parametric investigations of direct methanol fuel cell electrodes ... · parametric investigations...

7
1 Copyright © 2011 by ASME PARAMETRIC INVESTIGATIONS OF DIRECT METHANOL FUEL CELL ELECTRODES MANUFACTURED BY SPRAYING Babar M. Koraishy Sam Solomon Jeremy P. Meyers Kristin L. Wood Department of Mechanical Engineering, University of Texas at Austin, Austin, Texas, USA ABSTRACT Manufacture of fuel cell electrodes by the thinfilm method was originally proposed by Wilson et al. [1, 2] for protonexchange membrane fuel cells (PEMFCs). This technology was subsequently utilized for the manufacture of direct methanol fuel cell (DMFC) electrodes by Ren et al. [3]. Key processing steps in the thinfilm process are catalyst ink formulation and its application. The catalyst ink is typically composed of supported or unsupported catalysts, binder (ionomer), solvents and additives. Rheological properties of the ink, amount of binder, and choice of solvents are tuned to match the particular ink application process used to fabricate the electrode, as each coating process has its own unique requirements. Besides affecting the coating process, the choice and ratios of these components can significantly affect the electrochemical performance of the electrode. In this study, catalyst inks are designed and investigated for the spraying process, for utilization in the continuous fabrication of DMFC electrodes. For this purpose, the effect of the binder (ionomer) content on the performance of the electrodes is studied in detail. Decal transfer electrodes are fabricated on a custombuilt automated spraying apparatus with individually specified anode and cathode binder contents, and assembled to form a catalyst coated membrane (CCM) type membrane electrode assembly (MEA). These electrodes are rigorously tested to specifically identify their electrochemical performance, catalyst utilization and electrode morphology. INTRODUCTION The membraneelectrode assembly (MEA) is a key component of a DMFC. Its components, design and fabrication contribute to the overall cost of a fuel cell and its performance. The essential components of an MEA are two porous electrodes, which provide catalysts sites where electrochemical reactions occur, and a proton conducting ionomer membrane, which provides for an ionic pathway between the anode and the cathode. Additionally each electrode is flanked by diffusion media, which assist in the mass transport process for effective supply of reactants to the porous electrodes and the removal of reaction products, as shown in Figure 1. BACKGROUND The electrodes are typically porous structures of nanometersized catalyst particles dispersed in a suitable binder medium. Catalysts can be supported on carbon media to promote dispersion and thereby lower catalyst loading. It is important to allow adequate pathways for diffusion of the reactant media to the catalyst site, removal of reaction products, as well as good electrical and protonic conductivity. The electrons generated during the reaction have to be transported to the external circuit, whereas the protons have to cross the electrolyte to complete the reaction at the counter electrode [4]. Electrical conductivity in an electrode is either provided by the carbon support, in case of supported catalyst, or the catalyst particles themselves in case of unsupported ones. Proton conducting Proceedings of the ASME 2011 9th Fuel Cell Science, Engineering and Technology Conference FuelCell2011 August 7-10, 2011, Washington, DC, USA FuelCell2011-54 Downloaded 25 Aug 2012 to 128.83.63.20. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

Upload: others

Post on 18-May-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Parametric Investigations of Direct Methanol Fuel Cell Electrodes ... · PARAMETRIC INVESTIGATIONS OF DIRECT METHANOL FUEL CELL ELECTRODES MANUFACTURED BY SPRAYING Babar M. Koraishy

1 Copyright © 2011 by ASME

PARAMETRIC INVESTIGATIONS OF DIRECT METHANOL FUEL CELL ELECTRODES MANUFACTURED BY SPRAYING

Babar M. Koraishy Sam Solomon

Jeremy P. Meyers Kristin L. Wood

Department of Mechanical Engineering, University of Texas at Austin, Austin, Texas, USA

ABSTRACT Manufacture   of   fuel   cell   electrodes   by   the   thin-­‐film  

method  was  originally  proposed  by  Wilson  et   al.   [1,   2]   for  proton-­‐exchange   membrane   fuel   cells   (PEMFCs).   This  technology  was   subsequently   utilized   for   the  manufacture  of  direct  methanol  fuel  cell  (DMFC)  electrodes  by  Ren  et  al.  [3].   Key   processing   steps   in   the   thin-­‐film   process   are  catalyst  ink  formulation  and  its  application.  The  catalyst  ink  is   typically   composed   of   supported   or   unsupported  catalysts,   binder   (ionomer),   solvents   and   additives.  Rheological   properties   of   the   ink,   amount   of   binder,   and  choice   of   solvents   are   tuned   to   match   the   particular   ink  application  process  used  to  fabricate  the  electrode,  as  each  coating   process   has   its   own   unique   requirements.   Besides  affecting  the  coating  process,  the  choice  and  ratios  of  these  components   can   significantly   affect   the   electrochemical  performance  of  the  electrode.  

