p. bomb paradoxfaculty.polytechnic.org/physics/1 astronomy, cosmology, relativity... ·...

40
BOMB PARADOX A sta-onary bomb is a5ached to a nubshaped detonator that will blow the bomb when depressed. The length of the nub is “d” units. A firing pin needed to ignite the bomb is located at the bo5om of a well shaped ac-vator. The well’s depth is “2d.” Both pieces, WHILE STATIONARY, are shown to the right. At some point, the wellshaped ac-vator is accelerated to a velocity “v.” As presented, will the bomb go off? bomb (stationary) detonator well-shaped activator 1.) d 2d firing pin

Upload: others

Post on 10-Oct-2020

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: p. bomb paradoxfaculty.polytechnic.org/physics/1 Astronomy, Cosmology, Relativity... · BOMB$PARADOX A$staonary$bomb$is$aached$ to$anub;shaped$detonator$that will$blow$the$bomb$when$

BOMB  PARADOX  

A  sta-onary  bomb  is  a5ached  to  a  nub-­‐shaped  detonator  that  will  blow  the  bomb  when  depressed.    The  length  of  the  nub  is  “d”  units.    A  firing  pin  needed  to  ignite  the  bomb  is  located  at  the  bo5om  of  a  well-­‐shaped  ac-vator.    The  well’s  depth  is  “2d.”    Both  pieces,  WHILE  STATIONARY,  are  shown  to  the  right.    At  some  point,  the  well-­‐shaped  ac-vator  is  accelerated  to  a  velocity  “v.”    As  presented,  will  the  bomb  go  off?  

bomb(stationary)

detonator

well-shaped activator

1.)  

d

2d

firing pin

Page 2: p. bomb paradoxfaculty.polytechnic.org/physics/1 Astronomy, Cosmology, Relativity... · BOMB$PARADOX A$staonary$bomb$is$aached$ to$anub;shaped$detonator$that will$blow$the$bomb$when$

You  really  can’t  answer  this  unless  you  know  more,  so  let’s  begin  by  assuming  the  well’s  velocity  is  .866c  (note  that  the  sketch  is  not  to  scale—this  problem  will  be  remedied  on  the  next  slide).    With  that  informa-on,  we  can  write  the  rela-ve  velocity  as:  

β = .866 = 32

γ =1

1− vc

⎛⎝⎜

⎞⎠⎟

2⎡

⎣⎢

⎦⎥

1/2

= 1

1− .866cc

⎛⎝⎜

⎞⎠⎟

2⎡

⎣⎢

⎦⎥

1/2

= 11− .75[ ]1/2

γ = 2

and  the  rela-vis-c  factor  as:  

2.)  

v = .866c

bomb(stationary)

detonator

well − shaped activator

firing pin

Page 3: p. bomb paradoxfaculty.polytechnic.org/physics/1 Astronomy, Cosmology, Relativity... · BOMB$PARADOX A$staonary$bomb$is$aached$ to$anub;shaped$detonator$that will$blow$the$bomb$when$

We  will  start  by  looking  at  the  problem  from  the  perspec-ve  of  the  bomb  being  sta-onary.    That  means  the  moving  ac-vator  will  length  contract  by  a  factor  of                                leaving  it  with  a  well-­‐depth  of  “d.”      

β = .866c

bomb(stationary)

detonator

length-contracted well

1γ = .5

3.)  

Although  the  scaled  sketch  suggests  that  the  nub-­‐end  of  the  detonator  will  hit  the  bo.om  of  the  ac1vator  well  (detona-ng  the  bomb)  as  the  bomb  package  comes  in  contact  with  the  outside  edge  of  the  ac1vator  (this  would  otherwise  stop  the  incursion,  or  so  one  might  think),  a  space-­‐-me  diagram  is  really  the  best  way  to  see  what  is  happening  in  this  problem.    That  is  what  we  are  about  to  look  at.    

As  a  ma5er  of  convenience,  the  sketch  to  the  right  iden-fies  each  part  of  the  system  and  how  each  will  be  termed.    (No-ce  that  with  the  ac-vator’s  length  contrac-on,  the  sketch  is  now  to  scale!)      

bomb-end of detonator-nub (OR front-end of bomb-package)

nub-end of detonator

outside-edge of activator well

bottom of activator well

β = .866c

bomb

detonator

activator

Page 4: p. bomb paradoxfaculty.polytechnic.org/physics/1 Astronomy, Cosmology, Relativity... · BOMB$PARADOX A$staonary$bomb$is$aached$ to$anub;shaped$detonator$that will$blow$the$bomb$when$

We  also  need  to  define  an  origin-­‐-­‐an  x’  =  0  point-­‐-­‐in  the  ac-vator’s  frame  of  reference  (this  will  be  called  the  prime  frame  of  reference).    We  will  take  that  origin  to  be  located  at  the  outside  edge  of  the  well.          

