………………………

9.11 Layoutofmainstructures 16………………………………………………………………………

10 Assessmentandprediction 17…………………………………………………………………………

10.1 Preliminaryassessmentofsocialandenvironmentalimpacts 17………………………………

10.2 Assessmentofpowerdemand 17…………………………………………………………………Ⅰ

SHP/TG002-1:2019

Page 6: Part 1: site selection Planning

10.3 Costestimationandbenefitsassessments 18……………………………………………………

10.4 Evaluationofplanningsiteanddevelopmentsequencerecommendations 18………………

11 Preparationofsiteselectionplanningreport 19………………………………………………………

AppendixA(Informative) Computationoftheoreticalpotentialofriverwaterenergy,

estimationformulaforinstalledcapacityonaplannedsite 20………………

AppendixB(Informative) SchematicdiagramofdevelopmenttypesandspecialterrainutilizationofSHPstations 23………………………………………………

AppendixC(Informative) Siteselectionplanningreport(Outline) 28………………………………

SHP/TG002-1:2019

Page 7: Part 1: site selection Planning

Foreword

TheUnitedNationsIndustrialDevelopmentOrganization(UNIDO)isaspecializedagencyundertheUnitedNationssystemtopromotegloballyinclusiveandsustainableindustrialdevelopment(ISID).TherelevanceofISIDasanintegratedapproachtoallthreepillarsofsustainabledevelopmentisrec-ognizedbythe2030AgendaforSustainableDevelopmentandtherelatedSustainableDevelopmentGoals (SDGs), which willframe United Nations and country efforts towards sustainabledevelopmentinthenextfifteenyears.UNIDO’smandateforISIDcoverstheneedtosupportthecre-ationofsustainableenergysystemsasenergyisessentialtoeconomicandsocialdevelopmentandtoimprovingqualityoflife.Internationalconcernanddebateoverenergyhavegrownincreasinglyoverthepasttwodecades,withtheissuesofpovertyalleviation,environmentalrisksandclimatechangenowtakingcentrestage.

INSHP(InternationalNetworkonSmallHydroPower)isaninternationalcoordinatingandpromotingorganizationfortheglobaldevelopmentofsmallhydropower(SHP),whichisestablishedontheba-sisofvoluntaryparticipationofregional,subregionalandnationalfocalpoints,relevantinstitutions,

utilitiesandcompanies,andhassocialbenefitasitsmajorobjective.INSHPaimsatthepromotionofglobalSHPdevelopmentthroughtriangletechnicalandeconomiccooperationamongdevelopingcountries,developedcountriesandinternationalorganizations,inordertosupplyruralareasinde-velopingcountrieswithenvironmentallysound,affordableandadequateenergy,whichwillleadtotheincreaseofemploymentopportunities,improvementofecologicalenvironments,povertyallevi-ation,improvementoflocallivingandculturalstandardsandeconomicdevelopment.

UNIDOandINSHPhavebeencooperatingontheWorldSmallHydropowerDevelopmentReportsinceyear2010.Fromthereports,SHPdemandanddevelopmentworldwidewerenotmatched.Oneofthedevelopmentbarriersinmostcountriesislackoftechnologies.UNIDO,incooperationwithINSHP,

throughglobalexpertcooperation,andbasedonsuccessfuldevelopmentexperiences,decidedtodeveloptheSHPTGstomeetdemandfromMemberStates.

TheseTGsweredraftedinaccordancewiththeeditorialrulesoftheISO/IECDirectives,Part2(seewww.iso.org/directives).

AttentionisdrawntothepossibilitythatsomeoftheelementsoftheseTGsmaybesubjecttopa-tentrights.UNIDOandINSHPshallnotbeheldresponsibleforidentifyinganysuchpatentrights.

SHP/TG002-1:2019

Page 8: Part 1: site selection Planning

Introduction

SmallHydropower(SHP)isincreasinglyrecognizedasanimportantrenewableenergysolutiontothechallengeofelectrifyingremoteruralareas.However,whilemostcountriesinEurope,NorthandSouthAmerica,andChinahavehighdegreesofinstalledcapacity,thepotentialofSHPinmanyde-velopingcountriesremainsuntappedandishinderedbyanumberoffactorsincludingthelackofgloballyagreedgoodpracticesorstandardsforSHPdevelopment.

TheseTechnicalGuidelinesfortheDevelopmentofSmallHydropowerPlants(TGs)willaddressthecurrentlimitationsoftheregulationsappliedtotechnicalguidelinesforSHPPlantsbyapplyingtheexpertiseandbestpracticesthatexistacrosstheglobe.Itisintendedforcountriestoutilizethesea-greeduponGuidelinestosupporttheircurrentpolicy,technologyandecosystems.Countriesthathavelimitedinstitutionalandtechnicalcapacities,willbeabletoenhancetheirknowledgebaseinde-velopingSHPplants,therebyattractingmoreinvestmentinSHPprojects,encouragingfavourablepoliciesandsubsequentlyassistingineconomicdevelopmentatanationallevel.TheseTGswillbevaluableforallcountries,butespeciallyallowforthesharingofexperienceandbestpracticesbe-tweencountriesthathavelimitedtechnicalknow-how.

TheTGscanbeusedastheprinciplesandbasisfortheplanning,design,constructionandmanage-mentofSHPplantsupto30MW.

● TheTermsandDefinitionsintheTGsspecifytheprofessionaltechnicaltermsanddefinitionscommonlyusedforSHPPlants.

● TheDesignGuidelinesprovideguidelinesforbasicrequirements,methodologyandprocedureintermsofsiteselection,hydrology,geology,projectlayout,configurations,energycalculations,

hydraulics,electromechanicalequipmentselection,construction,projectcostestimates,eco-nomicappraisal,financing,socialandenvironmentalassessments—withtheultimategoalofa-chievingthebestdesignsolutions.

● TheUnitsGuidelinesspecifythetechnicalrequirementsonSHPturbines,generators,hydrotur-binegoverningsystems,excitationsystems,mainvalvesaswellasmonitoring,control,pro-tectionandDCpowersupplysystems.

● TheConstructionGuidelinescanbeusedastheguidingtechnicaldocumentsfortheconstructionofSHPprojects.

● TheManagementGuidelinesprovidetechnicalguidanceforthemanagement,operationandmain-tenance,technicalrenovationandprojectacceptanceofSHPprojects.

SHP/TG002-1:2019

Page 9: Part 1: site selection Planning

TechnicalGuidelinesfortheDevelopmentofSmallHydropowerPlants-DesignPart1:SiteSelectionPlanning

1 Scope

ThisPartoftheDesignGuidelinesspecifiesthegeneralprinciplesofsiteselectionplanningforsmallhydropower(SHP)projects,andthemethodologies,proceduresandoutcomerequirementsofSHPplantsiteselection.

2 Normativereferences

Thefollowingdocumentsarereferredtointhetextinsuchawaythatsomeoralloftheircontentconstitutesrequirementsofthisdocument.Fordatedreferences,onlytheeditioncitedapplies.Forundatedreferences,thelatesteditionofthereferenceddocument(includinganyamendments)ap-plies.

SHP/TG001,Technicalguidelinesforthedevelopmentofsmallhydropowerplants—Termsanddef-initions

3 Termsanddefinitions

Forthepurposesofthisdocument,thetermsanddefinitionsgiveninSHP/TG001apply.

4 Generalprovisions

4.1 Planningprinciples

4.1.1 Siteselectionshallfollowtheprinciplesoflocalizedplanning,subjecttooverallnationalinte-gratedwaterresourcesplanningandtocomprehensiveriverbasinplanning withthesystematicprospectionofpotentialsites.