 In   this   study,   catalyst   inks   are   designed   and  

investigated   for   the   spraying  process,   for  utilization   in   the  continuous   fabrication   of   DMFC   electrodes.   For   this  purpose,   the  effect  of   the  binder   (ionomer)   content  on   the  performance   of   the   electrodes   is   studied   in   detail.   Decal-­‐transfer   electrodes   are   fabricated   on   a   custom-­‐built  automated   spraying   apparatus   with   individually   specified  anode  and  cathode  binder  contents,  and  assembled  to  form  a   catalyst   coated   membrane   (CCM)   type   membrane  electrode  assembly  (MEA).  These  electrodes  are  rigorously  tested   to   specifically   identify   their   electrochemical  performance,  catalyst  utilization  and  electrode  morphology.  

 INTRODUCTION

The   membrane-­‐electrode   assembly   (MEA)   is   a   key  component   of   a   DMFC.   Its   components,   design   and  fabrication  contribute  to  the  overall  cost  of  a  fuel  cell  and  its  performance.  The  essential  components  of  an  MEA  are  two  porous   electrodes,   which   provide   catalysts   sites   where  electrochemical   reactions   occur,   and   a   proton   conducting  ionomer  membrane,   which   provides   for   an   ionic   pathway  between   the   anode   and   the   cathode.   Additionally   each  electrode   is   flanked  by  diffusion  media,  which  assist   in   the  mass   transport  process   for  effective   supply  of   reactants   to  the  porous  electrodes  and  the  removal  of  reaction  products,  as  shown  in  Figure  1.  

BACKGROUND The   electrodes   are   typically   porous   structures   of  

nanometer-­‐sized   catalyst   particles   dispersed   in   a   suitable  binder   medium.   Catalysts   can   be   supported   on   carbon  media   to   promote   dispersion   and   thereby   lower   catalyst  loading.   It   is   important   to   allow   adequate   pathways   for  diffusion  of  the  reactant  media  to  the  catalyst  site,  removal  of  reaction  products,  as  well  as  good  electrical  and  protonic  conductivity.   The   electrons   generated   during   the   reaction  have   to  be   transported  to   the  external  circuit,  whereas   the  protons   have   to   cross   the   electrolyte   to   complete   the  reaction  at  the  counter  electrode  [4].  Electrical  conductivity  in  an  electrode  is  either  provided  by  the  carbon  support,  in  case   of   supported   catalyst,   or   the   catalyst   particles  themselves  in  case  of  unsupported  ones.  Proton  conducting  

Proceedings of the ASME 2011 9th Fuel Cell Science, Engineering and Technology Conference FuelCell2011

August 7-10, 2011, Washington, DC, USA

FuelCell2011-54824

Downloaded 25 Aug 2012 to 128.83.63.20. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

Page 2: Parametric Investigations of Direct Methanol Fuel Cell Electrodes ... · PARAMETRIC INVESTIGATIONS OF DIRECT METHANOL FUEL CELL ELECTRODES MANUFACTURED BY SPRAYING Babar M. Koraishy

2 Copyright © 2011 by ASME

pathways   are   created   by   the   addition   of   ionomer   to   the  electrodes.   The   interfaces   between   the   electrode,   the  membrane,   the   diffusion   layer   and   the   three-­‐phase  boundary   between   the   reactant,   the   catalyst   and   the  ionomer  dictate  the  performance  of  the  fuel  cell.  

 

 Figure 1: Cross section of a typical MEA.

 Polymer   electrolyte   membrane   fuel   cell   (PEMFC)   and  

DMFC  electrodes  and  MEAs  are  very  similar  in  components  and  fabrication  steps.  Traditionally  PEMFC  electrodes  were  fabricated   by   using   polytetrafluroethylene   (PTFE)   as   a  binder  for  the  catalyst  particles  to  form  a  paste,  which  were  then   spread   onto   the   solid   polymer   membrane.  Fundamental   breakthroughs   were   made   at   Los   Alamos  National   Labs   (LANL)   by   Raistrick   and   Srinivasan   [5-­‐7].  They   were   able   to   achieve   a   tenfold   reduction   in   catalyst  loading  by  coating  a  layer  of  the  proton  conducting  ionomer  (Nafion)  onto   the  PTFE  bound  electrodes.  With   this   action  the   three-­‐phase   boundary   is   essentially   extended   and   the  electrochemically  active  area  of  the  electrodes  is  increased,  enabling  low  catalyst  loading  electrodes  to  perform  as  well  as  high  catalyst  loading  electrodes.    

