p,homepages.cae.wisc.edu/.../sampleproblems/sampleproblemschapter8.pdftangle, ing stress determine...

5
Two forces PI and Pz, of magnitude PI::::: 15kN and P2 ::::: 18leN, are applied as shown to the end A of bar AB, which is welded to a cylindrical member BD of radius c ::::: 20 mm (Fig. 8.21).Knowing that the distance from A to the axis of member BD is a ::::: 50 mm and assuming that all slresses remainbelow the propOrtional ]imit of the material, determine (a) the normal and shearing stresses at point K of the transverse sectionof member BD located at a distance b ::::: 60 mm from endB, (b) the principal axes and principal stresses at K, (c) the maximum shearing stress at K. rt'I(jf()~ ~ F (J'( rtJ.- 6 ([) ~t fo P, . ,s K N 15 It O. 0 .5 ~ 'IS () (VrO ~ cljf"tct/ct') Du~ PJ.. ... ,- ". .,. - , G 0 (t ,,~ 1-"vt v V, 'I, ... .". .,. ,. 0 12, , (-,<-It ffy-IA ~: .... ,. -'" I ft 1< N ". :. 7 , () IV "" - I - : - - - - _: - - - - - - ::-: - - ----- - -: ---- -.';- :- -".', -::-::-.' /"':.'.-_:->:'!. :', :.;:-;--:':-', " ~!':\:';~~-:'..fU;;,:,:,;~;{~,:",/~;-':i:'~) 1'-;~:::.I'~;:;..!:~'.~~{!:.~'Jd<)"~}:::.'i;:;::;':~;j/i.~i1.i:_:~u.S'YH ~:~\~~.~)~"i"<i.'U~.)Y'i~!'~Ik»'~\t:~,~;?~~~~!:,t~_;:~;i~:~~(Nt{, ~ i Fig. 8.21 P;2 '" H) kN My ~T fa 0 F - - M. v #./ftO.D6 1081) N'rn (5 d.iff dlUt') ,r- KN ",gxO.O.5 Fig. 8.22 ",... ... y/ - - ::< 7.50 N.II) My 2.- .,. - N~ ,so .". ... )l v = IS kN Fig. 8.23 ~ N . 75. 0 ~k ) (vA t -&'jY)( e.- N ft- do~ J\Jr() ) If..r IJ. t< ('! D J- p(JJA

Upload: trancong

Post on 12-May-2018

219 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: P,homepages.cae.wisc.edu/.../SampleProblems/SampleProblemsChapter8.pdftangle, ing stress determine at point the H. principal stresses, principal planes . and maximum shear-SOLUTION

Two forces PI and Pz, of magnitude PI::::: 15 kN andP2 ::::: 18 leN, are applied as shown to the end A of bar AB,which is welded to a cylindrical member BD of radiusc ::::: 20 mm (Fig. 8.21). Knowing that the distance from A tothe axis of member BD is a ::::: 50 mm and assuming that allslresses remain below the propOrtional ]imit of the material,determine (a) the normal and shearing stresses at point K ofthe transverse section of member BD located at a distanceb ::::: 60 mm from end B, (b) the principal axes and principalstresses at K, (c) the maximum shearing stress at K.

rt'I (jf() ~ ~F (J'( r tJ.- 6([)~tfo P,

. ,s K N15 It O. 0 .5

~ 'IS () (VrO

~ cljf"tct/ct')

Du~

PJ.....,-"..,.

-,

G0

(t ,,~1-"vt

vV,

'I,

....".

.,.,. 0

12,,

(-,<-It

ffy-IA

~:....

,.-'"

I ft 1< N".

:. 7 , () IV ""-I- : - - - - _: - - - - - - ::-: - - -- --- - -: -- --

-.';- :- -".', -::-::-.' /"':.'.-_:->:'!. :', :.;:-;--:':-', " ~!':\:';~~-:'..fU;;,:,:,;~;{~,:",/~;-':i:'~) 1'-;~:::.I'~;:;..!:~'.~~{!:.~'Jd<)"~}:::.'i;:;::;':~;j/i.~i1.i:_:~u.S'YH ~:~\~~.~)~"i"<i.'U~.)Y'i~!'~Ik»'~\t:~,~;?~~~~!:,t~_;:~;i~:~~(Nt{,

~

i

Fig. 8.21 P;2 '" H) kN

My

~Tfa

0 F-- M. v

#./ftO.D61081) N'rn

(5 d.iff dlUt')

,r- KN

",gxO.O.5

Fig. 8.22",......

y/--

::< 7.50 N.II)My

2.-.,.-

N~,so."....

)l

v = IS kN

Fig. 8.23

~~

N. 75. 0

~k )(vAt -&'jY)( e.-

N ft- do~

J\Jr()

)If.. r IJ. t<('! D J- p(JJA

Page 2: P,homepages.cae.wisc.edu/.../SampleProblems/SampleProblemsChapter8.pdftangle, ing stress determine at point the H. principal stresses, principal planes . and maximum shear-SOLUTION

~

h

t Ah~d.(

~Qf ) i.UI'

...,'

A7

AfrWA--

,--'J ~-

,. ,SOP--~~xiJ

-- --

--

f)

('1 p~

-:.-t150C

Uh~J;"J x1"1 P (}..,q IV'

"A--

~--

~o../"( r r:/ ... M po...

~ -7 f.b" -\ -

v,

~"

~

Page 3: P,homepages.cae.wisc.edu/.../SampleProblems/SampleProblemsChapter8.pdftangle, ing stress determine at point the H. principal stresses, principal planes . and maximum shear-SOLUTION

~ Ne}-

~x :: () Wdij

(J,;::. + 107

,-..""c - l, .y ~ -- r()r A((f(\

+ Q ~i J

.4 f'fPd..

f "6 he CJ..I'

- 52.5--

~ '[ "'ytOJ' 2- &p ~~

f~ - fr:J

(6'7C-Q'~to'(> z e s :.

2.-

75.1 MP",--

(2~. t 1'1 PrA.

-2./.1i. MP'1

g .,.-

Of0 -...2-

~

-<910 eu eA

r."'J = -52.5 MPa

Fig. 8.24

I~ PIA

t07

MPa..

8p == 22.2°

15 kN

(a;11in = -21.4 MPa.

Fig. 8.26

) = 75.1 MP~l'T,n,,~

as = 22.8°

Page 4: P,homepages.cae.wisc.edu/.../SampleProblems/SampleProblemsChapter8.pdftangle, ing stress determine at point the H. principal stresses, principal planes . and maximum shear-SOLUTION

A

~ r Ii I.Sin. ~5001b

n. -.. .. .. ... ..

4.5 in.4.5 in.

A

A == 2501b

B = 2.50 Ibz

= 62.51b .ill./M!f= 625 Ii

~/V:250lb

..-T = 9001b.in.

~O.9-in. diameter

G

T:: 6290 psi

--LHT = 6290 psi

,L

(0) T = 6290 psi

KT = 62-90 psi

H T = 524 psi

"l

(b) T=524psi

:,.- (T = 8730 psi

.,.:::'0 K

(1';:0

(c) u = 8730 psi

-u = 8730 psiL..,. = 6810 psi

.u =" 8730psI

, "" ~'" ~ ""~;";, ',;~i;;:.;{;:.1~.i; ;f,<",'i:kv:, ,; J';':'!~>:,;i;\:i.:;:' ,;,./i;'~~iD~iifi~t~;ii.fiii~Xl~At#wkMi.{~;~.&.~;~;.,{~;

SAMPLE PROBLEM 8.4

A horizontal 500-lb force acts at point D of crankshaft AB which is held instatic equilibrium by a twisting couple T and by reactions at A and B. Know-ing that the bearings are self-aligning and exer~ no couples on the shaft, de-termine the normal and shearing stresses at points H, J, K, and L located at theends of the vertical and horizontal diameters of a transverse section located2.5 in. to the left of bearing B.

SAMPLE PROBLEM 8.4

SOLUTION

Free Body. Entire Crankshaft. A = B = 250 Ib

+ ~ 2:M~ = 0: -(500 Ib)(1.8 in.) + T = 0 T = 9001b . in.

Internal Forces in Transverse Section. We replace the reaction B andthe twisting couple T by an equivalent force-couple system at the center C ofthe transverse section containjng H. J, K, and L.

%

v = B = 250 Ib T = 900 Ib . in.My = (250 Ib)(2.5 in.) = 6251b . in.

The geometric properties of the O.9-in.-diameter section are

A = 7T(O.45 in.)2 = 0.636 in2 1= !7T(O.45 in.)4 = 32.2 X 10-3 in4J = !7T(O.45 in.)4 = 64.4 X 10-3 in4

Stresses Produced by Twisting Couple T. Using Eq. (3.8), wedetermine the shearing stresses at points H, J, K, and L and show them inFig. (a).

Tc (900 Ib . in.)(0.45 in.) = 6290 psi'T = J = 64.4 X 10 3 in4

Stresses Produced by Shearing Force V. The shearing force V pro-duces no shearing stresses at points J and L. At points Hand K we first com-pute Q for a semicircle about a vertical diameter and then determine the shear-ing stress produced by the shear force V = 250 lb. These stresses are shownin Fig. (b).

Q = (.!.1Tc2)( 4C)= ~c3 = ~(O 45 in)3 = 60 7 X 10-3 in3

,2 31T 33' . .

VQ (250 Ib)(60.7 X 1O-3in3) .T = - ::::: = 524 pSi

It (32.2 X 10-3 in4)(O.9 in.),

Stresses Produced by the Bending Couple M,.. Since the bending cou-ple My acts in a horizontal plane, it produces no stresses at Hand K. Using Eq.(4.15), we detennine the normal stresses at points J and L and show them in

Fig. (c).

IMylc (625lb . in.)(O.45 in.) .(J' = - = = 8730PSi

I 32.2 X 10-3 in4

Summary. We add the stresses shown and obtain the total normal andshearing stresses at points H. J, K, and L

Page 5: P,homepages.cae.wisc.edu/.../SampleProblems/SampleProblemsChapter8.pdftangle, ing stress determine at point the H. principal stresses, principal planes . and maximum shear-SOLUTION

4O~mm

y

~~MJ :; t).,'5 kN. III G

xz

~~~

T'"m

~~

I ~;:~8°

O~

I~

~

O"'"iL1

SAMPLE PROBLEM 8.5.

Three forces are applied as shown at points A, B, and Jj of a short steel post.Knowing that the horizontal cross section of the post is a 40 X 140-mm rec-tangle, determine the principal stresses, principal planes and maximum shear-ing stress at point H. .

~

SOLUTION

Internal Forces in Section EFG. We replace the three applied forcesby an equivalent force-couple system at the center C of the rectangular sectionEFG. We have. .

Vx = -30 kN P = 50kN V~ = -75 kNMx = (50 kN)(0.130 m) - (75 kN)(0.200 m) = -8.5 kN . mMy = 0 M~ = (30 kN)(0.1O0 m) = 3 kN . m

We note that there is no twisting couple about the y axis. The geometricproperties of the rectangular section are

A= (0.040 m)(0.140 m) = 5.6 X 10-3 m2Ix= i2(0.040 m)(0.140 m? = 9.15 X 10-6 m4

lz = i2(0.140 m)(0.040 m? = 0.747 X 10-6 m4

Normal Stress at H. We note that normal stresses (J'y are produced bythe centric force P and by the bending couples Mx and M<;. We determine thesign of each stress by carefully examining the sketch of the force-couple sys-tem at C.

P IMtla IMx1b(J' = +-+---

Y A I I,t x

50 kN (3 kN . m)(0.020 m) (8.5 kN . m)(O.O25 m)= + -

5.6 X 10-3 m2 0.747 X 1O-6m4 9.15 X 10-6 m4Uy = 8.93 MPa + 80.3 MPa - 23.2 MPa cry = 66.0 MPa. <1

Shearing Stress at H. Considering first the shearing force Vx, we notethat Q = 0 with respect to the z axis,. since H is on the edge of the cross sec-tion. Thus V x produces no shearing stress at H. The shearing force Vz does pro-duce a shearing stress at H and we write

Q = A1YJ ~ [(0.040 m)(0.045 m)](0.0475 m) = 85.5 X 10-6 m3

VzQ (75 kN)(85.5 X 10-6 m3) .Tyz= Ixl= (9.15 X 1O-6m4)(0.040m) Tyz= 17.52MPa <J

Principal Stresses~ Principal Planes, and Maximum Shearing Stressat H. We draw Mohr's circle for the stresses at point H