4.1.2 Siteselectionshallmeettherequirementsoftheenvironmentalneedsoftheriverandsur-roundingareasandalsohavepreliminaryplanstomitigatethenegativeimpactslikelytobecausedbytheSHPprojectstotheriveranditssurroundingenvironment.

1

SHP/TG002-1:2019

Page 10: Part 1: site selection Planning

4.1.3 Siteselectionshallbedeterminedbasedonthewaterresourcesandtopographywiththepur-poseofsustainabledevelopment,utilization,andalongwithfollowingcomprehensiveconsiderationofallotherfactors.

a) Siteselectionshallconsidercomprehensivelythecorrelationofhydropowerresourcedevelop-mentovertheentirelengthoftheriver,withdueattentiontotheinterrelationshipofupstreamanddownstreamcascadedevelopment,sothatthelayoutofupstreamanddownstreamsitesareproperlycoordinated.Formultipurposerequirementsforwatersupply,floodcontrol,irrigation,

ecology,tourism,navigationandcommunitydevelopment,theSHPprojectsshallbeplannedinaccordancewiththeprimaryandsecondarydevelopmentpurposes.

b) Siteselectionshalltakeintoaccountthelong-termelectricitydemandprojectionbasedonthesocialandeconomicdevelopmentofthearea.Whereindirectsellingofelectricitytootherregion(s)isforeseenthroughthepowergrid,thecurrentstatusanddevelopmentplanofthegridshallbeconsidered,andthegrowthpotentialoftheexternalpowermarketshallbeevalua-ted.Accordingtothedevelopmentneedsofthepowermarket,planningshouldbecarriedoutaccordinglytomeettherelevantshort-,medium-andlong-termdevelopmentgoals.

c) SiteselectionshallmakeajustificationoftheselectionofSHPinrelationtootherpossibleruralelectrificationtechnologies.

d) Siteselectionshalltakeintoaccountrelevantlocal,regionalandinternationalintegrateddevel-opmentplansrelevanttotheareaunderstudy.

4.1.4 Siteselectionshallbecoordinatedwithotherrelevantdevelopmentplansoftheareaunderstudy,includingplanningindicators,terminology,unitsofquantitiesandvalues,implementationplans,andshallbeconsistentandavoidconflicts.

4.2 Planningscope

4.2.1 TheplanningscopeforsiteselectionofSHPdevelopmentshallbebasedonthelevel(local/

state/national)oftheplanningorganizationofthecountry.

4.2.2 IftheSHPresourcedevelopmentplanispartofthecomprehensiveplanningoftheadministra-tivearea(local/state/provinces),thescopeofthesiteselectionplanningshallbedefinedinaccord-ancewiththeadministrativedivisionalplan.

4.2.3 SHPdevelopmentplanningshallbebasedonthedetailedandhomogeneousdefinitionoftherivernetworkandcatchmentsintheriverbasins.

4.2.4 Withinexclusiveeconomicdevelopmentzoneandnaturereserveareas,siteselectionplanningofSHPdevelopmentshallconsiderthemultipurposeneeds.2

SHP/TG002-1:2019

Page 11: Part 1: site selection Planning

4.3 Planningmethodsandsteps

TheplanningshallbedeterminedinaccordancewiththeactualprocessofsiteselectionplanningofSHPresourcedevelopment.ThemethodsandstepsareshowninFigure1.Inpractice,thedatacol-lectionshouldbecarriedoutincoordinationwithsomeworksofthesiteinvestigation.

Figure1 FlowchartofactivitiesforSHPsiteselectionplanning

3

SHP/TG002-1:2019

Page 12: Part 1: site selection Planning

5 Basicdatacollectionandanalysis

5.1 Datacollection

5.1.1 Adequatebasicdatashallbecollectedandanalysed.Theauthenticity,accuracy,timelinessandapplicabilityofthecollecteddatashallbetestedandconfirmed.Considerationshallbegiventotheuseofdigitalnaturalresourcedatabasesandgeomaticstechnology(remotesensingandGeo-graphicalInformationSystem[GIS]).

5.1.2 Thefollowingbasicdatashallbeincluded.

a) Hydrometeorologicaldata,includingseriesofmeasureddata,suchasprecipitation,flowinriv-ers,evaporation,waterlevel,sedimentandice.Forthelocationslackingthemeasureddata,

relevantdataonadjacentriverbasinsandhydrologicalmapsissuedbythenationalorregionalauthorityshouldbecollected.

b) Dataofnaturalgeographyofriverbasinandrivercharacteristicsincludingthetopographicmapoftheriverbasin(scalenotlessthan1∶50000),roadmapofadministrativearea,longitudinalandcross-sectionsofriver.Dataondigitalelevation/terrainmodelsareavailableat30m,andbetterresolutionmayalsobeused.Ifthehydro-meteorologicaldataofadjacentriverbasinsneedstobeutilized,thetopographicmapsofadjacentriverbasinsshallalsobecollected.

c) Geologicaldata,includingregionalgeological,tectonic,seismiczoning maps,geologicalreports,andrecordsofmajorgeologicaleventssuchasearthquakesintheplanningarea.

d) Resourceinformation,includinglanduse,minerals,energy,forestry,tourism,rareanimalsandplants.

e) Powersystemdata,includingpowersource,powerdemand,annualpowersupply,loadstruc-ture,loadcurve,powergridstructure,powermarkets,regulationsandpower-developmentplanninginthearea.

f) Existingfacilitiesdata,includingas-builtdesigndocumentsofexistinghydropowerstations,

irrigation,watersupply,rafting,navigationandotherprojectswithintheplanningriverreach.

g) Socio-economicdata,includingthedemography,industrialandagriculturalproduction,roadnetwork,grossnationalproduct,percapitaincome,andnationaleconomicdevelopmentplansinthearea.

h) Otherdata,includingnaturaldisasterrecords,legalrequirements,archaeology,historicsites,

protectedareasandnaturalheritage.4

SHP/TG002-1:2019

Page 13: Part 1: site selection Planning

5.2 Dataanalysis

5.2.1 Analysisofhydrometeorologicaldatashallincludethefollowing.

a) Qualitativeanalysis

1) Thedataseriesshallbeaccurate,reliableandhavenodatagapsasfaraspossible.

2) Thedatashallbeapplicabletotheriverbasinsunderstudy.

3) Theaccuracyofthedatashallmeettheanalysisrequirements.Theprecipitation/rainfalldatashouldbe,asfaraspossible,“dailyrainfall”.Themeasureddataofflowshallbeaspreciseas“averagedailyflow”.

4) Appropriateanalyticalmethodsshallbeusedforqualitycontrol.

5) Areliablelong-term dailydischargeseriesspecifictoeveryriverreachinthenetworkshouldbedetermined,basedondistributedhydrologicmodellingthatisappropriatelycali-brated.

b) Quantitativeanalysis

1) Frequencyanalysis:Themeasuredflowdataseriesshouldbeanalysedandcalculatedac-cordingtotheprobabilityformulaofstatistics,andthefrequencycurveshouldbedrawnaccordingtotheanalyticalresults.

2) Correlationanalysis:CorrelationanalysisshallbedonewhenthemeasuredflowdataarenotonthelocationoftheselectedsiteforSHPdevelopment.