Motivation  In   the   thin   film   electrode   fabrication   process,  

nanometer   sized   catalyst   particles   (unsupported   or  supported)  are  mixed  with  a  suitable  amount  of  ionomer  in  solution   form,   along   with   other   solvents   to   form   an   ‘ink,'  which   can   be   deposited   onto   the   substrate   of   choice,   and  subsequently   dried   to   form   the   electrode.   The   ink  composition   and   the   method   of   ink   application   have   a  significant   impact  on   the  structure  of   the  electrode,  and   in  turn   its   performance.   Several   ink   application   processes  

have   been   considered:   Tape   casting   [12,   13],   Screen  Printing   [14,   15],   Spraying   [16,   17],   etc.   The   ionomer  (typically  Nafion)  added  to  the  catalyst  ink  acts  as  a  binder,  as   per   the   thin   film   electrode   fabrication  method   and   also  provides  proton  conducting  paths.    

 A   few   studies   have   explored   the   effect   of   ionomer  

content  on  DMFC  electrode  performance.  Ren[18]  prepared  and   tested   thin   film   MEA's   made   by   the   decal   transfer  method  using  unsupported  catalyst,  and  15  %wt.  Nafion  in  the  anode  and  7  %wt.   in  the  cathode.  Thomas  [19]  studied  the   effect   of   ionomer   content   in   the   catalyst   layers   of   a  DMFC,   and   found   that   in   the   anode,  made  by  unsupported  Pt:Ru  (1:1)  catalyst,  the  ionomer  content  can  be  reduced  or  even   eliminated,  whereas   on   the   cathode,   unsupported   Pt,  an  ionomer  content  of  10.5  %wt.  is  suggested  to  provide  an  adequate  three-­‐phase  boundary.  Reshetenko  et  al.  [16]  uses  a   Nafion-­‐to-­‐catalyst   ratio   of   0.12   for   the   anode  (unsupported   Pt:Ru   (1:1))   and   0.26   for   the   cathode  (unsupported  Pt)   of   a  DMFC   fuel   cell.   For   comparison,   the  Nafion  content  in  electrodes  formed  by  supported  catalysts  is   typically  much  higher.   In  a  recent  study,  Sister  et  al.[20]  found  that  in  the  anodic  catalytic  layer  of  a  DMFC  fabricated  using  40  %wt.  Pt:Ru  supported  catalyst,  the  optimal  content  of  the  ionomer  is  around  25%.    

 Considering   the   wide   range   of   ionomer   (Nafion)  

content   suggested   in   literature   for   use   in   preparation   of  DMFC  electrodes  using  unsupported  catalysts,  a  parametric  investigation   study   has   been   undertaken,   the   results   of  which  are  presented  in  the  following  paragraphs.  

EXPERIMENT  

DMFC   MEA   fabrication   by   the   decal   transfer   method  consists   of   a   four   steps:  membrane   preparation,   electrode  fabrication,  electrode  transfer,  and  finally  the  attachment  of  diffusion  media  on   the  3   layer  MEA  produced,   to   form  a  5  layer  MEA.    

 Nafion-­‐115  membranes  were  prepared  by  the  following  

procedure.  First,  the  membrane  was  cleaned  to  remove  any  unwanted   substances.     The   cleaning   process   involved  boiling  the  membrane  in  3  %wt.  H2O2  hydrogen  for  1h  and  then  boiling   it   in  deionized  water   for  1h.    The  membranes  were  boiled  in  1M  H2SO4  for  1h  and  then  boiled  in  deionized  water   for   1   h,   as   per   the   procedure   defined   by   Ren   [21].  Catalyst   ink   for   the   DMFC   anode   were   prepared   using  unsupported   Pt:Ru   (1:1)   HiSPECTM   6000,   platinum  procured   from   Alfa   Aesar,   whereas   Pt   black   (high   surface  area)   also   procured   from   Alfa   Aesar   was   used   as   the  cathode   catalyst   material.   An   equal   ratio   (1:1)   mixture   of  deionized  water  and  isopropyl  alcohol  (IPA)  was  used  as  a  solvent  in  the  ink.    A  5%  solution  of  Nafion  was  used  as  the  

Downloaded 25 Aug 2012 to 128.83.63.20. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

Page 3: Parametric Investigations of Direct Methanol Fuel Cell Electrodes ... · PARAMETRIC INVESTIGATIONS OF DIRECT METHANOL FUEL CELL ELECTRODES MANUFACTURED BY SPRAYING Babar M. Koraishy

3 Copyright © 2011 by ASME

binder.   The   Nafion   amount   was   systematically   changed,  results  of  which  will  be  discussed  in  the  coming  sections.  

