parity violation in pvdis with solid · parity violation in pvdis with solid p. a. souder,...

35
April 13, 2010 PVDIS with SOlid 1 Parity Violation in PVDIS With SOlid P. A. Souder, Syracuse

Upload: lytruc

Post on 08-Sep-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

April 13, 2010 PVDIS with SOlid 1

Parity Violation in PVDISWith SOlid

P. A. Souder, Syracuse

April 13, 2010 PVDIS with SOlid 2

Outline

• Physics potential– Standard Model Test– Charge Symmetry Violation (CSV)– Higher Twist– d/u for the Proton

• New Solenoidal Spectrometer (SoLID)• Polarimetry

April 13, 2010 PVDIS with SOlid 3

PV Asymmetries: Any Targetand Any Scattering Angle

(gAegV

T +β gVegA

T)

Forward Backward

•The couplings gT depend on electroweak physics as well as on the weak vector and axial-vector hadronic current •For PVDIS, both new physics at high energy scales as well as interesting features of hadronic structure come into play•A program with a broad kinematic range can untangle the physics

April 13, 2010 PVDIS with SOlid 4

PVDIS: Electron-Quark Scattering

Consider f1 f 1 → f2 f 2 f1 f2 → f1 f2or gij’s for all f1f2combinations and L,R combinations

Many new physics models give rise to neutral ‘contact’ (4-Fermi) interactions:Heavy Z’s, compositeness, extra dimensions…

C1u and C1d will be determined to high precision by Qweak, APV Cs

C2u and C2d are small and poorly known: one combination can be accessed in PV DIS

A

V

V

A

Moller PV is insensitive to the Cij

April 13, 2010 PVDIS with SOlid 5

Deep Inelastic Scattering

b(x) =C2i Qi fi

− (x)i

∑Qi2 fi

+ (x)i

a(x) and b(x) contain quark

distribution functions fi(x)

APV =GFQ2

2παa(x) + Y (y)b(x)[ ]e-

N X

e-

Z* γ*

x ≡ xBjorken

a(x) =C1i Qi fi

+(x)i

∑Qi

2 fi+(x)

i∑

iii fff ±≡±

y ≡1− ′ E /E

New combination of: Vector quark couplings C1qAlso axial quark couplings C2q

b(x) =310(2C2u − C2d )

uv + dvu+ + d+

+L

At high x, APV becomes independent of x, W, with well-defined SM prediction for Q2 and y

Sensitive to new physics at the TeV scale

a(x) =310(2C1u − C1d ) 1+

2s+

u+ + d+

6.0

0

1

at high x

PVDIS: Only way to measure C2qUnknown radiative correctionsfor coherent processes

For an isoscalar target like 2H, structure functions largely cancel in the ratio at high x

April 13, 2010 PVDIS with SOlid 6

Sensitivity: C1 and C2 Plots

Cs

PVDIS

Qweak PVDIS

World’s data6 GeV

Precision Data

April 13, 2010 PVDIS with SOlid 7

Selected Electroweak Data

Evidence forunexpected

hadronic physics?

1. s≠s2. Nucleon CSV3. Nuclear CSV

_

April 13, 2010 PVDIS with SOlid 8

Search for CSV in PV DISδu(x) = up (x) − dn (x)δd(x) = d p (x) − un (x)

•u-d mass difference•electromagnetic effects

up (x) = dn (x)?d p (x) = un (x)?

•Direct observation of parton-level CSV would be very exciting!•Important implications for high energy collider pdfs•Could explain significant portion of the NuTeV anomaly

dudu

AA

PV

PV

+−

=δδδ 28.0For APV in electron-2H DIS:

Sensitivity will be further enhanced if u+d fallsoff more rapidly than δu-δd as x → 1

April 13, 2010 PVDIS with SOlid 9

Sensitivity with PVDIS

RCSV =δ APV x( )APV x( )

= 0.28δu x( )− δd x( )

u x( )+ d x( )

April 13, 2010 PVDIS with SOlid 10

Higher TwistSubject of a workshop at Madison,

Wisconsin

• APV sensitive to diquarks: ratio of weak to electromagnetic charge depends on amount of coherence (elastic He vs PVDIS)• Do diquarks have twice the x of single quarks?• If Spin 0 diquarks dominate, likely only 1/Q4 effects

April 13, 2010 PVDIS with SOlid 11

Why HT in PVDIS is SpecialStart with Lorentz InvarianceBjorken,

PRD 18, 3239 (78)

∫∫

⋅+∝

4

4

|)0()(|

|)0()()0()(|

deDjxjDl

xdeDjxJJxjDlA

xiq

xiq

νµµν

νµνµµν

Wolfenstein,NPB146, 477 (78)

( ) ( )dduuSdduuV µµµµµµ γγγγ +=⇔−= xdeDVxVDlVV xiq 4|)0()(|∫ ⋅= νµµν

SSVV

SSCCVVCCA

dudu

31

)(31)( 1111

+

++−= Zero in QPM

Next use CVC (deuteron only)

xdeddxuxuDlSVSVSSVV xiq 4)0()0()()(|))(( ⋅∫∝+−=− νµµν γγ

Higher-Twist valancequark-quark correlations

HT in F2 is dominated by quark-gluon correlations

Vector-hadronic piece only

April 13, 2010 PVDIS with SOlid 12

Parton Modelor

leading twist

Di-quarks

Quark-gluondiagram

What is a truequark-gluonoperator?

