parameter sensitivity analysis for hypersonic viscous flow...

32
Parameter Sensitivity Analysis for Hypersonic Viscous Flow using a Discrete Adjoint Approach Brian A. Lockwood and Dimitri J. Mavriplis Mechanical Engineering University of Wyoming January 4, 2010 B.A. Lockwood, D.J. Mavriplis (U. of WY.) Hypersonic Adjoint Sensitivity Jan. 4, 2010 1 / 32

Upload: others

Post on 28-Jan-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

  • Parameter Sensitivity Analysis for Hypersonic ViscousFlow using a Discrete Adjoint Approach

    Brian A. Lockwood and Dimitri J. Mavriplis

    Mechanical EngineeringUniversity of Wyoming

    January 4, 2010

    B.A. Lockwood, D.J. Mavriplis (U. of WY.) Hypersonic Adjoint Sensitivity Jan. 4, 2010 1 / 32

  • Outline

    Outline

    Introduction

    Overview of Flow Solver and Physical Models

    Solution Scheme Details

    Sensitivity Formulation

    Flow and Sensitivity Results for Perfect Gas Model

    Flow and Sensitivity Results for Real Gas Model

    Conclusion

    B.A. Lockwood, D.J. Mavriplis (U. of WY.) Hypersonic Adjoint Sensitivity Jan. 4, 2010 2 / 32

  • Introduction

    Simulation of complexproblems rely heavily onempirical relations

    Relations can requirehundreds of parameters todefine

    Sensitivity and uncertaintycan enhance analysis anddesign capability

    Sampling currently used dueto nonlinear nature of flows

    Thousands of flowsolutions requiredComputationallyexpensive

    B.A. Lockwood, D.J. Mavriplis (U. of WY.) Hypersonic Adjoint Sensitivity Jan. 4, 2010 3 / 32

  • Introduction

    Localized sensitivity calculated usingflow adjoint

    Sensitivity to large number of inputswith cost approximately equal to flowsolve

    Possibilities for uncertaintyquantification, adaptation andsimulation optimization.

    Should be possible to augmentweaknesses of sampling with an adjointbased approach

    B.A. Lockwood, D.J. Mavriplis (U. of WY.) Hypersonic Adjoint Sensitivity Jan. 4, 2010 4 / 32

  • Flow Solver Details

    Navier Stokes Equations:

    ∂U

    ∂t+∇ · ~F (U) = ∇ · ~Fv (U) + S(U) (1)

    Two dimensional, cell-centered finite volume solver using unstructuredtriangles and/or quadrilaterals

    Solver uses a fully implicit, pseudo-time stepping method

    Perfect gas and Real gas models examined

    B.A. Lockwood, D.J. Mavriplis (U. of WY.) Hypersonic Adjoint Sensitivity Jan. 4, 2010 5 / 32

  • Physical Model

    Perfect gas variables

    U =

    ρρ~uρet

    ~F =

    ρ~uρ~u ⊗ ~u + P

    ρ~uht

    ~Fv =

    τ · ~u − ~q

    Sutherland’s Law used for viscosity

    5 Parameters required to define model:

    Ratio of Specific Heats γReynolds NumberPrandtl NumberTwo constants within Sutherland’s Law

    B.A. Lockwood, D.J. Mavriplis (U. of WY.) Hypersonic Adjoint Sensitivity Jan. 4, 2010 6 / 32

  • Physical Model

    5 species, Two Temperature Real Gas Model

    U =

    ρsρ~uρetρev

    ~F =

    ρs~uρ~u ⊗ ~u + P

    ρ~uhtρ~uhv

    S =

    ωs00∑

    s ωsD̂v ,s + QT−V

    ~Fv =

    −ρs Ṽsτ

    τ · ~u − ~q − ~qv −∑

    s ht,sρs Ṽs−∑

    s hv ,sρs Ṽs − ~qv

    Dunn-Kang chemical kinetics model used

    Transport quantities calculated using curve fits from Blottner et al

    Approximately 250 constants required to define physical model

    B.A. Lockwood, D.J. Mavriplis (U. of WY.) Hypersonic Adjoint Sensitivity Jan. 4, 2010 7 / 32

  • Solver Description

    Solution marched to steady state using implicit pseudo-time stepping

    Method of Lines:dU

    dt+ R(U) = 0 (2)

    BDF1 discretization used for pseudo-time derivative

    Unsteady residual given by:

    J(Un,Un−1) =Un −Un−1

    ∆t+ R(Un) (3)

    Nonlinear equation J(Un,Un−1) = 0 solved approximately at eachtime step

    B.A. Lockwood, D.J. Mavriplis (U. of WY.) Hypersonic Adjoint Sensitivity Jan. 4, 2010 8 / 32

  • Solution Scheme

    Fixed number of inexact Newton iterations performed per time step(∼ 10)

    δUk = − [P]−1 J(Uk ,Un−1) (4)Uk+1 = Uk + λδUk (5)

    [P] chosen to approximate ∂J∂Uk

    , 1st order Van-Leer-Hänel

    Preconditioner matrix and transport quantities calculated once pertime step and frozen.

    Global time stepping used for start-up, local time stepping for fullconvergence

    λ used to keep updates sensible

    B.A. Lockwood, D.J. Mavriplis (U. of WY.) Hypersonic Adjoint Sensitivity Jan. 4, 2010 9 / 32

  • Spatial Discretization

    Gradient reconstruction of primitives

    Green-Gauss contour integration used to calculate gradients

    Smooth Van Albada Limiter with Pressure Switch used:

    Ψk = max(0, 1− Kνk)1

    ∆−(∆+

    2+ ε2)∆− + 2∆−

    2∆+

    ∆+2 + 2∆− + ∆−∆+ + ε2(6)

    νi =

    ∑k |PR − PL|∑k PR + PL

    (7)

    Face based Gradients calculated using averaging and correction term:

    ∇Vk = ∇̃V +VR − VL − ∇̃V ·∆~T

    |∆~T |∆~T

    |∆~T |(8)

    Inviscid Flux Calculated Using AUSM+UP flux function with FrozenSpeed of Sound

    B.A. Lockwood, D.J. Mavriplis (U. of WY.) Hypersonic Adjoint Sensitivity Jan. 4, 2010 10 / 32

  • Sensitivity Derivation

    Let the objective and constraint have following functional dependence

    L = L(D,U(D)) (9)

    R = R(D,U(D)) = 0 (10)

    Objective and Constraint may be differentiated using the Chain rule

    dL

    dD=∂L

    ∂D+∂L

    ∂U

    ∂U

    ∂D(11)

    dR

    dD=∂R

    ∂D+∂R

    ∂U

    ∂U

    ∂D= 0 (12)

    Solve Constraint Equation for ∂U∂D

    B.A. Lockwood, D.J. Mavriplis (U. of WY.) Hypersonic Adjoint Sensitivity Jan. 4, 2010 11 / 32

  • Sensitivity Derivation

    Forward Sensitivity Equation Given by:

    dL

    dD=∂L

    ∂D− ∂L∂U

    ∂R

    ∂U

    −1 ∂R

    ∂D(13)

    Transpose Equation

    dL

    dD

    T

    =∂L

    ∂D

    T

    − ∂R∂D

    T ∂R

    ∂U

    −T ∂L

    ∂U

    T

    (14)

    Define Flow Adjoint with Equation:

    ∂R

    ∂U

    T

    Λ = − ∂L∂U

    T

    (15)

    Sensitivity Calculated by:

    dL

    dD

    T

    =∂L

    ∂D

    T

    +∂R

    ∂D

    T

    Λ (16)

    B.A. Lockwood, D.J. Mavriplis (U. of WY.) Hypersonic Adjoint Sensitivity Jan. 4, 2010 12 / 32

  • Parameter Sensitivity

    For Model Parameters, D dependence enters through field variables µ

    L = L(U(D),µ(D,U(D))) (17)

    R = R(U(D),µ(D,U(D))) (18)

    Sutherland’s Law Example

    µ

    µref=

    C1T3/2

    T + S(19)

    Forward Sensitivity Equation for Model Parameters

    dL

    dD=∂L

    ∂µ

    ∂µ

    ∂D+

    (∂L

    ∂U+∂L

    ∂µ

    ∂µ

    ∂U

    )∂U

    ∂D(20)

    B.A. Lockwood, D.J. Mavriplis (U. of WY.) Hypersonic Adjoint Sensitivity Jan. 4, 2010 13 / 32

  • Parameter Sensitivity

    Adjoint Sensitivity Equation for Model Parameters

    ∂L

    ∂D

    T

    =∂µ

    ∂D

    T(∂L

    ∂µ

    T

    +∂R

    ∂µ

    T

    Λ

    )(21)

    Flow Adjoint Found by Solving Equation:[∂R

    ∂U+∂R

    ∂µ

    ∂µ

    ∂U

    ]TΛ = −

    (∂L

    ∂U

    T

    +∂µ

    ∂U

    T ∂L

    ∂µ

    T)

    (22)

    Adjoint Equation solved with Defect Correction:

    [P]T δΛk = − ∂L∂U

    T

    [∂µ

    ∂U

    T ∂R

    ∂µ

    T

    +∂R

    ∂U

    T]

    Λk (23)

    Λk+1 = Λk + δΛk (24)

    B.A. Lockwood, D.J. Mavriplis (U. of WY.) Hypersonic Adjoint Sensitivity Jan. 4, 2010 14 / 32

  • Field Variable Sensitivity

    Set ∂µ∂D = 1 and∂µ∂U = 0:

    ∂L

    ∂µ

    T

    =∂L

    ∂µ

    T

    +∂R

    ∂µ

    T

    Λµ (25)

    Formally, Adjoint Solution with Frozen µ required:[∂R

    ∂U

    ]TΛµ = −

    ∂L

    ∂U

    )Tµ

    (26)

    Field Variables defined throughout domain (at cell centers or facecenters)

    May be used for Uncertainty Propagation or Model Adaptation

    δL2 =∑

    i

    ∂L

    ∂µi

    2

    δµ2i (Ui ) (27)

    B.A. Lockwood, D.J. Mavriplis (U. of WY.) Hypersonic Adjoint Sensitivity Jan. 4, 2010 15 / 32

  • Perfect Gas Results

    5 km/s cylinder test case

    Fixed Wall temperature

    Results compared againstLAURA and FUN2D

    Table: Benchmark Flow Conditions

    V∞ = 5 km/sρ∞ = 0.001 kg/m

    3

    T∞ = 200 KTwall = 500 KM∞ = 17.605Re∞ = 753,860Pr∞ = 0.72

    B.A. Lockwood, D.J. Mavriplis (U. of WY.) Hypersonic Adjoint Sensitivity Jan. 4, 2010 16 / 32

  • Perfect Gas Results

    Temperature Contour for 5 km/s case

    B.A. Lockwood, D.J. Mavriplis (U. of WY.) Hypersonic Adjoint Sensitivity Jan. 4, 2010 17 / 32

  • Perfect Gas Results

    Temperature along Stagnation Streamline Temperature along Stagnation Streamline(Boundary Layer)

    B.A. Lockwood, D.J. Mavriplis (U. of WY.) Hypersonic Adjoint Sensitivity Jan. 4, 2010 18 / 32

  • Perfect Gas Results

    Surface Pressure Distribution Surface Heating Distribution

    B.A. Lockwood, D.J. Mavriplis (U. of WY.) Hypersonic Adjoint Sensitivity Jan. 4, 2010 19 / 32

  • Perfect Gas Sensitivity

    Geometric and Parameter Sensitivities for 5 km/s Benchmark CaseSensitivities computed for Integrated Surface heating Objective:

    L =

    ∫A−k∇T · ~ndA (28)

    Sensitivities Validated using Finite DifferenceAdjoint Solution for Velocity

    B.A. Lockwood, D.J. Mavriplis (U. of WY.) Hypersonic Adjoint Sensitivity Jan. 4, 2010 20 / 32

  • Geometric Sensitivity

    Sensitivity of Surface Heating to surface geometry calculated

    Normal displacement of surface grid points used as design variable

    31 total design variables

    -50 0 50Angle (degrees)

    -2e+06

    0

    2e+06

    4e+06

    Sen

    siti

    vity

    Adjoint SensitivityFinite Difference Result

    Heat Flux Sensitivity to Surface Point Displacements

    B.A. Lockwood, D.J. Mavriplis (U. of WY.) Hypersonic Adjoint Sensitivity Jan. 4, 2010 21 / 32

  • Parameter Sensitivity

    Sensitivity to Perfect Gas Parameter γ

    Fixed Freestream Velocity and Fixed Freestream Mach NumberConsidered

    Table: Sensitivity of Surface Heating to γ

    Fixed Velocity Fixed Mach Number

    Objective Value 1.628× 10−2 1.628× 10−2Finite Difference −3.111× 10−2 −1.198× 10−2

    Adjoint −3.109× 10−2 −1.206× 10−2Relative Error 7.279× 10−4 7.186× 10−4

    B.A. Lockwood, D.J. Mavriplis (U. of WY.) Hypersonic Adjoint Sensitivity Jan. 4, 2010 22 / 32

  • Real Gas Results

    5 km/s cylinder test case

    Fixed Wall temperature

    Super-catalytic Wall

    Results compared withLAURA

    Table: Benchmark Flow Conditions

    V∞ = 5 km/sρ∞ = 0.001 kg/m

    3

    T∞ = 200 KTwall = 500 KM∞ = 17.605Re∞ = 753,860Pr∞ = 0.72

    B.A. Lockwood, D.J. Mavriplis (U. of WY.) Hypersonic Adjoint Sensitivity Jan. 4, 2010 23 / 32

  • Real Gas Results

    Temperature along Stagnation Streamline Temperature along Stagnation Streamline (Log Scale)

    B.A. Lockwood, D.J. Mavriplis (U. of WY.) Hypersonic Adjoint Sensitivity Jan. 4, 2010 24 / 32

  • Real Gas Results

    Mass Fraction along Stagnation Streamline for 5 km/s case

    B.A. Lockwood, D.J. Mavriplis (U. of WY.) Hypersonic Adjoint Sensitivity Jan. 4, 2010 25 / 32

  • Real Gas Results

    Skin Friction Distribution Surface Heating Distribution

    B.A. Lockwood, D.J. Mavriplis (U. of WY.) Hypersonic Adjoint Sensitivity Jan. 4, 2010 26 / 32

  • Real Gas Sensitivity

    Sensitivities computed for Integrated Surface heating Objective:

    L = −∫

    Ak∇T · ~n + kv∇Tv · ~ndA (29)

    Sensitivities Validated using Finite Difference

    Geometric Sensitivity, 61 Design Variables

    B.A. Lockwood, D.J. Mavriplis (U. of WY.) Hypersonic Adjoint Sensitivity Jan. 4, 2010 27 / 32

  • Real Gas Sensitivity

    Sensitivity of Surface Heating to Arrhenius Coefficients:

    Kf = Cf Tηfa e−

    Ea,fkTa (30)

    Kb = CbTηba e−

    Ea,bkTa (31)

    Sensitivities Expressed as fractional changes (i.e. dL/LdD/D )

    B.A. Lockwood, D.J. Mavriplis (U. of WY.) Hypersonic Adjoint Sensitivity Jan. 4, 2010 28 / 32

  • Real Gas Sensitivity

    Sensitivity of Surface Heating to Species Viscosity Curve FitParameters:

    µs = 0.1e(As ln(T )+Bs)ln(T )+Cs (32)

    Significantly Higher Sensitivity than Reaction Parameters

    B.A. Lockwood, D.J. Mavriplis (U. of WY.) Hypersonic Adjoint Sensitivity Jan. 4, 2010 29 / 32

  • Real Gas Sensitivity

    Sensitivity of Surface Heating to Face-centered Viscosity throughoutDomain7800 Faces within Computational GridExact and Approximate Adjoints used to Compute Sensitivity

    B.A. Lockwood, D.J. Mavriplis (U. of WY.) Hypersonic Adjoint Sensitivity Jan. 4, 2010 30 / 32

  • Real Gas Sensitivity

    Viscosity Sensitivity along Stagnation Streamline Viscosity Sensitivity at 45 degrees

    B.A. Lockwood, D.J. Mavriplis (U. of WY.) Hypersonic Adjoint Sensitivity Jan. 4, 2010 31 / 32

  • Conclusions

    Conclusions:

    Sensitivity to large number of parameters with minimal effort possiblewith adjoint

    Parameter sensitivity can be used to determine most important modelcomponents

    Field variable sensitivity possible; identifying regions/ranges ofgreatest importance

    Future Work:

    Extend valid range of sensitivities by including higher order terms

    Investigate simulation adaptation using adjoint

    Explore hybrid sensitivity/sampling approaches to uncertaintyquantification

    B.A. Lockwood, D.J. Mavriplis (U. of WY.) Hypersonic Adjoint Sensitivity Jan. 4, 2010 32 / 32