 The  next  step   in   the  electrode   fabrication   involved   the  

application  of  catalyst  ink  onto  a  suitable  substrate.  Kapton  films   have   typically   been   used   as   the   decal   transfer  substrates,   as   they   can   withstand   the   temperature   and  mechanical   environment   of   spraying   and   the   subsequent  step  of  hot  pressing,  which   is  necessary   for   the   transfer  of  the  electrode  from  the  substrate  to  the  ionomer  membrane.    Kapton  tokens  were  mounted  onto  a  vacuum  table  that  was  maintained  at  a  constant   temperature  of  60  oC   [3].  A  mask  was  affixed  onto  the  vacuum  plate,  which  had  an  area  of  the  desired   electrode   size   cut   out   of   it.   This   allowed   for   clean  edges  of   the  electrode,  and  ensured   that   the  catalyst   ink   is  only  deposited  in  the  desired  area.  Spraying  was  performed  by   using   a   two-­‐fluid   external   mixing   Nordson   EFD-­‐781S  nozzle,   which   was   mounted   in   a   purpose   built   2-­‐axis  computer-­‐controlled   machine,   as   shown   in   Figure   2.   This  apparatus  provided  for  a  mounting  platform  for  the  nozzle  and  corresponding  armature  to  allow  for  fine-­‐tuning  of  the  nozzles’   aim   and   to   adjust   the   working   distance   of   the  nozzle   from   the   material.   As   shown   in   the   figure,   the  spraying   nozzle   was   positioned   above   a   heated   vacuum  mounting   plate.   The   nozzle  was   driven   by   a  Nordson   EFD  ValveMate   8040   controller,   which   permitted   for   the  triggering   of   the   nozzle,   when   instructed   by   a   host  computer.  The  host  computer  controlled   the  motion  of   the  nozzle  head  mounted  on   the  X-­‐Y   table  and  synchronized   it  with   the   nozzle   triggering   at   the   desired   locations.   In   this  fashion  the  desired  geometry  of   the  electrode  was  sprayed  uniformly  onto  the  substrate.  

 For   the   decal-­‐transfer   process,   a   low-­‐temperature,  

high-­‐pressure   route   was   taken;   the   transfer   temperature  was  set  at  130  oC  while  the  pressure  used  was  5000  psi  for  180   s   duration.   The   last   step   of   the   electrode   fabrication  procedure  is  to  attach  the  diffusion  media  to  each  electrode.  Two   appropriately   sized   pieces   of   diffusion   media   (ELAT  LT-­‐1400,  ETEK)  were  affixed  onto  the  3-­‐layer  MEA  formed  with   the   assistance   of   temperature   and   pressure.     A  temperature  of  120  oC  and  a  pressure  of  1200  psi  was  used  for  this  step  for  a  60  s  duration  as  described  in  [12].  

 A   Fuel   Cell   Technologies   test   station   was   used,   along  

with   single   cell   5   cm2   hardware   provided   by   the   same  company.  A  new  MEA  was  first  subjected  to  a  24  hr.  break-­‐in   period.   The   break-­‐in   procedure   involved   the   following  steps:  

• Cell   installation   in   single   cell   hardware   (bolt  torque  set  at  40  in-­‐lb.)  

• Perform  leak  test  • Backpressure  set  at  20  psi  • Cell  temperature  set  at  90  oC  • Dry  oxygen  supplied  to  cathode  at  250  SCCM  

• 1M  Methanol   solution   supplied   to   anode   at   2  ml/min  

• Cell  maintained  at  0.2  V  for  24  Hrs.      After   the   break-­‐in   period,   the   MEA   was   tested   in  

conditions  summarized  in  Table  1.        

Figure 2: 2-axis spraying machine.

   

Table 1: Testing conditions for 5cm2 single cell DMFC MEA.