3) Averageflowdurationcurve:Basedonthedataoffrequencycomputation,selecttheflowscorrespondingtothefrequencyofhighflow,medianflowandlowflow.Thenselectasimi-laryearfromtheflowseriesforannualdistribution,ifavailable,anddistributetheaveragedailyflowwithinthenextthreeyears,plottedasan“averageflowdurationcurve”.

5.2.2 Topographicmapdataanalysisshallincludethefollowing.

a) Scopeanalysis:Thetopographicmapshallincludethedrainageareaoftheriverbasinunderstudy.Ifrainfallorflowdataofadjacentriverbasinsareutilized,thetopographicmapshallalsoprovidethedrainageareaoftheadjacentriverbasin.

b) Accuracyanalysis:Thescaleofthetopographicmapusedforthesiteselectionshouldbenolessthan1∶50000.Ifthescaleofthecollectedtopographicmapissmallerthanthespecifiedrequirements,encryptionmeasuresshallbetakentoimprovetheaccuracyofcontours.Global

5

SHP/TG002-1:2019

Page 14: Part 1: site selection Planning

geometricdataof30morbetterresolutionmayalsobeused.

5.2.3 Geologicaldataanalysisshallmeetthefollowingrequirements.

a) Incorporatingtheconclusionsoftheregionalgeologicalstructuralstabilityassessment,majorfaultlinesandthegroundmotionparametersdeterminedfortheprojectarea.

b) Itcanreflectregionaltopographyandgeomorphology,stratigraphiclithology,geologicalstruc-ture,hydrogeologicalconditionsandphysicalgeologicalphenomena.

5.2.4 Powersystemdataanalysisshallincludethefollowing.

a) Presentstatusofthepowergridandanalysisofthepowergridplan:includingpowergridstruc-ture,geographicaldistribution,voltagelevelsandtherelationshipwith,andimpacton,pro-posedandplannedSHPdevelopment.

b) Powersourceanddemand(load)statusandplanninganalysis:includingpowersourceandde-mand(load)structure,annualmaximumpowerdemand(load),annualminimumpowerdemand(load),annualdemand(load)distribution,annualpowersupply,powergrowthrate,powermarkets,regulations,impactofintegrationwithotherrenewableenergysuchaswindandsolar.

5.2.5 Otherdataanalysisshallincludeacomprehensiveassessmentontheauthenticity,timelinessandrelevanceofthedata.

6 Computationofriverbasinorsub-basinhydropowerpotential

6.1 Thetheoreticalwaterenergypotentialoftheriver(reach)shallbeexpressedintermsofaver-ageannualoutput(power)(kW)oraverageannualenergy(kWh).TheaverageannualoutputandtheaverageannualenergyshallbemutuallyconvertedbythemeansoftheFormula(A.1).

6.2 Thetheoreticalwaterenergypotentialoftheriver(reach)shallbecalculatedinsegments.Alargertributaryentrypointshouldbeusedasasegmentationpointforriverwaterenergycomputa-tion.Takingthetributaryentrypointastheinterface,theadjacentsectionupstreamisthelowersectionoftheupperreach,andtheadjacentsectiondownstreamoftheentrypointistheuppersec-tionofthelowerreach.Thereachwithalargechangeinthelongitudinalslopeoftheriverbedshallberegardedasasegment.Thereachhavingparticularlyadvantageousdevelopmentconditionsshallberegardedasasegment.

6.3 Theannualaverageflowateachanalysissegmentoftherivershallbecalculated,withtheirar-earatiosbasedonthecollectedhydrologicdataseriesoftheriverandthecatchmentareasofeachanalysissegmentoftheriver.Iftheflowdataoftheriverbasinisinadequateorunavailable,thein-formationshouldbeobtainedbythefollowingmethods.6

SHP/TG002-1:2019

Page 15: Part 1: site selection Planning

a) Ifthereisrainfalldataonthisriverbasin,theappropriaterunoffcoefficientshouldbeconvertedtotherunoffinthesameperiodwithreferencetotheFormula(A.2)oranyothersuitablefor-mulaormethods.

b) Ifthereishydrologicalflowdataonanadjacentriverbasin,thecorrelationwiththeriverbasinshallbeanalysed,andtherelevantdataafterrevisionmaybeusedforwaterenergycomputa-tion.

c) Thehydrologicalflowparametersoftheriverbasincanbeobtainedbyusingthehydrologicalcontoursoreffectivechartsissuedbythehydrologicalorrelevantdepartment.

d) On-sitemeasurementmethod.

6.4 Thetopographicmapwithascaleof1∶50000orhighershouldbeusedtoverifyandcalculatetheelevationdifferencebetweentheupperandlowersectionsofthereachbyappropriateinterpre-tation.UseofDigitalElevationModel(DEM)/DigitalTerrainModel(DTM)isencouraged.

6.5 Basedontheflowrateoftheupperandlowersectionsoftheriverreachandtheelevationdifferencebetweentheupperandlowersections,theaverageannualoutputNi(kW)ofthereachshallbecalculatedbythemeansoftheFormula(A.3).TheaverageannualenergyEi(kWh)iscalcu-latedbytheFormula(A.1).

6.6 Withtheaverageannualoutputofwaterenergyineachreachbeingaccumulated,∑Ni,andtheaverageannualpowerenergyineachreachbeingaccumulated,∑Ei,thetheoreticalwaterener-gypotentialoftheriver(reach)maybeobtained.

6.7 Accordingtotheabovecomputationresults,thetheoreticalpotentialofriverwaterenergycanbecalculated:

a) TherelationcurvebetweenriverelevationZ (m)andriverlengthL(km):Z=f(L).CalculatetheZandLvaluesanddrawtheZ=f(L)curveontherectangularcoordinates.Thecurveshallshowthegradientofriverwatersurface(orthalweg)alongtheriverlength.

b) TherelationcurvebetweenriverflowQ (m3/s)andriverlengthL(km):Q=f(L).AccordingtotheflowrateQcalculatedin6.3,thevalueLisverifiedandcalculatedbyusingatopographicmaporDM/DEM/DTM.DrawQ=f(L)curveonrectangularcoordinates.Thiscurvereflectsthevariationofriverflowalongtheriverlength.

c) Accumulationcurveofriverwaterenergypotential∑Ni=f(L);The∑Ni(kW)valuemaybeobtainedbydirectlyusingthecomputationresultin6.6,thevalueLisverifiedandcalculatedbyusingtopographicmap/DEM/DTM.Draw∑Ni=f(L)curveonrectangularcoordinates.Theor-dinatevalueofacertainpointonthecurveindicatesthetotalpotentialofwaterenergyfromtheupstreamstartingpoint(forexample,fromtheriversource)tothesection.

7

SHP/TG002-1:2019

Page 16: Part 1: site selection Planning

d) Curveofunitpotentialofriver:Nd=f(L).Thatis,thedistributionoftheenergyvalueNd

(kW/km)oftheunitriverlengthofthereachalongtheriverlengthL(km).Thiscurvereflects

theenergydensityofthereach.NdiscalculatedbytheFormula(A.4).Thediagramoftheoreti-

calwaterenergypotentialisshowninFigureA.1.

7 Preliminaryplanningofsite

7.1 Planningcontentandmainconsiderations

7.1.1 PreliminaryplanningoftheSHPdevelopmentschemeshallincludeselectionofthesite,de-velopmenttypeandconstructionscaleoftheSHPplant.