β = .866c

4.)  

sketch of system at ct = 0 and ct ' = 0

outside-­‐edge  of  ac1vator  well  just  passing  nub-­‐end  of  detonator  at  ct  =  0  and  ct’  =  0.      

We  addi-onally  need  to  decide  when  to  “start  the  clock.”    Let’s  assume  that  when  the  outside-­‐edge  of  the  ac1vator-­‐well  just  passes  the  nub-­‐end  of  the  detonator,  both  clocks  start  (that  is,  ct  =  0  and  ct’  =  0  at  that  point).      

x = 0

For  our  purposes,  the  unprimed  coordinate  axes  (x  and  ct)  will  be  associated  with  the  bomb’s  frame  of  reference  (again,  we  are  star-ng  out  assuming  the  bomb  is  not  what  is  moving).    We  need  to  define  an  origin.    In  this  case,  the  ideal  posi-on  for  x  =  0  is  the  nub-­‐end  of  the  detonator  (see  sketch).  

x ' = 0

Page 5: p. bomb paradoxfaculty.polytechnic.org/physics/1 Astronomy, Cosmology, Relativity... · BOMB$PARADOX A$staonary$bomb$is$aached$ to$anub;shaped$detonator$that will$blow$the$bomb$when$

Second,  an  event  can  simply  be  a  point  of  interest  on  a  world-­‐line,  though  it  is  more  commonly  associated  with  a  point  where  two  world-­‐lines  cross.    For  instance,  if  the  world-­‐line  of  the  bo.om  of  the  ac1vator  (where  the  firing  pin  is)  were  to  cross  the  world-­‐line  of  the  nub-­‐end  of  the  detonator,  the  firing  pin  and  detonator  would  be  in  the  same  place  at  the  same  -me  .  .  .  which  is  to  say  the  bomb  would  blow.    That  event  would  occur  when  their  world-­‐lines  crossed.  

5.)  

The  only  other  two  bits  of  amusement  we  need  are  more  like  reminders  than  anything  else.  

That  means  that  even  though  a  point  on  an  object  may  be  physically  sta-onary  with  its  “x”  coordinate  not  changing,  that  point  will  s-ll  be  moving  in  -me.    In  other  words,  a  point’s  world-­‐line  will  always,  at  a  minimum,  show  mo-on  along  the  “ct”  axis.      

First,  a  world-­‐line  tracks  the  mo-on  of  a  POINT  ON  AN  OBJECT  on  a  space-­‐-me  diagram.    It  allows  you  to  iden-fy  where  the  point  is  (i.e.,  its  posi-on  coordinate  “x”  )  at  a  given  instant  in  -me  (i.e.,  its  -me  coordinate  “ct”).      

Page 6: p. bomb paradoxfaculty.polytechnic.org/physics/1 Astronomy, Cosmology, Relativity... · BOMB$PARADOX A$staonary$bomb$is$aached$ to$anub;shaped$detonator$that will$blow$the$bomb$when$

event 1(the nub-end of detonator reaches outside edge of activator-well)

1.)    event  1:    The  outside  edge  of  the  ac1vator-­‐well  reaches  the  nub-­‐end  of  detonator;  this  happens  in  the  unprimed  frame  at  x  =  0,  ct  =  0.  

6.)  

There  are  three  points  of  interest  (events)  to  examine  for  this  problem.    They  are:  

β = .866c

bomb(stationary)

detonator

activator

x = 0

Page 7: p. bomb paradoxfaculty.polytechnic.org/physics/1 Astronomy, Cosmology, Relativity... · BOMB$PARADOX A$staonary$bomb$is$aached$ to$anub;shaped$detonator$that will$blow$the$bomb$when$

The  ac-vator  traveling  with  velocity                                moves  a  distance  “d”  in  -me  “t.”    That  means:      

2.)    event  2:    The  outside-­‐edge  of  the  ac1vator  aligns  with  the  bomb-­‐end  of  the  detonator-­‐nub  (it  also  comes  in  contact  with  the  front  edge  of  the  bomb);  in  bomb’s  frame,  this  happens  at  x  =  d,  ct  =  d/      .        (Minor  point:  how  did  we  get  this  -me?)    

event 2(the outside edge of well reaches the bomb and alignswith the bomb-end of the nub)

β

7.)  

x = d bomb(stationary)

v = d / t ⇒ βc = d / t ⇒ ct = d /β

"v = βc"activator

event 2

β = .866c

x = 0

Page 8: p. bomb paradoxfaculty.polytechnic.org/physics/1 Astronomy, Cosmology, Relativity... · BOMB$PARADOX A$staonary$bomb$is$aached$ to$anub;shaped$detonator$that will$blow$the$bomb$when$

event 3(the nub-end of detonatorreaches bottom of well)

3.)    event  3:    The  bo.om  of  ac1vator-­‐well  reaches  the  nub-­‐end  of  the  detonator;  in  bomb’s  frame,  this  happens  at  x  =  0  at  -me  ct  =  d/        .      