Parameter Value Temperature Cell Temperature 65 oC/90 oC Anode humidity bottle temp 24 oC (no humidification rqd) Cathode humidity bottle temp 24 oC (no humidification rqd) Anode line heater temperature 24 oC / not used Cathode line heater temperature 65 oC Flow rates Methanol 2 ml/min Oxygen / Air 250 sccm Back pressure Anode back pressure n/a Cathode back pressure 20 psi Bolt Torque 40 in-lb. Seal thickness 20 mil Seal material Teflon coated fiber glass VI Curve Constant Current Current step size 0.25 A Delay b/w readings (scan rate) 180 s

   

RESULTS AND DISCUSSIONS  

Downloaded 25 Aug 2012 to 128.83.63.20. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

Page 4: Parametric Investigations of Direct Methanol Fuel Cell Electrodes ... · PARAMETRIC INVESTIGATIONS OF DIRECT METHANOL FUEL CELL ELECTRODES MANUFACTURED BY SPRAYING Babar M. Koraishy

4 Copyright © 2011 by ASME

For  the  first  series  of  tests  in  this  study,  five  MEAs  were  prepared  with  different  Nafion  content.  Both  the  anode  and  the   cathode   used   had   the   same   Nafion   content.   All  electrodes   used  Pt:Ru   black   (1:1)   as   anode   catalyst  with   a  loading  of   2.5  mg/cm2,  whereas  Pt-­‐black  with   a   loading  of  2.5  mg/cm2  was  used  as  the  cathode  catalyst.    

Figure   3   shows   the   results   of   this   study   when   Nafion  content  was  symmetrically  changed,  that  is,  both  anode  and  cathode   had   the   same   Nafion   content.   The   best   overall  performance   was   achieved   with   a   Nafion   content   of   10  %wt..     It   can  be  argued   that   lower  Nafion  content   leads   to  thinner  electrode  layers  [19],  which  allows  for  better  mass  transport.  In  comparison  to  unsupported  catalysts,  carbon-­‐supported   catalysts   used   in   PEM   fuel   cells   thrive   with  higher   Nafion   contents,   with   values   as   high   as   33   %wt.  being   reported   [2].   Supported   catalysts   have   much   larger  particle   sizes,   by   virtue   of   the   carbon   supports   used,   ~40  nm   as   compared   to   unsupported   platinum   blacks   whose  average  sizes  are  around  2-­‐3  nm.    Too  high  a  Nafion  content  would   prevent   good   particle-­‐to-­‐particle   contact,   thereby  drastically  reducing  electronic  access  to  the  interior  region  of   the   catalyst   layer.     Similarly,   too   thick   a   Nafion   film  surrounding   a   catalyst   particle   can   prevent   gas-­‐phase  access  to  the  catalyst  sites.  Too  low  a  Nafion  content  could  potentially   lead   to   catalyst   sites   that   are   not   adequately  connected  by   the   ionomer,  which   is  necessary   for  protonic  conduction  to  the  membrane.  

Figure 3: Effect of Nafion content on cell

performance.  

Figure   4,   presents   an   alternate   view  of   the   same  data,  showing  the  power  produced  by  these  MEAs  at  0.2V  and  at  0.4V.     As   Nafion   content   is   increased   from   5   %wt.   to   10  %wt.,  there  is  an  increase  in  performance,  and  then  there  is  a   steady   decline   as   the   content   increases   to   30   %wt.   of  

Nafion  content   in   the  electrodes.    The  power  curve  at  0.4V  shows   little   difference   between   the  MEAs,   because   at   that  voltage,  almost  all   the  MEAs  are  performing  very  similarly.  It   is   only   at   higher   current   densities   that   the   difference  between  the  MEAs  is  clearly  evident.    This  result  reinforces  the  notion   that   the  higher  Nafion  content   is  detrimental   to  mass  transport.    

 In  the  MEAs  tested,  the  anode  and  cathode  both  had  the  

same   Nafion   content,   so   it   is   difficult   to   identify   the  contribution  of  one  over  the  other.  The  anode  and  cathode  have   different   Nafion   content   requirements   because   of   a  number  of  reasons.  On  the  anode,  a  liquid  fuel  is  fed  to  the  electrode,   whereas   on   the   cathode,   a   gas,   air/oxygen,   is  supplied.  This  functional  distinction  would  lead  to  different  mass   transport   scenarios.   Additionally   the   very   nature   of  the  catalyst,  and  the  catalyst  inks  formed  is  different.  Pt:Ru  black   catalyst   tends   to   form   agglomerates   during   the   ink  making   process,   and   is   generally   much   more   difficult   to  process  that  Pt-­‐black  ink.      