Quark-gluon operatorscorrespond to

transverse momentum

QCD equationsof motion

u

u d

u

Might be computedon the lattice

PVDIS is the only known way

to isolatequark-quarkcorrelations

Quark-Quark vs Quark-Gluon

April 13, 2010 PVDIS with SOlid 13

Higher Twist Fit to ν Data

Analysis of Alekhin, Kulagin, and Petti

April 13, 2010 PVDIS with SOlid 14

Statistical Errors (%) vs KinematicsStrategy: sub-1% precision over broad kinematic range for sensitive Standard Model test and detailed study of hadronic structure contributions

4 months at 11 GeV

2 months at 6.6 GeV

Error bar σA/A (%)shown at center of binsin Q2, x

April 13, 2010 PVDIS with SOlid 15

Coherent Program of PVDIS StudyStrategy: requires precise kinematics and broad range

+

−+= 2

23)1(11 x

QxAA CSVHT ββ

C(x)=βHT/(1-x)3

Fit data to:

• Measure AD in NARROW bins of x, Q2 with 0.5% precision• Cover broad Q2 range for x in [0.3,0.6] to constrain HT• Search for CSV with x dependence of AD at high x• Use x>0.4, high Q2, and to measure a combination of the Ciq’s

yesnoyesHigher Twist

nonoyesCSVnoyesnoNew PhysicsQ2yx

April 13, 2010 PVDIS with SOlid 16

PVDIS on the Proton: d/u at High x

3-month run

)(25.0)()(91.0)()(

xdxuxdxuxaP

++

Deuteron analysis has largenuclear corrections (Yellow)

APV for the proton has no such corrections

(complementary to BONUS)

The challenge is to get statistical and systematic errors ~ 2%

April 13, 2010 PVDIS with SOlid 17

CSV in Heavy Nuclei: EMC Effect

Additional possible

application of SoLID

Isovector-vector meanfield. (Cloet,

Bentz,and Thomas)

5%

April 13, 2010 PVDIS with SOlid 18

SoLID SpectrometerShashlyk

Calorimeter

ANL design

Babar Solenoid

International Collaborators:China (Gem’s)Italy (Gem’s)Germany (Moller pol.)

Gas Cerenkov

Baffles

GEM’s

JLab/UVA prototype

April 13, 2010 PVDIS with SOlid 19

Atomic Hydrogen For Moller Target

n +

n−

= e −2µB / kT ≈ 10 −14

• Tiny error on polarization

• Thin target (sufficient rates but no dead time)

• 100% electron polarization

• Non-invasive

• High beam currents allowed

• No Levchuk effect

10 cm, ρ = 3x1015/cm3

in B = 7 T at T=300 mK

Moller polarimetry from polarized atomic hydrogen gas, stored in an ultra-coldmagnetic trap

E. Chudakov and V. Luppov, IEEE Transactions on Nuclear Science, v 51, n 4, Aug. 2004, 1533-40

Brute force polarization

April 13, 2010 PVDIS with SOlid 20

High Precision ComptonAt high energies, SLD achieved 0.5%.Why do we think we can do better?

•SLD polarimeter near interaction region - background heavy•No photon calorimeter for production

•Hall A has “counting” mode (CW)•Efficiency studies•Tagged photon beam

• Greater electron detector resolution

So why haven’t we done better before?

Design (4.5GeV)

PREXH-III

PV-DIS

11 GeV

Distance from primary beam [mm]

Asy

mm

etry

•Small asymmetries = long time to precision = cross-checks are difficult

•Zero-crossing technique is new. (zero crossing gets hard near the beam)

•Photon calorimetry is harder at small Eγ

Its a major effort, but there is no obvious fundamental show-

stopper

April 13, 2010 PVDIS with SOlid 21

Error Budget in %

0.6Total

0.3Radiative Corrections

0.2Q2

0.4Polarimetry

0.3Statistics

April 13, 2010 PVDIS with SOlid 22

P. Bosted, J. P. Chen, E. Chudakov, A. Deur,

O. Hansen, C. W. de Jager, D. Gaskell, J. Gomez,

D. Higinbotham, J. LeRose,R. Michaels, S. Nanda, A. Saha, V. Sulkosky,

B. WojtsekhowskiJefferson Lab

P. A. Souder, R. Holmes Syracuse University

K. Kumar, D. McNulty, L. Mercado, R. MiskimenU. Massachusetts

H. Baghdasaryan, G. D. Cates,D. Crabb, M. Dalton, D. Day,N. Kalantarians, N. Liyanage,

V. V. Nelyubin, B. Norum, K. Paschke, S. Riordan,

O. A. Rondon, M. Shabestari,J. Singh, A. Tobias, K. Wang,

X. ZhengUniversity of Virginia

J. Arrington, K. Hafidi, P. E. Reimer, P. Solvignon

ArgonneD. Armstrong, T. Averett,

J. M. FinnWilliam and Mary

P. DecowskiSmith College

L. El Fassi, R. Gilman, R. Ransome, E. Schulte

RutgersW. Chen, H. Gao, X. Qian,

Y. Qiang, Q. YeDuke University

K. A. AniolCalifornia State

G. M. UrciuoliINFN, Sezione di

RomaA. Lukhanin, Z. E. Meziani,

B. SawatzkyTemple University

P. M. King, J. RocheOhio University

E. BeiseUniversity of Maryland

W. Bertozzi, S. Gilad, W. Deconinck, S. Kowalski,

B. MoffitMIT

Benmokhtar, G. Franklin, B. Quinn

Carnegie MellonG. Ron

Tel Aviv UniversityT. Holmstrom

Longwood University

P. MarkowitzFlorida International

X. JiangLos Alamos

W. KorschUniversity of Kentucky

J. ErlerUniversidad Autonoma

de MexicoM. J. Ramsey-Musolf

University of WisconsinC. Keppel

Hampton UniversityH. Lu, X. Yan, Y. Ye, P. ZhuUniversity of Science and Technology of

ChinaN. Morgan, M. PittVirginia Tech

J.-C. PengUniversity of Illinois

H. P. Cheng, R. C. Liu, H. J. Lu, Y. Shi

Huangshan UniversityS. Choi, Ho. Kang, Hy. Kang B.

Lee, Y. OhSeoul National

University J. Dunne, D. Dutta

Mississippi State

K. Grimm, K. Johnston, N. Simicevic, S. WellsLouisiana Tech

O. Glamazdin, R. PomatsalyukNSC Kharkov Institute

for Physics and Technology

Z. G. XiaoTsinghua University

B.-Q. Ma, Y. J. MaoBeijing University

X. M. Li, J. Luan, S. ZhouChina Institute of Atomic Energy

B. T. Hu, Y. W. Zhang, Y. Zhang

Lanzhou UniversityC. M. Camacho, E. Fuchey,

C. Hyde, F. ItardLPC Clermont,

Université BlaisePascal

A. DeshpandeSUNY Stony Brook

A. T. Katramatou, G. G. Petratos

Kent State UniversityJ. W. Martin

University of Winnipeg

PVDIS Collaboration

April 13, 2010 PVDIS with SOlid 23

Summary

• The physics is varied and exciting.– Excellent sensitivity to C2u and C2d.– Test CSV at quark level.– Unique window on higher twists.

• We will build a novel apparatus (with many other possible applications, eg. SIDIS)

April 13, 2010 PVDIS with SOlid 24

Layout ofSpectrometer using CDF coil

• Coil mounting is well understood from CDF–Designed to be

supported by end–Supports allow

radial movement in both ends for thermal

–One end fixed axially

• Will need to check for decentering forces due to field asymmetry (Lorentz forces)

April 13, 2010 PVDIS with SOlid 25

Error Projections for MollerPolarimetry

Table from MOLLER director’s review by E. Chudakov

April 13, 2010 PVDIS with SOlid 26

Summary of Compton Uncertainties

April 13, 2010 PVDIS with SOlid 27

April 13, 2010 PVDIS with SOlid 28

April 13, 2010 PVDIS with SOlid 29

April 13, 2010 PVDIS with SOlid 30

Layout of Moller and PVDIS

April 13, 2010 PVDIS with SOlid 31

Need Full Phenomenology

T

LRRFFσσγγ =→+= )1(21

γγσ21

2

)2

1(22 FE

xyMyy

xyFdxdyd

EM

−−+∝

}])2

1(22{[22 21

2ZZ

A

V

Z

FE

xyMyy

xyFgGdxdyd γγ

γ πασ

−−+−∝

])2([22 3

2Z

V

A

Z

FyxgGdxdyd γ

γ πασ

−−∝

There are 5relevant structure

functions

EM

VZxa

σσγ=)(

BIGEM

AZxbyf

σσγ=)()(

EM

AZ

VZPV

BAσ

σσ γγ +=

Small; use ν data(Higher twist workshopat Madison, Wisconsin)

April 13, 2010 PVDIS with SOlid 32

SoLID Spectrometer

BafflesGEM’s

Gas Cerenkov

Shashlyk

April 13, 2010 PVDIS with SOlid 33

Access to the Detectors• End Cap rolls

backward along the beam line on Hilman Rollers

• 342 metric tons for both end caps with baffles installed

• Must allow for 5% rolling resistance

April 13, 2010 PVDIS with SOlid 34

Baffle geometry and support

April 13, 2010 PVDIS with SOlid 35

Elastic Radiative Tail