β

8.)  

bomb(stationary)

β = .866c

x = 0

Page 9: p. bomb paradoxfaculty.polytechnic.org/physics/1 Astronomy, Cosmology, Relativity... · BOMB$PARADOX A$staonary$bomb$is$aached$ to$anub;shaped$detonator$that will$blow$the$bomb$when$

Event  3  is  the  point  where  the  world-­‐line  of  the  nub-­‐end  of  the  detonator  crosses  the  world-­‐line  of  the  bo.om  of  the  ac1vator-­‐well  (i.e.,  where  the  firing  pin  is).  

Event  2  is  the  point  where  the  world-­‐line  of  the  ac1vator’s  front  crosses  the  world-­‐line  of  the  bomb-­‐end  of  the  detonator-­‐nub.    

9.)  

Comment:    No-ce  that  the  sketch  for  event  3  looks  just  like  the  sketch  for  event  2.    How  so?  Again,  events  are  defined  as  points  of  interest  along  a  world-­‐line.  If  two  separate  events  happen  simultaneously  in  a  given  frame  of  reference  (like  the  bomb’s  frame)  but  with  different  coordinates,  the  sketch  that  depicts  each  situa-on  will  look  the  same.      

(bo5om  of  ac-vator-­‐well  strikes  nub-­‐end  of  detonator)  

(front-­‐end  of  ac-vator-­‐well  strikes  bomb-­‐end  of  detonator-­‐nub—i.e.,  front-­‐end  of  bomb)  

(bo5om  of  ac-vator-­‐well)  

(nub-­‐end  of        detonator)  

(front-­‐end  of  ac-vator-­‐well)  

(bomb-­‐end  of  detonator-­‐nub                        OR  front-­‐end  of  bomb)  

event 2

bomb

detonator

activator

bomb

detonator

activator

The  two  events  happen  simultaneously  in  the  bomb’s  frame  of  reference,  so  the  drawings  that  picture  these  two  occurrences  look  the  same.    

event 3

Page 10: p. bomb paradoxfaculty.polytechnic.org/physics/1 Astronomy, Cosmology, Relativity... · BOMB$PARADOX A$staonary$bomb$is$aached$ to$anub;shaped$detonator$that will$blow$the$bomb$when$

We  are  going  to  do  things  in  pieces  to  make  the  final  space-­‐-me  diagram  more  understandable.    To  start,  the  space-­‐-me  diagram  below  tracks  the  world-­‐line  of  the  nub-­‐end  of  the  detonator,  assumed  “sta-onary”  in  this  frame  of  reference,  as  that  point  proceeds  through  -me.    

d−d10.)  

β = .866c

WORLD-LINE of nub-end of the detonator(this point is physically stationary in this frame;look at sketch--its x coordinate does not change)

as the nub-end MOVES IN TIME(remember, everything is moving in time!)

x

ct

nub moving in time

nub-endof detonator

bomb-endof detonator-nub

x = 0

nub-endof detonator

x = 0

nub-endof detonator

nub-endof detonator

Page 11: p. bomb paradoxfaculty.polytechnic.org/physics/1 Astronomy, Cosmology, Relativity... · BOMB$PARADOX A$staonary$bomb$is$aached$ to$anub;shaped$detonator$that will$blow$the$bomb$when$

The  space-­‐-me  diagram  below  tracks  the  world-­‐line  of  the  bomb-­‐end  of  the  detonator-­‐nub  (aka:  the  front  of  the  bomb)  assumed  “sta-onary”  in  this  frame  of  reference,  as  that  point  proceeds  through  -me.    

d−d11.)  

WORLD-LINE of bomb-end of detonator-nub(this point is physically stationary in this frame;look at sketch--its x coordinate does not change)

MOVING IN TIME

x

ct

x = 0

nub moving in time

nub-endof detonator

bomb-endof detonator-nub

β = .866c

x = 0

bomb-end of detonator-nub

bomb-end of detonator-nub

bomb-end of detonator-nub

d

x = d

Page 12: p. bomb paradoxfaculty.polytechnic.org/physics/1 Astronomy, Cosmology, Relativity... · BOMB$PARADOX A$staonary$bomb$is$aached$ to$anub;shaped$detonator$that will$blow$the$bomb$when$

The  space-­‐-me  diagram  below  shows  the  world-­‐lines  of  the  nub-­‐end  of  the  detonator  and  the  bomb-­‐end  of  the  detonator  (this  is  the  way  these  lines  would  normally  be  presented).  