 

Figure 4: Power at different Nafion content.  

Considering   these   facts,   samples  were   cut   from   the   anode  and  cathode  and  their  surface  morphology  observed  under  a  scanning  electron  microscope.  Figure  5  shows  the  surface  morphology  and  pore  structure  of  a  Pt:Ru  black  electrode  at  50,000x   magnification.   Evidence   of   this   agglomeration   is  even  apparent  at   the  microstructure   level;  discrete  clumps  of  catalyst  and  ionomer  are  clearly  visible  in  the  anode.  This  observation   suggests   the   need   for   the   identification   of  additives   and   solvents   that   prevent   such   agglomeration,  which   could   potentially   lead   to   much   higher   catalyst  utilization  in  the  anode,  than  is  witnessed  at  present.  

Downloaded 25 Aug 2012 to 128.83.63.20. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

Page 5: Parametric Investigations of Direct Methanol Fuel Cell Electrodes ... · PARAMETRIC INVESTIGATIONS OF DIRECT METHANOL FUEL CELL ELECTRODES MANUFACTURED BY SPRAYING Babar M. Koraishy

5 Copyright © 2011 by ASME

 Figure 5: Pt:Ru black anode at 50,000 X

   Figure   6   shows   the   microstructure   of   a   Pt   black  

electrode  as  observed  in  an  SEM  at  50,000x  magnification.  .  As  compared  to  a  Pt:Ru  black  electrode  microstructure,  this  electrode  has   an   entirely  different  microstructure.  A  much  finer  pore   structure   is  visible  with  no  evident   clumping  or  agglomeration.  

 

 Figure 6: Pt black cathode at 50,000 X

 In  light  of  the  observations  made  with  the  polarization  

curves   of   MEAs   for   which   the   anode   and   cathode   Nafion  loading  was  changed  symmetrically,  MEAs  with  asymmetric  Nafion   loadings   were   prepared   in   order   to   identify   the  contribution  of  one  electrode  over  the  other,  with  respect  to  varying  Nafion  content.  

 For   the   first   batch  of   asymmetric  Nafion   loading   tests,  

MEAs  were  prepared  with  the  cathode  Nafion  content  kept  constant   at   10   %wt.,   while   varying   the   anode   Nafion  

content   from  5  %wt.   to  20  %wt.   in   four  equal   increments.  All   electrodes   fabricated   used   Pt:Ru   black   (1:1)   as   anode  catalyst   with   a   loading   of   2.5   mg/cm2,   whereas   Pt-­‐black  with   a   loading   of   2.5   mg/cm2   was   used   as   the   cathode  catalyst.   Figure   7   shows   the   VI   curves   for   four   different  Nafion  contents  in  the  anode,  while  Figure  8  represents  the  same   data   presented   in   a   different   manner.     At   lower  current  densities  the  performance  of  the  four  MEAs  is  very  similar,   but   at   higher   current   densities,   the   MEA   with   15  %wt.   Nafion   performs   slightly   better   than   the   rest.   From  Figure   8,   it   is   clear   that   increasing   Nafion   content   has  minimal   impact   at   both   higher   current   densities  represented   by   the   curve   0.2V,   and   also   at   lower   current  densities  represented  by  the  curve  at  0..4V.      

Figure 7: Effect of anode Nafion content on MEA

performance.  Upon  observation  of  Figure  4,  (MEAs  with  symmetrical  

Nafion  loading),  an  increase  of  Nafion  content  from  10  %wt.  to  20  %wt.  results  in  a  loss  of    ~35  mw/cm2  of  power  ,  while    from  Figure  8,  increasing  the  anode  Nafion  content  from  10  %wt.   to   20  %wt.   does   not   produce   any   significant   power  change.  This  result   implies   that  changing  the  anode  Nafion  content   in   the   range   demonstrated   above   has   minimal  impact  on  the  overall  MEA  performance.    