7.1.2 Thepreliminaryplanningofthehydropowerstationsiteshallinvolvethefollowingconsidera-tions.

a) Thetopographyandgeologyshallbesuitableforplanningtherelevantstructuresofthehydro-

powerstation.

b) Thehydropowerpotentialshouldberelativelyconcentrated,andthehydroenergydensityoftheriverreachberelativelyhigher.

c) Powerevacuation/transmission:thehydropowerstationisclosetotheloadareasorclosetothepowergrid.

d) Accessandtransportationwithdifferentoptionsshallbeevaluatedandavailable.

e) Minimalinundationoffarmland,villagesortowns,forestsandothernaturalandsocialre-sources.

f) Avoidingnaturalresources,protectedareas,heritageareasandculturalheritagesites.

g) Theelectricitymarketdemandandtheadditionalrequirementsofthepowersystemforutiliza-tionofpowerfromtheproposedSHPplant.

h) Comprehensiveintegrationofwatersupply,irrigation,tourismandnavigation.

i) Avoidconflictswithexistingnationalandlocalwaterrelatedexistingschemesandfutureplansandmanagetheconflictsbetweendifferentplansinaccordancewiththelocal/state/national

planningprinciples.8

SHP/TG002-1:2019

Page 17: Part 1: site selection Planning

7.2 TypesofSHPstationsandapplicableconditionsfordevelopment

7.2.1 Dam-typehydropowerstation

Dam-typehydropowerstationsmaybeclassifiedintotwotypes,namelyin-streamhydropowersta-tionsordam-toehydropowerstations.

a) Thein-streamhydropowerstation(alongriverchannel)mostlyappliestotheriverreachinrela-tivelyplainareaswithrelativelysmallhead(lessthan15m),wheretheriverisrelativelywide;

itisalsousedforirrigationchannelsorwatersupplywithacertaindrop.SeeFigureB.1andFig-ureB.2forschematicdiagrams.

b) Thehydropowerstationatadamtoeappliestoawiderangeofwaterheads,rangingfromafewmetrestomorethan100metres.SeeFigureB.3foraschematicdiagram.

7.2.2 Diversion-conduit-typehydropowerstation

Thediversion-conduit-typehydropowerstationissuitableforriversectionswheretheriverchannelisrelativelynarrow,theslopeoftheriversectionisrelativelysteep,andthegeologicalconditionsoftheriverbankslopesarefavourable.Applicableheadsrangefromafew metrestoafewhundredmetres.SeeFigureB.4inAppendixBforaschematicdiagram.

7.2.3 Reservoir-based,run-of-riverhydropowerstation(hybrid)

Thecommonlyknownasrun-of-riverwithdiversionorstoragedamhydropowerstationissuitableforriversectionswheretheupstreamofthedamsitecaneasilyformstoragecapacity(diurnal,sea-sonalorannual),andthedownstreamofthedamsitehasarelativelyconcentrateddrop.SeeFigureB.5foraschematicdiagram.

7.3 Utilizationofseveralspecialgeographicalconditionsofrivers

7.3.1 Thenaturalwaterfallhasarelativelyconcentrateddrop.Thebarragemaybebuiltattheap-propriatelocationonthesteepslopeofthewaterfallandthenthewaterisdivertedbytheconduitintotheturbinegeneratorunitinthepowerhousetogenerateelectricity.SeeFigureB.6forasche-maticdiagram.However,suchschemesshallbecarefullyplannedincoordinationwiththerelevanttourismdepartment,includingschedulingofflowforwaterfallsandpowergeneration.

7.3.2 Rapidsornaturalwaterfallsareeasilyformedinrivercoursesinmountainousareas.Forsuchriversections,low-heightweirsmaybebuiltdependingontheactualsituation,and,byrationaluseoftheterrain,watermaybedivertedintothepowerhousethroughadiversioncanaltogenerateelectricity.However,forsuchhydropowerstations,specialattentionshallbepaidtofloodcontrolissues.SeeFigureB.7foraschematicdiagram.

9

SHP/TG002-1:2019

Page 18: Part 1: site selection Planning

7.3.3 Inmountainousareas,theriverchannelsaremostlycurved,andthecurvedistanceisrela-tivelysmall.Alow-heightdammaybebuiltupstreamofthecurve,toconnectthecurvesbyusingadiversioncanal(ortunnel);cut-offthecurvedriverchannelandobtaintheriverbenddrop,andthe

powerhousemaybebuiltonasuitablelocationonthediversioncanal(ortunnel).SeeFigureB.8foraschematicdiagram.

7.3.4 Thewaterfallonanirrigationchannelmaybeusedtobuildahydropowerstationinthechan-nel.Fordiversion-channel-typehydropowerstations,thetailwaterafterpowergenerationshallre-turntotheoriginalirrigationchannel.SeeFigureB.2foraschematicdiagram.

7.3.5 Thekineticenergyofflowingwatersinariverorcanalmaybeusedtoproduceelectrical

power.Becausethisispoweredbykineticenergyinsteadofpotentialenergy,itisknownas“veloci-ty”powergeneration.SeeFigureB.9foraschematicdiagram.

7.4 Estimationofthedevelopmentscaleofahydropowerstation

7.4.1 ThemeanannualflowattheplanningsitemaybefoundbyusingthecurveinthediagramoftheoreticalwaterenergypotentialQ=f(L).

7.4.2 Theusabledropattheplanningsitemaybecheckedandcalculated.

7.4.3 ThemeanannualoutputofthehydropowerstationattheplanningsitemaybecalculatedbyusingFormula(A.5).Theminimumecologicalflowshallbemaintainedinaccordancewiththeregula-tionsofthestate/country;ifthereisnospecificregulationinthecountry,itmaybecalculatedas10%ofthemeanannualflow.

7.4.4 Theannualenergyofhydropowerstationmaybepreliminarilydeterminedbytheannualutili-zationhours.

a) Selecttheexpectedannualutilizationhoursforthehydropowerstation.Thefollowingselection

principlesshallbefollowed.

1) Asmallvalueistakenifthedifferenceinprecipitationbetweenthewetanddryseasonsisobvious;amediumtolargevalueistakenifthedifferenceinflowbetweenthewetanddryseasonsisnotobvious.

2) Asmalltomediumvalueistakenforthehydropowerstationoperatinginanetworkcon-nectedtothegrid;foranisolatedpowerstation,alargevalueistaken.

3) Amediumtolargevalueistakenforahydropowerstationwithoutregulationfunction;amedianvalueistakenforahydropowerstationwithregulationfunction.

01

SHP/TG002-1:2019

Page 19: Part 1: site selection Planning

4) InstalledcapacityoftheSHPplantshallbebasedonoptimizationstudies,takingintoac-countflowdurationandtheenergymarket.

b) Afterselectingthedesirednumberofannualutilizationhours,theinstalledcapacityshallbees-timatedinaccordancewiththeFormula(A.6).

8 Sitesurveysandinvestigations

8.1 Hydrologicalsurveys

Hydrologicalsurveysshallincludesurveysofrainfallconsistency,fieldinvestigationofrunoffs,in-vestigationsofhistoricalfloods,andinvestigationsofhistoricaldryflows.Thesurveycontentisgenerallyasfollows.

a) Surveyofrainfallconsistency:Forareaswithshorthistoricaldata,especiallythosesiteslackingrecords,thesurveymaybecarriedoutbyvisitingthesiteandtalkingtotheresidentsalongtherivertounderstandqualitativelytherainfallpatternovertheyears,thedistributionconsistencywithintheyearandthedurationofriseandfalloftheriver.

b) Runoffmeasurement:Anapproximatemeasurementoftheflowoftheriversectionmaybestudiedbyaportableflowmeter,orasimplefloatflow measurementmethod,tocompareitwiththehistoricalrecordinthesameperiod.

c) Historicalfloodsurveys:

1) Preparationforsurveys:Itisnecessarytomakefulluseofbasicdatacollectedintheprevi-ouswork,suchasverticalandhorizontalsectionsoftheriver,includinghighestfloodlev-els;thehistoricaldatashouldbeconsideredinadvancetounderstandthenumber,magni-tudeandtimingsoftheoccurrenceofhistoricalfloods.

2) Sitesurveys:Importanceshallbeattachedtoselectingastraightriversection,focusingonbridges,ancientmonuments,bends,andrivermeandering,tocheckthetracesoffloodmarks.

3) Investigationandvisit:Visittheolderresidentsalongtherivertodeterminetheyearandmonthofhistoricalfloods,thetraces/highfloodmarksleftandthefloodingprocess.

4) Fieldmeasurements:Theelevationofthefloodtrace/highfloodmarks,andtheverticalandhorizontalsectionalmapofthenearbyriversection,shallbeincluded.

d) Investigationofthehistoricaldryseason:Thesurveyprocessissimilartothefloodsurvey.11

SHP/TG002-1:2019

Page 20: Part 1: site selection Planning

8.2 Surveysontheplanningsite

8.2.1 Damsitesurveys

Thespecificlocationshallbeverifiedonsiteinlinewiththedam/diversionstructuressiteselectedonthetopographicmap.Accordingtothebasicprinciplesofdamsiteselection,theleftandrightbanksandthesurroundingterrainofthedamsite,thesubsurfacestrataandrockstructureofthedamsiteshallbeinitiallyevaluatedtodetermineitssuitabilityasthebestlocationfortheconstruc-tionofadam/diversionstructure.

8.2.2 Plantsitesurveys

Thelocationofthepowerhouseselectedonthetopographicmapshallbeverifiedtomakesureitmeetsthebasicrequirementsfromtopographicalandgeologicalconsiderations.Atthesametime,

therelativepositionalrelationshipbetweenthepowerhouseandthedamshallbestudiedtojustifywhetherthewaterheadutilizationlevelinthepreliminaryplanismet.

8.2.3 Waterconveyancelinesurveys

Thetopographicalandgeologicalconditionsalongthewaterconveyancelineshallbesurveyed.Un-favourablelandformssuchaslandslides,collapseandlargespansofaqueductsshallbespecificallyevaluated.

8.2.4 Reservoirsurvey

Thegeologicalstructureofthebedofthereservoirareashallbeinvestigatedandattentionshallbepaidtowhetherthereareburiedchannels,riverdeposits,fossilvalleys,karstcaves,fracturesandfaults.Basicassessmentofreservoirrimslopestabilityshallbeensured.

8.3 Preliminarydeterminationofavailablewaterheadsforthehydropowerstation

8.3.1 Thewatersurfaceupstreamofthedamsiteandthesurfacedownstreamofthepowerhouseshallbeusedasmeasuringpoints,andthenaturaldropattheplanningsiteshallbemeasuredbyusingelevationinstrumentssuchasahand-heldGPSinstrument,alevelgaugeortotalstation.

8.3.2 Thenaturaldropplusthestorageheightofplannedwaterretainingstructuremaybeadoptedasthegrossheadofthehydropowerstation.Thecharacteristicwaterlevelupstreamofthewater-retainingstructureshallbedeterminedaftertheschemecomparisonandevaluationinthedesignstage.

8.4 Otherconstructionconditionsforinvestigation

Thefollowingconstructionconditionsshouldalsobeinvestigatedinthesiteselectionplanning.21

SHP/TG002-1:2019

Page 21: Part 1: site selection Planning

a) Assessthetransportationconditionsoftheplannedsiteandthefeasibilityofnewroadconstruc-tionorotheroptionssuchasropeways.

b) Verifythattherareanimalandplantspeciesneartheplanningsiteareconsistentwiththedata.

c) Visitthehistoricalsitesandtheirdistributionaccordingtotherecords.

d) Investigatethepopulationdensityanddistribution,landuseandownershipneartheplanningsiteandwithinthereservoirarea.

e) Investigateimportantbuildingsandotherpublicfacilitiesintheplanningarea.

f) Investigateotherrelevantplansfortheriverbasin.

g) Investigatetheavailabilityofconstructionmaterials.

9 Preparationofsiteconstructionplan

9.1 Selectionofinstalledcapacity

TheinstalledcapacityoftheSHPplantshallbeselectedaccordingtothehydrologicdatasurveyandthemeasurementoftheusabledropatthesite.

9.2 Selectionofturbinetypes

Theappropriateturbinetypeshallbeinitiallyselectedintheturbinetypetableorutilizationrangechartbasedonthewaterheadanddischargeofthehydropowerstation.

9.3 Numberofunits

Accordingtotherevisedinstalledcapacityofthepowerstation,thenumberofunitsisselectedandshallmeetthefollowingrequirements.

a) Inordertofacilitatemaintenanceandmanagement,unitswiththesamecapacityshallbeselect-ed.

b) Consideringthereliabilityrequirementsofthepowersupply,twoormoreunitsshouldbeused.

c) Whenthedistributionofrunoffisseverelyunbalancedinwetanddryseasons,unitsoftwodif-ferentcapacitiesshouldbeselected.

d) Whenselectingthecapacityofasingleunit,itshallbebasedontheconvenienceofmanufactur-31

SHP/TG002-1:2019

Page 22: Part 1: site selection Planning

ing,transportationandadequacyofutilizationshallbetakenintoaccount.

9.4 Selectionofdamtype

Thetypeofdamshallbeselectedaccordingtothetopography,geology,hydrologyandconstructionmaterials,aswellasthepreliminaryplanningresultsoftheselectedsites,includingmainlythefol-lowing.

a) Gravitydam:Thisshouldbebuiltonarockfoundation,butagravityweirmaybebuiltonasoftfoundation.

b) Archdam:Thisshouldbebuiltondamsiteswithnarrowrivergorges,symmetricalandcontinu-oushillsonbothbanks,andgoodgeologicalconditions.

c) Earth/rockfilldam:Thisissuitableforlocaldamconstructionwherethereareabundantmateri-alsthatareconvenientforconstructionandtransportation;ithasrelativelylowrequirementsforfoundationgeologicalconditions.

d) Sluicedam/barrage:Thisisapplicabletolowwaterheadhydropowerprojectsinriverchannelsorplainareas.Itisgenerallybuiltonarockfoundationorhomogeneoussoil,oronanon-rockfoundationsuchassandygravelandsoftclay.However,constructionpartiallyonrockfounda-tionandpartiallyonnon-rockfoundationshallbeavoided.

e) Shutterdam/weir:Thisisapplicabletolocationswherethewaterdepthislessthan5mandtherequirementforriverbedfloodingishigh.Foundationrequirementsforashutterdamarethesameasthoseforasluicedam.

9.5 Selectionofspillwaystructures

Appropriateflooddischargemeasuresandspillwaysshallbeselectedaccordingtothedamtypeandsurroundingtopography.Themainformsareasfollows.

a) Theflooddischargethroughthedammaybeclassifiedintosurfacespillwayflooddischargeandmediumandlowsluiceflooddischarge.

b) Riversideflooddischargemaybeclassifiedintospillwayandspillwaytunnel.

1) Spillway:Thespillwayshallbeplacedonastablefoundationandtheaxisshouldbestraight.Theflowshallmaintainasafedistancefromotherstructuresandconnecttothedown-streamriver.Thespillwayisclassifiedaschutespillwayorsidespillway,accordingtotherelationshipbetweenitsaxisandtheaxisofthebarrageordam.

2) Spillwaytunnel:Economicandtechnicalcomparisonsshallbemadetochooseapressureor41

SHP/TG002-1:2019

Page 23: Part 1: site selection Planning

anon-pressuretunnel.Theconstructiondiversiontunnelmaybeusedasaspillwaytunnel.

Allspillwaysshallhavesuitablespaceforenergydissipatingstructures,dependingonthetypeofspillway,topographicalandgeologicalfeatures.

9.6 Selectionofwaterintakestructures

Thewaterintakestructuresinsideoroutsideofthedamshallbeselectedaccordingtodifferenttypesofhydropowerstation.Theselectionofwaterintakeshallmeetthefollowingrequirements.

a) Thewaterintakeofthehydropowerstationatadamtoemaybeinstalledinsidethedam.

b) Thediversiontypeofhydropowerprojectshallhavethewaterintakeinstalledoutsidethedam.

c) Thewaterintakeoutsidethedammaybelocatedononesideoftheriverbanks.

d) Forsediment-ladenrivers,asedimentationbasinshouldbeinstalledadjacenttothe waterintake.Whenrestrictedbyterrainconditions,orheadofsand-flushingwaterisnotsufficient,itcanbemoveddowntotheappropriatepositionalongthediversionchannel.

9.7 Selectionofdiversionstructures

Thewaterconductorsystemofthehydropowerstationincludesthechannel,tunnel,sedimentationbasin,forebay,penstock,surgechamber,fishpassageandtailrace.Theselectionofeachpartshallrespectthefollowingconditions.

a) Channel:Thechannelroutealongthecontourlineshouldbechosen.Theshorterandmorefeasi-blerouteispreferred.

b) Tunnel:Thetunnelmaybeclassifiedasapressuretunnelorafree-flowtunnel.Inordertore-ducethelengthofthechannel,thetunnelmaybeexcavatedifthegeologicalconditionsofthemountainmeettherequirements.Thetunnelshallbekeptawayfromgeologicalstructuressuchasfaults,fracturesandkarstcaves.

c) Sedimentationbasin:Accordingtothesedimentcontent,sedimentparticlesizeandhydropowerstationwaterhead,thenecessityofinstallingasedimentationbasinshallbejudged.Thesedi-mentationbasinshallbelocatedonastablefoundationandshallbecapableofconvenientlydis-chargingsediment.

d) Forebay:Theforebayshallbelocatedattheendofthenon-pressurewaterdiversionsystemandbeforethepenstockdirectswaterintotheturbine.Thepressureforebayshallbekeptawayfromlandslides,downslopefracturedevelopmentorsteepslopes.Theforebayshallbelocatedonasolidfoundationwithlowpermeabilityandincombinationwiththepenstockandpowerhouselo-

51

SHP/TG002-1:2019

Page 24: Part 1: site selection Planning

cation.

e) Penstock:Theform,parametersandsupportmethodsforthepenstockshallbedeterminedbysubsequentdesign.

f) Surgechamber:Inahydropowerstation’spressurediversionsystem,ifthereisapossibilityofdirecthammer-basedontheturbineregulationfirmcalculationresult,asurgechambershallbeinstalledinasuitablepositionofthepressurepipe,priortotheturbine.Ifgeographicalcondi-tionspermit,thesurgechambershallbeinstallednearthehydropowerstation.Itshallbein-stalledonthesolidfoundationwithlowwaterpermeability.

g) FishPassage:Suitablefishpassagemaybeprovidedinthediversionstructure.

9.8 Typesofpowerhouse

Thetypeofpowerhouseshallbeselectedthrougheconomicandtechnicalcomparisonaccordingtothetopographicandgeologicalconditions,upstreamanddownstreamwaterlevelandotherfactors.Thepowerhousetypesincludesurface,underground,semi-underground,overflowandwithin-dam.

9.9 Locationofswitchyard

Theswitchyardshallbeclosetothepowerhouse,asfaraspossible,incombinationwiththetopo-graphiccharacteristics.Subsidenceproneandlow-lyinglocationsshallbeavoided.

9.10 Locationoftailrace

Thetailraceshallbelocatedwithconsiderationtothesmoothdischargeofflowandshallavoidtheinfluenceofwaterflowattheoutletofspillwaystructures.

9.11 Layoutofmainstructures

Underthepremiseofsatisfyingthegeologicaland otherconstructionconditions,thelayoutprinciplesmainlyincludethefollowing.

a) Thetopographicconditionsshallbefullyutilizedtooptimizethequantityofconstructionwork.

b) Thepowerhouseshallbeclosetothedam,asfaraspossible.

c) Theswitchyardshallbeclosetothepowerhouse,asfaraspossible.

d) Considerationshallbegiventotheconvenienceoftransportationofequipment,especiallythepossibilityoftransportationofthelargestandheaviestequipment.61

SHP/TG002-1:2019

Page 25: Part 1: site selection Planning

e) Adequateconsiderationshallbegiventofloodprevention.

f) Culturalheritageshallbeavoided.

g) Theeaseofconstructionshallbeconsidered.

h) Theharmonicandelegantappearanceoftheoveralllayoutofthemainstructuresshallbetakenintoaccount.

i) Facilitationofeducationalandtouristvisitsshouldbeaccommodatedwhenpartoflocalregula-tion.

10 Assessmentandprediction

10.1 Preliminaryassessmentofsocialandenvironmentalimpacts

10.1.1 Thepresentstatusofnaturalandsocialenvironmentshallbeinvestigatedinandaroundthehydropowerstationsite,reservoirareaandtheareaspossiblyaffectedbyconstruction;thisshallbeusedasthebaselinetoevaluatethesocialandenvironmentalimpactsoftheproject.

10.1.2 Theimpactonaquaticandterrestrialorganismswithintheconstructionanddownstreamare-asshallbeevaluatedaccordingtothedevelopmenttype,scaleandoperationmodeofthehydropow-erstation.

10.1.3 Theextentofpermanentimpactonthevegetationsurroundingtheprojectaftertherestora-tionmeasuresaretakenshallbeevaluated,basedonthearearequiredforthehydropowerstationin-cludingtheconstructionphase.

10.1.4 Thedegreeofinundationofforests,crops,farmlandandwoodlandinthereservoirareashallbeestimated.

10.1.5 Thenumberofrelocationsofhousesandthepopulationofresettlementshallbeestimated.

10.1.6 Basedonthesurveyresults,preliminaryassessmentopinions(publichearing)ontheenvi-ronmentalimpactoftheprojectshallbemadeaccordingtotheenvironmentalassessmentcriteriaofthecountry.

10.2 Assessmentofpowerdemand

10.2.1 Accordingtothecurrentstatusofpowerdemandandthesocio-economicdevelopmentplan,

theforecastofloadinshort-,medium-andlong-termshallbecarriedoutforthedirectpowersupplyarea,includingtheloadprofile,typesofloadslikedomestic,commercial,industrial,institutional,

71

SHP/TG002-1:2019

Page 26: Part 1: site selection Planning

seasonalandannualvariations.

10.2.2 Thedevelopmenttrendoftheelectricitymarketshallbepredictedaccordingtothecurrentstatusoftheloadandthenationaleconomicdevelopmentplan.