d−d12.)  

x

ct

world-line ofnub-end ofdetonator

x = 0

world-line ofbomb-end ofdetonator-nub

Page 13: p. bomb paradoxfaculty.polytechnic.org/physics/1 Astronomy, Cosmology, Relativity... · BOMB$PARADOX A$staonary$bomb$is$aached$ to$anub;shaped$detonator$that will$blow$the$bomb$when$

We  would  like  to  do  a  similarly  thoughkul  presenta-on  of  two  world-­‐lines  associated  with  the  front-­‐end  of  the  ac1vator-­‐well  and  the  bo.om  of  the  ac1vator-­‐well.    Before  we  do,  we  need  to  review  a  bit.  

13.)  

x

x '

ct

ct '1.)  Shown  are  the  unprimed  axes  (x  and  ct)  associated  with  the  “sta-onary”  reference  frame  and  the  primed  axes  (x’  and  ct’)  associated  with  the  “moving”  reference  frame.    2.)    The  moving  axes  have  world-­‐lines  that  are  not  at  right  angles  with  one  another  and  appear  squashed  as  viewed  from  the  unprimed  frame.    This  is  because  those  axes  are  moving  rela-ve  to  the  “fixed”  frame.    3.)    The  rela-ve  velocity  between  the  two  frames  is                where  the  angle  between  the  x  and  x’  axes  is  determined  by        .  

β = .866,

β

Δx

ΔctΔxΔct

= .866

Page 14: p. bomb paradoxfaculty.polytechnic.org/physics/1 Astronomy, Cosmology, Relativity... · BOMB$PARADOX A$staonary$bomb$is$aached$ to$anub;shaped$detonator$that will$blow$the$bomb$when$

More  review:  

14.)  

x

ct5.)    A  line  of  simultaneity  (a  line  that  includes  all  points  in  space  associated  with  a  given  -me)  in  the  unprimed  coordinate  system  runs  parallel  to  the  x-­‐axis.    A  number  of  these  are  shown  to  the  right.  

ct0 = 0

ct1

ct2

ct3

ct4

ct5

ct6

ct7

ct8

ct9

Page 15: p. bomb paradoxfaculty.polytechnic.org/physics/1 Astronomy, Cosmology, Relativity... · BOMB$PARADOX A$staonary$bomb$is$aached$ to$anub;shaped$detonator$that will$blow$the$bomb$when$

More  review:  

15.)  

x

ct

6.)    A  line  of  constant  posi-on  (a  line  that  includes  all  points  in  -me  associated  with  a  given  point  in  space)  in  the  unprimed  coordinate  system  run  parallel  to  the  ct-­‐axis.    A  number  of  these  lines  are  shown  to  the  right.  

x0 = 0x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Page 16: p. bomb paradoxfaculty.polytechnic.org/physics/1 Astronomy, Cosmology, Relativity... · BOMB$PARADOX A$staonary$bomb$is$aached$ to$anub;shaped$detonator$that will$blow$the$bomb$when$

S-ll  more  review:  

16.)  

x

x '

ct

ct '7.)    A  line  of  simultaneity  in  the  primed  coordinate  system  runs  parallel  to  the  x’-­‐axis.    A  number  of  these  lines  are  shown  to  the  right.  

Page 17: p. bomb paradoxfaculty.polytechnic.org/physics/1 Astronomy, Cosmology, Relativity... · BOMB$PARADOX A$staonary$bomb$is$aached$ to$anub;shaped$detonator$that will$blow$the$bomb$when$

S-ll  more  review:  

17.)  

x

x '

ct

ct '8.)    A  line  of  constant  posi-on  in  the  primed  coordinate  system  runs  parallel  to  the  ct’-­‐axis.    A  number  of  these  lines  are  shown  to  the  right.  

Page 18: p. bomb paradoxfaculty.polytechnic.org/physics/1 Astronomy, Cosmology, Relativity... · BOMB$PARADOX A$staonary$bomb$is$aached$ to$anub;shaped$detonator$that will$blow$the$bomb$when$

18.)  

x

x '

ctct '

Note  that  if  the  rela-ve  mo-on  was  directed  toward  the  lem  instead  of  toward  the  right,  as  would  be  the  case  if  we  were  assuming  it  was  the  bomb  that  was  moving  toward  the  ac-vator  instead  of  vice  versa,  the  diagram  that  included  lines  of  simultaneity  would  have  looked  like:  

Page 19: p. bomb paradoxfaculty.polytechnic.org/physics/1 Astronomy, Cosmology, Relativity... · BOMB$PARADOX A$staonary$bomb$is$aached$ to$anub;shaped$detonator$that will$blow$the$bomb$when$

So  what  would  the  world-­‐line  of  the  front  of  the  ac1vator-­‐well  look  like?        Well,  as  that  point  would  be  sta-onary  in  its  own  frame  of  reference  (the  primed  frame),  its  x’  coordinate  would  not  change  and,  as  a  consequence,  its  world-­‐line  path  would  parallel  the  ct’  axis.    And  as  it  is  supposed  to  be  at  the  origin  of  both  the  primed  and  unprimed  coordinate  systems  at  ct  =  0  and  ct’  =  0  (we  defined  the  axes  that  way),  it  looks  as  though  its  path  will  follow  along  the  ct’=  0  line.  

d

−d

activator well's apparent width19.)  

β = .866c

x

x 'ctct '

bottom of movingactivation-well

moving IN TIME

world-line offront of

activation-well

front of movingactivation-well

moving IN TIME

Page 20: p. bomb paradoxfaculty.polytechnic.org/physics/1 Astronomy, Cosmology, Relativity... · BOMB$PARADOX A$staonary$bomb$is$aached$ to$anub;shaped$detonator$that will$blow$the$bomb$when$

What  would  the  world-­‐line  of  the  bo.om  of  the  ac1vator-­‐well  look  like?      First,  its  world-­‐line  will  parallel  the  world-­‐line  of  the  ac-vator’s  front-­‐end,  which  we  already  know.    Also,  at  ct  =  0,  that  point  will  be  at  x  =  -­‐d.    Punng  this  all  together  yields  the    line  shown.    

d

−d

activator well's apparent width20.)  

x

x '

ct

bottom of movingactivation-well

additionallymoving IN TIME

world-line ofbottom of

activation-well

front of movingactivation-well

additionallymoving IN TIME

ct 'at ct = 0, x = −d x = 0

Page 21: p. bomb paradoxfaculty.polytechnic.org/physics/1 Astronomy, Cosmology, Relativity... · BOMB$PARADOX A$staonary$bomb$is$aached$ to$anub;shaped$detonator$that will$blow$the$bomb$when$

Punng  together  the  world-­‐lines  of  the  front-­‐end  and  bo.om  of  the  ac1vator-­‐well,  as  viewed  from  the  bomb’s  frame  of  reference,  we  get:  

d

−d

activator well's apparent width21.)  

x

x '

ct

ct '

bottom of movingactivation-well

additionallymoving IN TIME

world-line ofbottom of

activation-well

world-line offront-end of

activation-well

front-end of movingactivation-well

additionallymoving IN TIME

Page 22: p. bomb paradoxfaculty.polytechnic.org/physics/1 Astronomy, Cosmology, Relativity... · BOMB$PARADOX A$staonary$bomb$is$aached$ to$anub;shaped$detonator$that will$blow$the$bomb$when$

Punng  everything  together:  The  space-­‐-me  diagram  below  tracks  the  world-­‐lines  of  the  ends  of  the  detonator-­‐nub,  assumed  “sta-onary”  in  this  frame,  and  the  world-­‐lines  of  the  front-­‐end  and  bo5om  of  the  ac-vator-­‐well,  assumed  “moving.”    On  it,  the  nub  at  event  2  clearly  fits  into  the  well  (that  is,  the  ac-vator’s  front-­‐end  strikes  the  bomb’s  front-­‐end  just  as  the  nub  strikes  the  bo5om  of  the  ac-va-on-­‐well  with  the  bomb  

d−d22.)  

β = .866c

event 1(the outside edge of wellreaches the detonator)

event 2(the bottom of the wellreaches the detonator)

event 3

β = .866c

(the outside edge of well reaches the bomb)

activation well

bottom of activation-well andand end of nub come in contact: B O O M!!!

x

x '

ct ct '

event 1

event 3event 2

world-lineof nub-end of

detonator

world-lineof bomb-end of

nub

nub

going  BOOM!).  

Page 23: p. bomb paradoxfaculty.polytechnic.org/physics/1 Astronomy, Cosmology, Relativity... · BOMB$PARADOX A$staonary$bomb$is$aached$ to$anub;shaped$detonator$that will$blow$the$bomb$when$

This  is  a  more  bare-­‐bones  version  of  the  world  lines  and  events  in  ques-on.    It  is  more  like  what  you  would  see  in  a  textbook  or  on  a  test  (that  is,  pictures  are  not  superimposed  on  the  diagram).  

−d

23.)  

activation well

(bottom of activation-well andand end of nub come in contact: B O O M!!!)

x

x '

ct ct '

event 1

event 3event 2

world-lineof nub-end of

detonatorworld-line

of bomb-end of nub

nub

(front-end of well andnub-end align at

ct = 0, x = 0, ct ' = 0, x ' = 0)

d

β = .866c

event 1(the outside edge of wellreaches the detonator)

event 2(the bottom of the wellreaches the detonator)

event 3

β = .866c

(the outside edge of well reaches the bomb)

Page 24: p. bomb paradoxfaculty.polytechnic.org/physics/1 Astronomy, Cosmology, Relativity... · BOMB$PARADOX A$staonary$bomb$is$aached$ to$anub;shaped$detonator$that will$blow$the$bomb$when$

from  the  detonator’s  frame  of  reference,    that  diagram  shows  that  event  A  occurs  later  than  event  B  with  event  A  happening  between  ct’ and  ct’    and  event  B  happening  at  ct’      (look  at  the  parallel  -me  lines  for  the  slanted,  primed  coordinate  -me  axis).  

world-line ofnub-end ofdetonator

world-line ofbomb-end ofdetonator-nub

Parenthe-cal  comment:    Look  at  the  diagram  from  the  unprimed  perspec-ve.    Both  event  2  and  event  3  occur  at  the  same  -me  in  that  frame  (LOOK  AT  THE  SKETCH—both  events  sit  on  the  same  horizontal  -me  line  at  ct    ).    That’s  what  our  sketch,  drawn  to  scale,  maintains  has  happened.    What  is  interes-ng  is  that  looking  at  those  two  events    

d

−d

activator well's apparent width24.)  

x

x '

ct

ct '

world line ofbottom of

activation well

world line offront of

activation well

event  A  

event  B  

2  

1  

3  

B  

ct  B  

ct  A  

ct  B  ct  

B  

ct  A  

ct  A  

ct  C  

ct  C  

     In  short,  events  A  and  B  are  simultaneous  in  the  unprimed  frame  of  reference  and  NOT  simultaneous  in  the  primed  frame.    Interes-ng,  eh?  

Page 25: p. bomb paradoxfaculty.polytechnic.org/physics/1 Astronomy, Cosmology, Relativity... · BOMB$PARADOX A$staonary$bomb$is$aached$ to$anub;shaped$detonator$that will$blow$the$bomb$when$

v = .866c

well(assumed stationary) bomb

(length contracted)

So  far,  so  good.    Let’s  now  look  at  the  system  from  the  frame  of  reference  of  the  ac-vator  well  (that  is,  assume  the  ac-vator  well  is  sta-onary  and  the  nub  and  bomb  are  moving  to  the  lem).    The  rela-vis-c  factors  s-ll  hold  at                                                                  ,  but  now  the  ac-vator-­‐well  (being  assumed  to  be  sta-onary)  has  a  length  of  2d,  as  originally  defined,  and  the  nub  and  bomb  are  length  contracted.    The  nub  is  now  d/      =  d/2  units  in  length.    See  sketch  below.                                                                                              

β = .866 and γ = 2

25.)  

γ

Page 26: p. bomb paradoxfaculty.polytechnic.org/physics/1 Astronomy, Cosmology, Relativity... · BOMB$PARADOX A$staonary$bomb$is$aached$ to$anub;shaped$detonator$that will$blow$the$bomb$when$

β = .866c

event 1(the nub-end of detonator reaches the outside edge of activator)

26.)  

Although  it  is  now  the  bomb  and  nub  that  are  length  contracted,  there  are  s-ll  three  points  of  interest  (events)  to  examine.    They  are  iden-fied  below:      

x ' = γ x − βct( )

=2 0 −3

2⎛

⎝⎜⎞

⎠⎟c 0( )

⎝⎜

⎠⎟

⇒ x' = 0

t ' = γ ct − βx( )

=2 c 0( ) − 32

⎝⎜⎞

⎠⎟0( )

⎝⎜

⎠⎟

⇒ t' = 0

1.)    event  1:    The  outside  edge  of  the  ac1vator-­‐well  reaches  the  nub-­‐end  of  detonator;  this  happens  in  the  unprimed  frame  at  x  =  0,  ct  =  0.    For  the  sake  of  completeness,  this  happens  in  the  primed  system  at:  

Page 27: p. bomb paradoxfaculty.polytechnic.org/physics/1 Astronomy, Cosmology, Relativity... · BOMB$PARADOX A$staonary$bomb$is$aached$ to$anub;shaped$detonator$that will$blow$the$bomb$when$

2.)    event  2:    The  bomb-­‐end  of  the  moving  detonator-­‐nub    aligns  with  the  outside-­‐edge  of  the  sta1onary  ac1vator  (it  also  comes  in  contact  with  the  front  edge  of  the  bomb);  in  bomb’s  frame,  this  happens  at  x  =  d,  ct  =  d/      .        Again,  for  completeness,  in  the  ac-vator’s  primed  frame  this  happens  at:  

β = .866c

event 2(the outside edge of well reaches the bomb)

β

27.)  

x ' = γ x − βct( )

=2 d −3

2⎛

⎝⎜⎞

⎠⎟d3

2⎛⎝⎜

⎞⎠⎟

⎜⎜⎜⎜

⎟⎟⎟⎟

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

⇒ x' = 0

t ' = γ ct − βx( )

=2 d3

2⎛⎝⎜

⎞⎠⎟

⎜⎜⎜⎜

⎟⎟⎟⎟−

32

⎝⎜⎞

⎠⎟d( )

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

= 2d 13

2⎛⎝⎜

⎞⎠⎟

⎜⎜⎜⎜

⎟⎟⎟⎟−

32

⎛⎝⎜

⎞⎠⎟

32

⎛⎝⎜

⎞⎠⎟

32

⎛⎝⎜

⎞⎠⎟

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

= 2d 13

2⎛⎝⎜

⎞⎠⎟

⎜⎜⎜⎜

⎟⎟⎟⎟−

34

⎛⎝⎜

⎞⎠⎟

32

⎛⎝⎜

⎞⎠⎟

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

= 2d2 − 3

23

⎜⎜⎜

⎟⎟⎟

⎜⎜⎜

⎟⎟⎟= 2d 1

2 3⎛⎝⎜

⎞⎠⎟

⇒ t' = d3

Note:    In  the  ac-vator’s  frame  of  reference,  the  outside  edge  of  the  well  was  originally  defined  (see  slide  4)  as  being  at  x’  =  0.    In  the  ac-vator’s  frame,  that  point  hasn’t  changed  posi-on  (the  ac-vator  is  sta-onary  in  its  frame).    In  other  words,  the  calculated  x’  value  makes  sense.  

bomb  ac-vator  well  

Page 28: p. bomb paradoxfaculty.polytechnic.org/physics/1 Astronomy, Cosmology, Relativity... · BOMB$PARADOX A$staonary$bomb$is$aached$ to$anub;shaped$detonator$that will$blow$the$bomb$when$

event 3(the nub of detonator reachesbottom of well . . . assuming it could)

28.)  

x ' = γ x − βct( )

=2 0 −3

2⎛

⎝⎜⎞

⎠⎟d3

2⎛⎝⎜

⎞⎠⎟

⎜⎜⎜⎜

⎟⎟⎟⎟

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

⇒ x' = −2d

t ' = γ ct − βx( )

=2 d3

2⎛⎝⎜

⎞⎠⎟

⎜⎜⎜⎜

⎟⎟⎟⎟−

32

⎝⎜⎞

⎠⎟0( )

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

⇒ t' = 4d3

ac-vator  well  

3.)    event  3:    The  nub-­‐end  of  the  detonator  reaches  the  bo.om  of  ac1vator-­‐well  and  the  bomb  goes  off;  in  bomb’s  frame,  this  happens  at  x  =  0  at  -me  ct  =  d/      .    Once  again,  for  completeness,  in  the  ac-vator’s  frame  this  happens  at:      

β

Note:    Again,  this  x’  coordinate  makes  sense.    The  well  in  the  ac-vator’s  frame  had  a  depth  of  2d.    As  it  was  located  to  the  lem  of  x’  =  0,  it  isn’t  surprising  that  its  calculated  value  would  be  x’  =  -­‐2d  (hee,  hee—isn’t  this  fun?).  

Page 29: p. bomb paradoxfaculty.polytechnic.org/physics/1 Astronomy, Cosmology, Relativity... · BOMB$PARADOX A$staonary$bomb$is$aached$ to$anub;shaped$detonator$that will$blow$the$bomb$when$

In  the  ac-vator-­‐well’s  frame  of  reference,  assumed  to  be  sta-onary,  the  primed  coordinates  are  at  right  angles  to  one  another.    The  front  of  the  ac-vator-­‐well  is  defined  to  be  at  x’  =  0,  so  its  world-­‐line  proceeds  through  the  origin  along  the  ct’  axis  (remember,  the  world-­‐line  for  a  point  that  has  a  fixed  posi-on  always  runs  parallel  to  the  -me  axis).    The  world-­‐line  for  the  front  of  the  ac1vator-­‐well  is  shown  below.  

−2dactivator well depth

29.)  x '

ct '

β = .866c

event 1(the nub end of detonator reaches outside edge of activator)

event 3(the nub of detonator reachesbottom of well . . . assuming it could)

event 2(the outside edge of well reaches the bomb)

x ' = 0

world-line of front of activator-well

as it proceedsthrough time

As  before,  we  are  going  to  do  the  space-­‐-me  diagram  in  pieces.      