 These   observations   indicate   that   a   significant  

contribution   from   the   cathode   could  be   expected.   In  order  to   verify   this   contribution,   MEAs   with   asymmetric   Nafion  loadings  were  prepared,  where  the  anode  Nafion  content  is  kept  constant  at  10  %wt.,  while  varying  the  cathode  Nafion  content   from  5  %wt.   to  20  %wt.   in   four  equal   increments.  All   electrodes   fabricated   used   Pt:Ru   black   (1:1)   as   anode  catalyst   with   a   loading   of   2.5   mg/cm2,   whereas   Pt-­‐black  

Downloaded 25 Aug 2012 to 128.83.63.20. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

Page 6: Parametric Investigations of Direct Methanol Fuel Cell Electrodes ... · PARAMETRIC INVESTIGATIONS OF DIRECT METHANOL FUEL CELL ELECTRODES MANUFACTURED BY SPRAYING Babar M. Koraishy

6 Copyright © 2011 by ASME

with   a   loading   of   2.5   mg/cm2   was   used   as   the   cathode  catalyst  

 

Figure 8: Power at different anode Nafion content.    Figure   9   shows   the   polarization   curves   produced   by  

these   MEAs.   At   higher   current   densities,   significant  difference   is   observed   between   the   performance   of   the  different   MEAs.   Increasing   Nafion   content   clearly   is  detrimental   to   mass   transport   in   a   DMFC   cathode   and  negatively  affects  the  over  all  cell  performance.    

Figure  9  shows  that  the  best  performance  comes  from  a  cathode   with   a   10%   Nafion   content.     Over   most   of   the  performance  range  of  interest,  it  appears  that  cathodes  with  5%   Nafion   content   and   15%   Nafion   content   give   similar  performance  values.    We  attribute  the  lowered  performance  to  different   root   causes,  however.    The  performance  of   the  10%   Nafion   cathode   extends   roughly   linearly   over   the  entire   range  of   current  densities,   indicating   that   the   lower  performance   is   most   likely   due   to   a   lowered   effective  conductivity   of   the   cathode   catalyst   layer,   whereas   the  exacerbation   of   performance   problems   at   higher   current  densities   for   the  15%  Nafion  cathode  suggests  a  gas-­‐phase  mass  transport  resistance  through  the  catalyst   layer  as  the  partial  pressure  of  oxygen  in  the  cathode  is  driven  to  lower  values.     This   trend   appears   to   be   corroborated   by   the  performance   at   20%   Nafion   content,   which   suggests   a  catalyst   layer   that   has   very   low   connectivity   for   oxygen  transport,  where   only   a   small   fraction   of   the   total   catalyst  loading  has  effective  contact  with  the  oxygen  GDL,   thereby  lowering   performance   across   the   entire   range   of   current  densities.      

 Figure 9: Effect of cathode Nafion content on MEA

performance. Figure   10   echoes   the   same   observations,   as   shown   by  

the   power   plots   at   0.2V   and   0.4V.   It   is   hypothesized   that  increasing   Nafion   content   clogs   the   fine   pore   structure  observed  in  the  cathode  SEM  micrographs,  and  limits  mass  transport.  Also  since  the  Pt  black  particle  sizes  are  smaller  and   less   prone   to   agglomeration   as   compared   to   Pt:Ru    particles,   excess   Nafion   could   hinder   particle   to   particle  contact   and   reduce     electrical   connectivity   within   the  electrode.    

Figure 10: Power at different cathode Nafion content.

CONCLUSION  The  effects  of  changing  the  Nafion  content  in  the  anode  

and   cathode   of   thin   film   electrodes   prepared   by   spraying  

Downloaded 25 Aug 2012 to 128.83.63.20. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

Page 7: Parametric Investigations of Direct Methanol Fuel Cell Electrodes ... · PARAMETRIC INVESTIGATIONS OF DIRECT METHANOL FUEL CELL ELECTRODES MANUFACTURED BY SPRAYING Babar M. Koraishy

7 Copyright © 2011 by ASME

and  assembly  via   the  decal-­‐transfer  method  are   studied   in  detail.     The   results   show   that   increasing   Nafion   content  significantly   impairs   the   performance   of   the   MEA,   at  ionomer   loadings   that   would   be   beneficial   to   the  performance   of   a   hydrogen   PEMFC.   This   effect   can   be  attributed  to  impediments  in  mass  transfer  imposed  by  the  ionomer,   and   to   reduction   in   particle-­‐to-­‐particle   contact,  affecting   the   electrical   conductivity   within   the   electrode.    Upon   further   examination,   it   was   revealed   that   the   anode  does   not   play   a   significant   part;   rather   it   is   the   DMFC  cathode,   which   suffers   the   most   from   increasing   Nafion  content.     Based   on   these   results,   it   is   possible   to   adjust  Nafion   content   in   DMFC   electrodes   for   optimal  performance.  