10.3 Costestimationandbenefitsassessments

10.3.1 Thecostestimationmethodsincludethesub-itemestimationmethodandcomprehensivecostcomputationmethod,whichshallmeetthefollowingrequirements.

a) Sub-itemestimationmethod:First,theprojectquantitiesofdifferentcomponentsofthehydro-powerstationareestimatedaccordingtotheproposedscheme,thentheunitpriceanalysisisconductedaccordingtothelocalpriceindex,afterwhichtheprojectcostisestimatedaccordingtotheprojectquantitiesandunitprice.Thecostofelectromechanicalequipmentmaybeesti-matedbysets.Afterthesubprojectcostsaresummarized,thetotalcostofhydropowerstationconstructionwillbeobtained.

b) Comprehensivecostcomputation method:Thetotalconstructioncostofthehydropowerstationistheproductofthecomprehensiveunitprice(costperkilowatt)ofthesamekindoflocalhydropowerstationandtheinstalledcapacityofthehydropowerstation.

c) Parametricandempiricalcoststudiesmaybeusedforcostestimation.

10.3.2 Estimatethestatictotalcostoftheproject.Analyzeandcalculateeconomicindexesofthehydropowerstation,suchascostperkilowattandcostperkilowatt-hour.

10.3.3 Theannualpowergenerationandoperationcostofthehydropowerstationmaybecalculatedaccordingtothestatisticalindexofthecountry,thatis,theratioofthepowergenerationandoper-ationcostofthehydropowerstationtotheconstructioncost.

10.3.4 BenefitsfromtheschemesfromtheSHPplantshallbeassessedbasedontheutilizationofelectricity,areadevelopmentandsocio-economicbenefits.

10.4 Evaluationofplanningsiteanddevelopmentsequencerecommendations

10.4.1 Thetechnicalevaluationoftheplanningsiteshallbecarriedoutfromtheaspectsofhydroenergyutilization,constructiondifficultyandcomprehensiveutilization.

10.4.2 Apreliminaryeconomicevaluationoftheplanningsiteshallbecarriedoutbasedonthepre-liminaryestimatedcostbymeansofthestaticordynamicmethod.

10.4.3 Asocialbenefitevaluationshallbecarriedoutbasedonthecontributionthatthehydropowerstationmayprovidetothesocietyafteritscompletion.

81

SHP/TG002-1:2019

Page 27: Part 1: site selection Planning

10.4.4 Suggestionsonthe developmentsequence shallbe made accordingto theresourceconditionsanddevelopmentconditionsoftheplanningsiteandthefollowingfactors:

a) Meetingthecurrentelectricityneedsoftheregion,aswellastheneedsofsocio-economicandloaddevelopment;

b) Meetingthelocalpowerrequirementsofthepowersystem;

c) Aligningwithinvestmentcapacityandconstructiontechnologylevel;

d) Coordinatingwiththeoverallplanninganddevelopmentplanfortheriverbasin.

11 Preparationofsiteselectionplanningreport

Thesiteselectionplanningreportshallcontainthefollowing:

a) TheresultsofsiteselectionplanningforSHPdevelopment,includingnaturalconditionsoftheriverbasin,statusofhydropowerresourcesintheriverbasin,resultsofsiteselection,com-prehensiveevaluationofthesiteanddevelopmentsequence;

b) Theauthenticity,timelinessandapplicabilityofhydrologicaldataandothermaterials;

c) Thecompilation,analysis,interpolationandcitationofdata;

d) Theplanningprinciples,planningmethodsandtechnicalstages;

e) Theconstructionconditionsofeachplanningsiteshallbeexplained,includingriversediment,

engineeringgeologicalcondition,waterconservancyandhydroenergy,reservoirinundationex-tent,constructionplanandengineeringlayout,socialandenvironmentalimpactassessment,

loadassessment,costandbenefitestimation,economicandtechnicalevaluation;

f) Alongwiththesummarizedplanningresults,acomprehensiveevaluationoftheSHPprojects;

g) ThesiteselectionplanningreportinaccordancewiththeoutlineinAnnexC,withrelevantchartsattached.

91

SHP/TG002-1:2019

Page 28: Part 1: site selection Planning

AppendixA(Informative)

Computationoftheoreticalpotentialofriverwaterenergy,

estimationformulaforinstalledcapacityonaplannedsite

A.1 Conversionformulaofmeanannualoutputofwaterenergyandmeanannualpowerofwaterenergy

N=E

8760(no.ofhoursinayear) ……………………(A.1)

where

N isthepoweroutput(capacity),inkW;

E Isthewaterenergy(electricity),inkWh.

A.2 Conversionformulaforrainfallandrunoffdepth(applicableformicrocatch-ment;)alsoknownastherationalmethod

x=α·y …………………………(A.2)

where

x istherainfall,inmm;

y istherunoffdepth,inmm;

α istherunoffcoefficient.

A.3 Computationformulafortheoreticalwaterpotentialofreach

Ni=9.81Q1+Q2

2 Hi …………………………(A.3)

where

Ni isthepoweroutput(capacity)ofreachi,inkW;

02

SHP/TG002-1:2019

Page 29: Part 1: site selection Planning

Q1 isthemeanannualflowattheuppersectionofthereachi,inm3/s;

Q2 isthemeanannualflowatthelowersectionofthereachi,inm3/s;

Hi isthedifferencebetweenelevationsoftheupperandlowersectionsofthereachi,inm.

A.4 Formulaforwaterenergydensityperunitlengthofriverreach

Nd=Ni

Li…………………………(A.4)

where

Nd isthewaterenergydensityinunitlengthofreachi,inkW/km;

Ni isthewateroutput(power)ofreachi,inkW;

Li isthelengthofreachi,inkm.

A.5 FormulaformeanannualoutputofSHPplanningsite

Nj=9.81QHη1η2 ……………………(A.5)

where

Nj isthemeanannualoutput(power)oftheplannedhydropowerstation,inkW;

Q isthemeanannualflowofplanningsite,inm3/s;

H istheusablewaterheadattheplanningsite,inm;

η1 isthecoefficientofwaterintakeattheplanningsite(0.9istaken,whiletheremaining10%ofthemeanannualflowisconsideredasnormalecologicalflow.);

η2 isthetheoverallefficiencycoefficientoftheunits(0.75to0.85istaken).

A.6 EstimationformulaforinstalledcapacityofSHPstation

P=8760Nj

hnl…………………………(A.6)

12

SHP/TG002-1:2019

Page 30: Part 1: site selection Planning

where

P istheinstalledcapacityoftheplannedhydropowerstation,inkW;

Nj isthemeanannualoutputofplannedpower(power),inkW;

hnl istheannualoperationalhoursofplannedhydropowerstation,inh.

