paques - anaerobic effluent treatment pulp & paper

Upload: saevuddin-ortega

Post on 11-Oct-2015

95 views

Category:

Documents


8 download

TRANSCRIPT

  • 13-2-2013

    Anaerobic effluent treatment in the pulp and paper industry

    www.paques.nl

  • 2

    Who is Paques?

    Family owned business

    Founded in 1960

    Number of employees : ~400

    Operations in The Netherlands, China, Brazil, and sales office in Canada

    Worldwide presence through network of partners, partnering strategy

    Innovative biological applications for wastewater and gas

    2011: SKion GmbH, the investment firm of German entrepreneur Susanne Klatten (BMW, ALTANA, SGL) purchases 20% shares

    2011: JV with Shell for biological gas desulphurization

  • 3

  • 4

    Paques has around 1500 references worldwide

    Mainly anaerobic water treatment (energy from wastewater) and biogas desulphurization

    Market leader in pulp & paper, beer & beverage and food sector

    Strong portfolio in sulphur based biotechnology

    Growing and developing in:

    Metal and Mining

    Oil and Gas through Paqell

    Petrochemical

    Algeae

    Biobased chemicals

    Who is Paques?

  • 5

    Meet safe water discharge requirements

    Reduce water consumption (water footprint)

    Produce green gas (carbon footprint)

    Upgrade biogas

    Resource recovery from used water

    By offering:

    Biological processes and engineering packages

    Integrated solutions Reliable

    High uptime

    Energy efficient

    Best performance with attractive economics

    Paques helps companies to:

  • 6

    Process design

    Basic and detailed engineering

    Manufacturing

    Contracting

    Construction

    Research & Development

    Laboratory services

    Pilot testing

    Consultancy and services

    Paques services

  • 7

    More than 1,500 reference plants in more

    than 60 countries in the following industries:

    Pulp and Paper

    Beer and Beverages

    Food

    Distilleries

    Chemical industry

    Metal and Mining

    Oil and Gas

    Municipalities

  • 8

    Anaerobic Waste Water Treatment

    Pulp & Paper

  • 9

    Purpose

    Removal of organic contaminants

    Biogas production

    Paques

    The word leader in anaerobic treatment

    More than 875 references in more than 60 countries

    Anaerobic COD removal

  • 10

    Smurfit Kappa Roermond Papier 1983

  • 11

    100st IC reactor in P&P

    started up in 2008

    DS Smith France

  • 12

    Sludge granulation is the most popular anaerobic technology to treat pulp & paper effluent

    UASB/IC

    75%

    AF

    2%CSTR

    7%

    FB

    2%

    EGSB

    14%

  • 13

    No.1 in anaerobic treatment of wastewater for pulp & paper industry

    PAQUES

    59%

    A

    17%

    B

    8%

    C

    6%

    D

    6%E

    4%

  • 14

    Traditional aerobic process

    BOD + O2 H2O + CO2 + BIOMASS

    CO2 + H20

    45

    45

    10 100

    Aerobic sludge

    Effluent

    Aerobic biomass (~4 g/l MLSS)

    Aerobic sludge

    High growth rate

    High energy requirement

    High sludge production

    Flocculant sludge

  • 15

    Concerns of Aerobic Treatment

    - Important Space needed - Energy Requirement for Aeration - Important Sludge Production - Sensitive to Loading Variation - Problems of Sludge Separation

  • 16

    Anaerobic process

    COD CH4 + CO2 + BIOMASS

    Anaerobic methanogenic biomass

    Low growth rate

    Production of reusable methane (green energy)

    Low sludge production (& biomass is asset rather than waste)

    Granular biomass

    Anaerobic biomass

    CO2 + H20

    45

    45

    10

    Effluent 100

    Aerobic sludge

    CH4 + CO2

    75

    20

    100

    5

    Effluent

    Anaerobic sludge

  • 17

    Why anaerobic pre-treatment ?

    - reduced energy consumption

    - reduced sludge production

    - more stable operation

    - energy production

    - reduced green house effect

    In aerobic

    plant

    Revenue

  • 18

    Secondary Clarifier before anaerobic system installed

  • 19

    Secondary Clarifier after anaerobic system installed

  • 20

    Improvement of aerobic sludge

    Before anaerobic

    system installed

    After anaerobic

    system installed

  • 21

    Lab testing: Oxitop

  • 22

    Pilot testing

  • 23

  • 24

    High rate (20-30 kg COD/m3/d)

    Small footprint

    Low hydraulic retention time

    Self regulating system

    Intensely mixed biomass at bottom reactor

    Optimal sludge retention at top reactor

    BIOPAQIC reactor

  • 25

  • 26

    Advantages BIOPAQ IC reactor

    Proven technology, > 875 BIOPAQ references

    Closed system, corrosion free materials

    Minimal foot-print (space saving and odor emission

    surface limited)

    Completely mixed reactor compartment due to Internal

    Circulation principle

    Optimal sludge retention due to two-staged separation

    Maximal recovery of biological alkalinity, reduced

    chemical costs

    Robust & more stable due to

    - two-staged concept

    - automatic internal dilution (IC)

  • 27

    Feasibility of anaerobic effluent treatment MILL PROCESS FEASIBILITY OF ANAEROBIC

    TREATMENT

    Mechanical Pulping

    Debarking

    RMP, Ground wood

    TMP, BTMP (Peroxide)

    CTMP, BCTMP (Peroxide)

    APMP (Peroxide)

    -

    +

    ++

    +/++

    ++

    Semi Chemical Pulping

    NSSC

    Soda pulping

    +

    +

    Chemical Pulping

    Sulfite pulp condensate

    Sulfite bleaching: E,O,P

    Sulfite bleaching: C,H,D

    ++

    +

    -

    Kraft pulp condensate

    Kraft bleaching: E,O,P

    Kraft bleaching: C,H,D

    ++

    +

    -

    Dissolving pulp condensate

    Bleaching: E,O,P

    Bleaching: C,H,D

    +

    +

    -

    Secondary Fibres

    Wastepaper, DIP ++

    Non-wood (soda) Pulping

    Straw, Bagasse, Cotton Linters

    +

  • 28

    Raw material and COD removal

    Raw material COD efficiency %

    OCC 75 85

    MWP 65 - 75

    MOW 60 - 70

    ONP 50 - 55

    Mech. pulp / spruce 50 - 55

    Mech. pulp / aspen 65 - 75

    Condensates 75 - 95

  • 29

    General flow diagram

    Sludge

    dewatering

    N,P

    Effluent

    Primary clarifier Aeration tanks

    Sec. clarifier

    sieve

    Influent

    Return sludge

    Biogas

    Gasholder Flare

    IC reactor Conditioning

    tank

  • 30

    Zero discharge concept at paper mill

    Conditioning tank IC Reactor

    Aereation

    Water storage tank

    Secondary clarifier

    Aereation basins

  • 31

    SCA Newhythe - UK

    IC diameter 9.5 m

    Height 20 m

    Volume 1,400 m3

    Flow 6,000 m3/d

    COD 5,000 mg/l

    COD 30 tpd

  • 32

    COD-load (kg/d)

    IC Reactor COD load

    0

    5000

    10000

    15000

    20000

    25000

    30000

    35000

    40000

    45000

    1-1

    -2004

    15-1

    -2004

    29-1

    -2004

    12-2

    -2004

    26-2

    -2004

    11-3

    -2004

    25-3

    -2004

    8-4

    -2004

    22-4

    -2004

    6-5

    -2004

    20-5

    -2004

    3-6

    -2004

    17-6

    -2004

    1-7

    -2004

    15-7

    -2004

    29-7

    -2004

    12-8

    -2004

    26-8

    -2004

    9-9

    -2004

    23-9

    -2004

    7-1

    0-2

    004

    21-1

    0-2

    004

    4-1

    1-2

    004

    18-1

    1-2

    004

    2-1

    2-2

    004

    16-1

    2-2

    004

    30-1

    2-2

    004

    kg

    CO

    D/d

  • 33

    Final effluent COD (mg/l)

    Final Effluent COD

    0

    20

    40

    60

    80

    100

    120

    140

    160

    180

    200

    1-1

    -2004

    15-1

    -2004

    29-1

    -2004

    12-2

    -2004

    26-2

    -2004

    11-3

    -2004

    25-3

    -2004

    8-4

    -2004

    22-4

    -2004

    6-5

    -2004

    20-5

    -2004

    3-6

    -2004

    17-6

    -2004

    1-7

    -2004

    15-7

    -2004

    29-7

    -2004

    12-8

    -2004

    26-8

    -2004

    9-9

    -2004

    23-9

    -2004

    7-1

    0-2

    004

    21-1

    0-2

    004

    4-1

    1-2

    004

    18-1

    1-2

    004

    2-1

    2-2

    004

    16-1

    2-2

    004

    30-1

    2-2

    004

    CO

    D (

    mg

    /l)

  • 34

    COD removal (%)

    IC Reactor COD removal efficiency (%)

    0,0

    10,0

    20,0

    30,0

    40,0

    50,0

    60,0

    70,0

    80,0

    90,0

    100,0

    1-1

    -2004

    15-1

    -2004

    29-1

    -2004

    12-2

    -2004

    26-2

    -2004

    11-3

    -2004

    25-3

    -2004

    8-4

    -2004

    22-4

    -2004

    6-5

    -2004

    20-5

    -2004

    3-6

    -2004

    17-6

    -2004

    1-7

    -2004

    15-7

    -2004

    29-7

    -2004

    12-8

    -2004

    26-8

    -2004

    9-9

    -2004

    23-9

    -2004

    7-1

    0-2

    004

    21-1

    0-2

    004

    4-1

    1-2

    004

    18-1

    1-2

    004

    2-1

    2-2

    004

    16-1

    2-2

    004

    30-1

    2-2

    004

    Eff

    icie

    ncy (

    %)

  • 35

    SAICA 3, Spain

    Diameter 9.5 m Height 24 m Volume 1,680 m3

    Flow 8,000 m3/d COD 5,800 mg/l COD 47 tpd

  • 36

    SAICA 3: Biogas production and VLR

    15.000

    15.500

    16.000

    16.500

    17.000

    17.500

    18.000

    18.500

    JAN FEB MAR APR MAY JUN JUL AUG

    Bio

    gas p

    rod

    ucti

    on

    in

    m3/h

    22

    23

    24

    25

    26

    27

    28

    29

    30

    VL

    R i

    n k

    g C

    OD

    / m

    3.d

    Biogas production Nm3/h VLR in kg COD / m3.d

    Loading rate and biogas

  • 37

    VLR vs COD Efficiency

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0,0 5,0 10,0 15,0 20,0 25,0 30,0 35,0 40,0 45,0

    VLR kg/m3/d

    CO

    D e

    ffic

    ien

    cy

    Performance at high loading

    Volumetric Loading Rate (VLR) in kg COD/m3.d Loading rate versus biogas

  • 38

    Palm Wrth, Germany

    Diameter 9.5 m Height 24 m Volume 2 x 1,680 m3

    Flow 9,000 m3/d COD 5,500 mg/l COD 50 tpd

  • 39

    Papierfabrik Palm, Germany TL, CM

    BIOPAQIC

    2 x 1680 m, Gasbuffer 500 m, Gasflare 1200 m/h

    THIOPAQ60/1.2

  • 40

    Ruhrverband, Germany Tissue

    BIOPAQIC

    2 x 195 m

    THIOPAQECO

    2004

  • 41

    Emin-Leydier, France Diameter 9.5 m Height 24 m Volume 1,680 m3

    Flow 6,500 m3/d COD 5,500 mg/l COD 36 tpd

  • 42

    Cartonneries de Gondardennes France TL, CM

    Turn-key wwtp

    Anaerbic + aerobic

    BIOPAQIC 1190 m

    Gasbuffer 30 m

    Gasflare 900 m/h

    2006

  • 43

    Rock-Tenn Solvay Paperboard, USA

  • 44

    Smurfit Kappa, UK

    IC 6 x 24 m Flow 3000 m3/d COD 6000 mg/l

  • 45

    Stora Enso, Germany

    Hagen Kabel (LWC from spruce)

    Diameter 2 x 8 m Flow 24,000 m3/d

    Height 20 m COD 1,200 mg/l

    Volume 2 x 1,000 m3 COD 30 ton/d

    Eilenburg (DIP, Newsprint)

    Diameter 4 x 5 m Flow 15,000 m3/d

    Height 16 m COD 1,500 mg/l

    Volume 4 x 310 m3 COD 22 ton/d

  • 46

    Mechanical Pulping Process: TMP by Sound Raw materials: Masson Pine Production: 200tpd WWTP biological start up in 2001

    Nanping Paper, China

  • 47

    Mechanical Pulping Process: PRC-APMP by Andritz Raw materials: Aspen Production: 500tpd WWTP biological start up in 2002

    Yueyang Paper, China

  • 48

    UPM Kymmene, Germany SC/LWC

  • 49

    Fujian Nanping Paper, China TMP/DIP

  • 50

    YueYang Paper, China

    Mechanical Pulping: Aspen/Eucalyptus

  • 51

    Chen Loong, China

  • 52

    M-Real, Austria Sulphite Condensate