ACKNOWLEDGMENTS Financial  support  by  the  Office  of  Naval  Research  MURI  

grants   No.   N00014-­‐07-­‐1-­‐0758   is   gratefully   acknowledged.  The   authors   would   also   like   to   acknowledge   the   support  provided   from   the   Cullen   Endowed   Professorship   in  Engineering,   The   University   of   Texas   at   Austin.   Any  opinions,   findings,   or   conclusions   found   in   this   paper   are  those  of  the  authors  and  do  not  necessarily  reflect  the  views  of  the  sponsors  

REFERENCES  

1. Wilson, M.S. and S. Gottesfeld, High Performance Catalyzed Membranes of Ultra-low Pt Loadings for Polymer Electrolyte Fuel Cells. Journal of The Electrochemical Society, 1992. 139: p. L28.

2. Wilson, M. and S. Gottesfeld, Thin-film catalyst layers for polymer electrolyte fuel cell electrodes. Journal of Applied Electrochemistry, 1992. 22(1): p. 1-7.

3. Ren, X., M.S. Wilson, and S. Gottesfeld, High performance direct methanol polymer electrolyte fuel cells. Journal of The Electrochemical Society, 1996. 143(Compendex): p. L12-L15.

4. Litster, S. and G. McLean, PEM fuel cell electrodes. Journal of Power Sources, 2004. 130(1-2): p. 61-76.

5. Raistrick, I.D., Electrode assembly for use in solid polymer electrolyte fuel cells. US.Patent 4876115, 1989.

6. Srinivasan, S., et al., Advances in solid polymer electrolyte fuel cell technology with low platinum loading electrodes. Journal of Power Sources, 1987. 22(3-4): p. 359 - 375.

7. Ticianelli, E.A., et al., Methods to advance technology of proton exchange membrane fuel cells. Journal of The Electrochemical Society, 1988. 135(9): p. 2209 - 2214.

8. Wilson, M., J. Valerio, and S. Gottesfeld, Low platinum loading electrodes for polymer electrolyte fuel cells fabricated using thermoplastic ionomers. Electrochimica Acta, 1995. 40(3): p. 355-363.

9. Wilson, M.S., Membrane catalyst layer for fuel cells. 1993(5211984).

10. Cho, J.H., et al., Fabrication and evaluation of membrane electrode assemblies by low-temperature decal methods for direct methanol fuel cells. Journal of Power Sources, 2009. 187(2): p. 378-386.

11. Wheeler, D. and G. Sverdrup, 2007 Status of Manufacturing: Polymer Electrolyte membrane (PEM) Fuel Cells, 2007.

12. Park, I.-S., W. Li, and A. Manthiram, Fabrication of catalyst-coated membrane-electrode assemblies by doctor blade method and their performance in fuel cells. Journal of Power Sources, 2010. 195(Compendex): p. 7078-7082.

13. Bender, G., T.A. Zawodzinski, and A.P. Saab, Fabrication of high precision PEFC membrane electrode assemblies. Journal of Power Sources, 2003. 124(1): p. 114-117.

14. Chun, Y.-G., et al., Performance of a polymer electrolyte membrane fuel cell with thin film catalyst electrodes. Journal of Power Sources, 1998. 71(1-2): p. 174-178.

15. Manco, J.C.C.N.J.T.F., Method of making an electrode for a membrane electrode assembly and method of making the membrane electrode assembly. 2006(7153802).

16. Reshetenko, T.V., et al., The effect of the anode loading and method of MEA fabrication on DMFC performance. Fuel Cells, 2007. 7(3): p. 238 - 245.

17. Koraishy, B.M., et al., Manufacturing of Direct Methanol Fuel Cell Electrodes by Spraying. ECS Transactions, 2010. 33(1): p. 1997-2010.

18. Ren, X., M.S. Wilson, and S. Gottesfeld, High performance direct methanol polymer electrolyte fuel cells. Journal of The Electrochemical Society, 1996. 143(1): p. 12-15 -.

19. Thomas, S.C., X. Ren, and S. Gottesfeld, Influence of Ionomer Content in Catalyst Layers on Direct Methanol Fuel Cell Performance. Journal of The Electrochemical Society, 1999. 146(12): p. 4354 - 4359.

20. Sister, V.G., V.N. Fateev, and D.A. Bokach, Effect of the fuel electrode composition and structure on the performance of the direct methanol fuel cell. Russian Journal of Electrochemistry, 2007. 43(9): p. 1097 - 1100.

21. Ren, X., T. Springer, and S. Gottesfeld, Water and methanol uptakes in Nafion membranes and membrane effects on direct methanol cell performance. Journal of The Electrochemical Society, 2000. 147: p. 92.

 

Downloaded 25 Aug 2012 to 128.83.63.20. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm