p elaboration bellotv1 - métallurgie 2012 - … · iron-ore agglomerate as-cast steel alloy ......

48
PROCEDES D’ELABORATION J.P. Bellot IJL, UMR CNRS-UL 7198 DAMAS, Labex UL Ecole des Mines de Nancy ANF Métallurgie Fondamentale 22-25 octobre 2012

Upload: hatu

Post on 19-Aug-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

PROCEDES D’ELABORATION

J.P. BellotIJL, UMR CNRS-UL 7198

DAMAS, Labex ULEcole des Mines de Nancy

ANF Métallurgie Fondamentale

22-25 octobre 2012

What is the meaning:

(Procédés d’élaboration)

Materials Processing?

(Génie des Procédés d’élaboration)

Materials Process Engineering?

What is the Materials Processing?

Minerals Raw Materials

Metallic alloy

Materials

Extraction/Separation

Elaboration Materials transformation, forming, surface

treatments

Secondary resource (recycled)

Product

Elaboration and Treatments

solidification

= Materials Processing

Iron-ore Agglomerate As-cast steelalloy

Car metalsheet, gear, packaging

Extraction

Elaboration and Treatments

Elaboration Materials transformation, forming,

surface treatment

Iron Scraps

Functions

What is the Materials Processing?

= Materials Processing

What is the Materials Process Engineering?

Car metal sheet, gear, packaging

FunctionsElaboration CompositionStructure

Properties

• Analysis• Control• Optimization

• Analysis of the main physical phenomena• Set up measurements and experimental studies • Modeling (numerical)• Simulation of the process and optimization of the operating parameters

New challenges in 21st Century?

• Improvement of Inclusion cleanliness and alloy purity

• Energy: efficiency and vector

• Environmental impact: assessment and reduction

• Waste stream (Matières Premières Secondaires): Processing technologies for metals and minerals extraction

from waste streamsAdditional stress on the purification processes

• The main processing routes in metallurgy

• The main stages of the elaboration

• Materials Processing Fundamentals

• Illustrations: Modeling and simulation

• What about experiments?

Summary

Main Processing RoutesHydrometallurgy

Pyrometallurgy

Low Energy costSmall unitsRecycling processes

No environmentally friendly

Hydrometallurgy

1st Stage: Leaching: Dissolving the metals (as one of its salts)

2nd Stage: Purification: Separating the waste from the aqueous solution to an other phase by precipitation, crystallization, cementation

3nd Stage: Elaboration of the solid metal: Electrolysis or solvent extraction

Applications: Au, Zn, Co, Cr, Cu, Mn…

Fundamentals in hydrometallurgy:

Chemical, Electrochemical and Chemical Engineering

Production of primary aluminum

Al alloysOresBauxite

alumina Liquidalumimium

Bay

er p

roce

ss

elec

trol

ysis

Cas

ting

shop

Rol

ling,

hea

t tre

atm

ent …

elaborationhydrometallurgy

électrolytique

Injection de l’alumine

Production of primary Copper

OresCu2S

CuFeS2

Aq. SolutionCuSO4

Leaching

H2SO4

Extraction by org. solvent

Electrowinning(électroextraction)

Cu metal

R2Cu

Electro-refining

converterCu Blister Anode

Cu metal

T>T fus+ O2

RoastingCu Matte

CuxFey +S+ Sintering

OresCu2S

CuFeS2

Pyrometallurgy

Hydrometallurgy

Zinc Recycling: Dust produced by the EAF (iron scarp remelting)

Dust emission

N

dp

QS

20 kg of dust/ t steel

Zn 25 %Pb 5 %Salts 5 %Cd 2 %

Leaching with NaOH

90°C – 1h

Fe, Lime

Zn, PbCementation Pb

ZnElect Zn metalZn powder

Main Processing Routes

Hydrometallurgy

Pyrometallurgy

Low Energy costSmall unitsRecycling processes

No environmentally friendly

PyrometallurgyThe main stages

Metallic oxide Metal+ C

Reduction Liquid alloy

Alloying of the metal &

purification

Solid alloy

Casting

Converter Liquid metalCO O2

Steel makingAluminium makingTitanium making

Steel making

Iron oxides Pig Iron(C + P + S)

Liquid steel alloy

Alloying of the metal &

purification

Liquidsteel

Solid alloy

Casting

Blast Furnace

CO

Converter

O2

Iron ores

Sintering

Steel making

Iron oxides Pig Iron(C + P + S)

Blast Furnace Liquid steel alloy

Alloying of the metal &

purification

Solid alloy

Casting

Converter LiquidsteelCO O2

Iron ores

Sintering

Elec

tric A

rc F

urna

ceIron scraps

Ladletreatments

Gas-stirring ladle

cored wires

vessel refractoycrucible

vacuum pump

Refining of liquid steel

Stages

Degassing

Final AdditionsCa, Al …

Inclusion separation

Al alloysOresBauxite

alumina Liquidalumimium

Bay

er p

roce

ss

elec

trol

ysis

Cas

ting

shop

Rol

ling,

hea

t tre

atm

ent …

elaborationhydrometallurgy

Aluminum making

Al scraps

Rotary kiln

Aluminum casting shop

Titanium making

Metallic oxideTiO2

TiCl4Reduction Liquid

alloy

Alloying of the metal &

purification

Solid alloy

Casting

Ti spongeCl2 + C

Carbochloration

Mg

ReductionKroll Process

pyrometallurgy

sponge

recycledscrap

Primaryelectrode forging

&forming

TitaniumTitanium makingmaking

master alloy

EBM alternative

VAR route

Materials Processing Fundamentals

Chemical Engineering History

WW2

1970

1990

Unit Operations

Process DesignControl System

Transport Phenomena, R.B. Bird, 1960, Unified approach

Computer Science

Chemical Engineering ‘Science’AIChE (American Institute of Chemical Engineering)

MIT, IC

Application to Materials Engineering, J. Szekely

Materials Process Engineering (Génie des Procédésd’Elaboration, A. Vigne, D. Ablitzer)

‘Voie Royale’J. Villermaux

Chemical Engineering Reactors, O. Levenspiel

Materials Processing Fundamentals

Process EngineeringSystem Analysis

• Unit operation / Idealreactor

• Chemical kinetics/Mass Transfers

• Thermodynamics

• System dynamic (unit control, automatic)

MechanisticAnalysis

• Fluid mechanic

• Thermal & thermochemistry

• Transport phenomena

• Chemical kinetics

25

Laboratory experiments

Trials on industrialplants

Numerical simulation of the process

Modeling of the mechanisms

Elementary Phenomena

Materials Processing

" Microscopic scale"

"Macroscopic scale"

Research approach

Illustrations

Gas-stirring ladle

1st Example: Refining of liquid steel

cored wires

vessel refractoycrucible

vacuum pump

1st Stage

Modeling of Liquid/gas bubblesTurbulent Fluid flow

2nd Stage

Modeling of inclusion behavior

28

Example of the hydrodynamics of an industrial ladle (60 t)

Isosurface of the 1% gas volume fraction

Velocity of the liquid steel (m/s)

Two porous plugs

Settling step (weak gas flow)

29

Mixing time

2 m

Addition of copper platelets as a tracer

Tracer : 60 kg of copper (0,1 wt%) Introduction duration : 3 s

?

?

?

Deep-sampling time interval: 50 sTotal time : 3 min

trajectory & dissolution behaviour?

30

Initial tracer location: pts 1 to 3

Location of the Sampling (pt S)

12

S

3

S

32

1

0,050

0,075

0,100

0,125

0,150

0,175

0,200

0,225

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300Temps (s)

Tene

ur e

n C

uivr

e (%

)

Point 1 Point 2 Point 3 MesuresIntroduction

of Cu

Mixing time

Cop

per

con

ten

t (w

t%)

Measurements

Discrepency between real and idealPSR (Perfectly Stirred Reactor)

Inclusion behavior: Development of a 0D, 3D or 1D model

Coupling of 1D and 0D reactorsHomogeneous ladle 0D

0D1DVitesse du panache

Vitesse du liquide (exemple)

0D

Heterogeneous ladle 3D

1

10

100

1000

10000

100000

00.

02

0.05

0.07 0.

1

0.12

0.14

0.17

0.19

0.22

0.24

0.38 6.

913

.4

19.9

26.5 33

39.5 46

52.5

59.1

65.6

72.1

78.6

85.2

Taux de dissipation eps (m2/s3)

Freq

uenc

e

Série1

Zone homogèneZone des panaches

Fréq

uenc

e/no

mbr

e de

cel

lule

s

2 3( / )m sε

Averaging of the hydrodynamics properties

Two modes: bimodal distribution

Aggregation/agglomeration Floatation

Modeling of the inclusion behavior

SettlingCapture

l il l i l i i b i i

N d iv ( u N ) ( B D ) Z St

∂α+ α = α − − −

Macroscopic transport mesoscopic interactions

Ni nb of inclusions of the i class / m3 of liquid

ibiiiil SZDB

tN

−−−=∂

∂αResolution of the PBE

Numerical Resolution

0)( =+∂

∂illl

ill Ndivt

N uραραTransport of scalars

Time splitting technique :[ ]1,i M∀ ∈

CFD (Fluent)

Method of Classes (UDF)

Fixed Pivot (Cell average - Kumar, 2006)

0 20 40 60 80 100Taille des particules (microns)Inclusion size (μm)

Incl

usio

n nu

mbe

r co

ncen

trat

ions

NiDiscretizationNi: number density#part (size i) /m3

Bellot,Rimbert, AEM, 2011

Method of Moments (QMOM)

OD

36

Laboratory experiments

Trials on industrialplants

Num. Sim. of the process

Modeling of the mechanisms

Elementary Phenomena

Materials Processing

" Microscopic scale"

"Macroscopic scale"

Research approach

d10 (m)

G X 1500– Détail d’une inclusion Ø 35µm

Spectre 2 Spectre 1

Dip sampling and inclusion counting

Coke Oven

Power PlantBlast

Furnace

Basic Oxygen Furnace

Hot Rolling

Sintering Plant Coke Oven

Power PlantBlast

Furnace

Basic Oxygen Furnace

Hot Rolling

Sintering Plant

Classical integrated Steelmill

1 ton of hot rolled coiled

~2 tons of CO2

released in the atmosphere

2nd Example: Environmental assessment using LCALife Cycle Analysis

1 ton of hot rolled coiled

~?? of CO2

released in the atmosphere

2nd Example: Environmental assessment using LCALife Cycle Analysis

Réduction Directe à l’H2

LCA• Select the best alternative

• Communicate on your environmental performances

• Compare the different alternatives• Compare with a reference

Objectives

Results

Methodology

Goal and scopedefinition

Inventory analysis (LCI)

Impact assessment

Interpretation of the results

• For processesthat do not existyet, no data are available

• We need to calculate thosedata

Methodology

ULCORED modelling

FeFeWW

100 microns10 mm

‘CFD Modelling’

‘CFD Modelling’

What about the experiments?

Experimental approach

High temperature

Liquid reactivity

How to see through opaque liquid materials?

Numerical simulation

Pyrometallurgy:• Worcester Polytechnic Intitute, MA, USA (M. Makhlouf)• Mac Gill University, Canada (R. Guthrie)• University of British Columbia, BC, Canada (A. Mitchell)• University of Illinois (Urbana Champaign), USA (B. Thomas)• University of Birmingham, UK (M. Ward)• University of Illmenau, Germany (C. Karcher)• University of Leoben, Austria (S. Michelic)• University of Sendaï, Japan (S. Tanigushi)•…

IJL ICMPELorraine Ile de France

SIMAPRhône Alpes

UMR

Instituts de Recherche

Centres de Recherche Privés

Réseau National de Plateformes d’Elaboration d’alliages métalliques par passage à l’état liquide

Difficultés pour maintenir les compétences techniques et scientifiques sur les procédés

Un manque critique de petites expérimentations soignées

Equipements d’élaboration lourds de qualité

Des spécialistes sont encore présents mais la pyramide d’âge est inquiétante

Les points faibles:

Les points forts:

Développer des projets de recherche communs

Coordonner l’usage et la maintenance

Renforcer les savoir-faire et la transmission des compétences

Assurer la visibilité

Le constat Les objectifs

IRT

To make advances in the understanding and the control of the purification phenomena during liquid materials processing

Multiphase & Multiscale modelingInterface mass transferThermochemistry

To develop integrated analysis on a whole processing route so as to compare energy consumption and environmental impacts.

Experiments at the laboratory scalefocused on a mechanism

- high energy beamline- Confocal microscope…

Among the future challenges

(1) Some perspectives on the mathematical modelling of materialsprocessing operations, Julian Szekely and Gerardo Trapaga 1994 Modelling Simul. Mater. Sci. Eng. 2 pp.809-828, doi:10.1088/0965-

0393/2/4/002

(2) Transport Phenomena, R. Byron. Bird, Warren E. Stewart, Edwin N. Lightfoot, Wiley, New York, 2nd Edition, 2006

(3) Elaboration des matériaux et génie des procédés, Ecole d’été du CNRS, St Pierre d’Oléron, juin 2005, Publié sous la direction de Denis Ablitzer et Jean-Pierre Petitet

Main References