A.7 Diagramoftheoreticalpotentialofriverwaterenergy

Key1 riversource2 rivermouthItoVIIIriverreach

FigureA.1—Diagramoftheoreticalpotentialofriverwaterenergy

22

SHP/TG002-1:2019

Page 31: Part 1: site selection Planning

AppendixB(Informative)

SchematicdiagramofdevelopmenttypesandspecialterrainutilizationofSHPstations

B.1 SchematicdiagramofdevelopmenttypesofSHPstations

FigureB.1 In-streamhydropowerstation

Key1 irrigationcanals2 graduatingvalve3 powerhouse

FigureB.2 Hydropowerstationcanalfall

32

SHP/TG002-1:2019

Page 32: Part 1: site selection Planning

Key1 reservoir2 overflowdam3 non-overflowdam4 riverbed

FigureB.3 Dam-toehydropowerstation

Key1 overflowdam2 waterinlet3 gritbasin4 diversioncanal5 regulatingreservoir6 pressureforebay

7 penstock8 irrigationchannel9 powerhouse10 tailrace11 riverbed

FigureB.4 Diversion-typehydropowerstation

42

SHP/TG002-1:2019

Page 33: Part 1: site selection Planning

Key1 dam2 waterinlet3 spillway4 reservoir5 pressuretunnel

6 surgeshaft7 penstock8 powerhouse9 tailrace10 riverbed

FigureB.5 Reservoirbasedrun-of-riverhydropowerstation

B.2 Schematicdiagramoftheutilizationofseveralspecialgeographicalconditionsintheriverchannel

Key1 dam2 penstock3 powerhouse

FigureB.6 Utilizationofnaturalwaterfalls

52

SHP/TG002-1:2019

Page 34: Part 1: site selection Planning

Key1 waterinlet2 diversioncanal3 powerhouse4 diversioncanal

FigureB.7 Utilizationoftorrentrapidsornaturalwaterfall

Key1 masonryarchdam2 reservoir3 tunnel4 penstock5 powerhouse6 river7 village

FigureB.8 Utilizationofriverbend

62

SHP/TG002-1:2019

Page 35: Part 1: site selection Planning

Key1 generator2 turbineBlade3 float4 anchoringcable

5 baseorNail6 waterFlow7 waterSurface8 riverbed

FigureB.9 Utilizationofkineticenergyofflowingwatersinariverorcanal

72

SHP/TG002-1:2019

Page 36: Part 1: site selection Planning

AppendixC(Informative)

Siteselectionplanningreport(Outline)

C.1 Outline

—Tableofcontents

—Relatedphotographsofsite,figuresandmaps

—ChapterI:Generaldescription

1) Geographicallocation,administrativearea,andthewatersystemoftheriver(reach)inwhichtheplanningsiteislocated.

2) Thenaturalconditionsoftheadjacentareasoftheriverbasin,includinggeographictrends,to-pography,hydrometeorology,forestvegetation,regionalgeologyandmineralresources.

3) Thesocio-economicconditionswithintheriverbasin,includingpopulationdistribution,eco-nomic status,industrial structure, grain and crops,lifestyle,religious beliefs andadministrativemanagement.

4) Thestatusofhydropowerresourceswithintheplannedriverbasin,includingtotalhydropowerresources,resourcedistribution,resourcecharacteristicsandexploitablecapacity.

5) Summaryofplanningresults,includingtotalcapacityofresourcedevelopment,numberofhy-dropowerstations,sitedistributionandtechnicalandeconomicindicators.

6) Figuresandtables:

—Schematicdiagramofthelocationoftheplannedhydropowerstation(seeFigureC.1);

—Schematicdiagramofthelocationandlongitudinalsectionoftheplannedhydropowerstation(seeFigureC.2);

—Summarytableofengineeringcharacteristicsoftheplannedhydropowerstation(seeTableC.1).

—ChapterII:Descriptionofdata82

SHP/TG002-1:2019

Page 37: Part 1: site selection Planning

1) Datacollectionandcompilation;includingthetypeofdata,sourceofdata,collectionmethods,

filingandsoon.

2) Basicevaluationofdata;includingtheintegrity,timeliness,authenticityandapplicabilityofthedata.

3) Technicalanalysisofdata;includingthedataseriessupplement,consistencyanalysis,resultsevaluationandapplicationvalue.

—ChapterIII:Planningprinciplesandmethods

1) Descriptionofplanningprinciples,includingplanningbasis,planningobjectives,environmentalcontrol.

2) Descriptionofplanning methods,includingplanningprocedures,maintechnicalmethods,

qualitycontrolofresults.

—ChapterIV:Planningsitedescription

1) Site selection principles,including the principles ofresource utilization,constructionconditions,technologyprioritiesandeconomicpriorities.

2) Descriptionofsiteselectionresults,includingconstructionconditions,developmentmode,sub-mergenceareamigrants,socialandenvironmentalimpacts,technicalandeconomicindicatorsandestimatedcosts.

—ChapterV:Comprehensiveevaluation

1) Evaluationofhydropowerresources,includingtotalpotential,spatialandtemporaldistribution,

energydensityanddevelopmentconditions.

2) Evaluation of planned hydropower station,including resource utilization level,layoutrationality,developmentvalueandenvironmentalimpactmitigationandcontrol.

—ChapterVI:Suggestionsondevelopment

1) Layoutofpreliminarywork,includingresourcereview,hydrologicalobservation,andfeasibilitystudyplan.

2) Resourcedevelopmentproposals,includingdevelopmentsequence,developmentconditionsandprecautions.

92

SHP/TG002-1:2019

Page 38: Part 1: site selection Planning

C.2 Figuresandtables

Key1 mountainpeakname32 mountainpeakname23 rivername14 rivername25 placename26 placename17 mountainpeakname18 placename39 placename410 placename511 placename612 placename713 rivername314 ivername415 countyname16 placename817 placename918 placename1019 reservoirname520 powerstationname521 reservoirname1

22 powerstationname123 powerstationname24 powerstationname425 powerstationname226 reservoirname227 reservoirname328 reservoirname429 legend30 drainagebasin31 county32 river33 town34 reservoir35 hydropowerstation36 reservoirname37 normalpoollevel38 normalreservoirstorage(m3)

39 conventionalhydropowerstation40 installedcapacity(MW)

41 annualenergyoutput(kWh)

42 scale

FigureC.1—Schematicdiagramofthelocationoftheplannedhydropowerstation

03

SHP/TG002-1:2019

Page 39: Part 1: site selection Planning

Key1 rivername2 basinname3 placename4 hydropowerstation5 hydropowerstation16 hydropowerstation37 hydropowerstation48 legend9 drainagebasin10 county11 river12 town

13 reservoir14 hydropowerstation15 plottingscale16 conventionalhydropowerstation17 normalpoollevel(m)

18 installedcapacity(kW)

19 elevation(m)

20 powerstation121 powerstation222 powerstation323 powerstation424 distancetoestuary** (km)

FigureC.2—Schematicdiagramofthelocationandlongitudinalsectionoftheplannedpowerstation

TableC.1—Maintechnicalandeconomicindicatorsof××riverplannedhydropowerstations

Items UnitNameofhydropowerstation

××× ××× ××× ×××

Projectsite

Distancetotributaries km

Catchmentareaatdam/diversionsite km2

Meanannualflow m3/s

Meanannualrunoff m3

13

SHP/TG002-1:2019

Page 40: Part 1: site selection Planning

TableC.1(continued)

Items UnitNameofhydropowerstation

××× ××× ××× ×××

Meanannualsedimentdischarge kg

Normalwaterlevel m

Deadwaterlevel m

Totalreservoircapacity m3

Reservoircapacitybelownormalwaterlevel m3

Deadreservoircapacity m3

Regulatedreservoircapacity m3

Regulationperformance

Usabledrop m

Installedcapacity kW

Meanannualpowergeneration kWh

Annualutilizationhours h

Powergenerationflow m3/s

Ecologicalwaterdemand m3/s

Reservoirsubmergence

Farmland km2

Population person

Developmentmode

Dam(gate)type

Maximumdam(gate)height m

Headracechannel/tunnellength m

Damsitelithology

Basicintensityofearthquake degree

Environmentallysensitiveobjects

Totalestimatedcostcurrency

unit

Estimatedcostperkilowattcurrencyunit/kW

Estimatedcostperkilowatt-hourcurrencyunit/kWh

Constructionperiod year

23

SHP/TG002-1:2019