Page 30: p. bomb paradoxfaculty.polytechnic.org/physics/1 Astronomy, Cosmology, Relativity... · BOMB$PARADOX A$staonary$bomb$is$aached$ to$anub;shaped$detonator$that will$blow$the$bomb$when$

The  ac-vator  well’s  depth  in  the  ac-vator’s  frame  of  reference  was  2d.    As  the  bo.om  of  the  ac1vator  well  is  to  the  lem  of  x’  =  0,  its  coordinate  is  always  x’  =  -­‐  2d.    The  world-­‐line  for  the  bo.om  of  the  ac1vator-­‐well  is  shown  below.  

−2dactivator well depth

30.)  x '

ct '

β = .866c

event 1(the nub end of detonator reaches outside edge of activator)

event 3(the nub of detonator reachesbottom of well . . . assuming it could)

event 2(the outside edge of well reaches the bomb)

x ' = 0

world-line of bottom of activator-well

as it proceedsthrough time

Page 31: p. bomb paradoxfaculty.polytechnic.org/physics/1 Astronomy, Cosmology, Relativity... · BOMB$PARADOX A$staonary$bomb$is$aached$ to$anub;shaped$detonator$that will$blow$the$bomb$when$

−2dactivator well depth

31.)  x '

ct '

β = .866c

event 1(the nub end of detonator reaches outside edge of activator)

event 3(the nub of detonator reachesbottom of well . . . assuming it could)

event 2(the outside edge of well reaches the bomb)

x ' = 0

Punng  the  ac-vator  well’s  situa-on  together  onto  one  space-­‐-me  diagram  yields:  

world-line of bottom of activator-well

as it proceedsthrough time

world-line of front of activator-well

as it proceedsthrough time

Page 32: p. bomb paradoxfaculty.polytechnic.org/physics/1 Astronomy, Cosmology, Relativity... · BOMB$PARADOX A$staonary$bomb$is$aached$ to$anub;shaped$detonator$that will$blow$the$bomb$when$

The  nub-­‐end  of  the  detonator  is  located  at  x  =  0  at  ct  =  0  and  at  x’  =  0  at  ct’  =  0  (that  is  how  we  defined  those  zeros).    In  other  words,  the  nub-­‐end  has  to  proceed  through  the  origin  of  both  coordinate  axes.    (This  was  event  1.)    Also,  because  that  point  isn’t  

32.)  

x

x '

ctct '

event 1

β = .866c

event 1(the nub end of detonator reaches outside edge of activator)

event 3(the nub of detonator reachesbottom of well . . . assuming it could)

event 2(the outside edge of well reaches the bomb)

moving  in  the  unprimed  frame,  it’s  x  coordinate  must  always  be  the  same  in  that  frame.    Remembering  that  a  point  that  is  fixed  in  space  has  a  world-­‐line  that  is  parallel  to  the  -me  axis-­‐-­‐in  this  case,  the  ct  =  0  line-­‐-­‐  we  get  the  world-­‐line  shown  to  the  right.      

Page 33: p. bomb paradoxfaculty.polytechnic.org/physics/1 Astronomy, Cosmology, Relativity... · BOMB$PARADOX A$staonary$bomb$is$aached$ to$anub;shaped$detonator$that will$blow$the$bomb$when$

We  know  that  the  world-­‐line  for  the  bomb-­‐end  of  the  nub  (the  front  of  the  bomb  package)  will  parallel  the  world-­‐line  of  the  nub-­‐end.    We  also  know  that  the  front  of  the  bomb  will  be  d/2  units  ahead  of  the  nub-­‐end  due  to  length  contrac-on.    Punng  this  all  together  yields  the  world  line  shown  below.  

33.)  

x

x '

ctct '

event 1

β = .866c

event 1(the nub end of detonator reaches outside edge of activator)

event 3(the nub of detonator reachesbottom of well . . . assuming it could)

event 2(the outside edge of well reaches the bomb)

d/2

Page 34: p. bomb paradoxfaculty.polytechnic.org/physics/1 Astronomy, Cosmology, Relativity... · BOMB$PARADOX A$staonary$bomb$is$aached$ to$anub;shaped$detonator$that will$blow$the$bomb$when$

Punng  the  four  world-­‐lines  together  with  a  li5le  artwork  (the  artwork  will  be  removed  in  the  next  slide),  we  get  the  following  space-­‐-me  diagram.  

−2d

34.)  

x

x '

ctct '

event 1

event 2

activator

well's

front

d/2

β = .866c

event 1(the nub end of detonator reaches outside edge of activator)

event 3(the nub of detonator reachesbottom of well . . . assuming it could)

event 2(the outside edge of well reaches the bomb)

well's

bottom nub

activator well depth

Page 35: p. bomb paradoxfaculty.polytechnic.org/physics/1 Astronomy, Cosmology, Relativity... · BOMB$PARADOX A$staonary$bomb$is$aached$ to$anub;shaped$detonator$that will$blow$the$bomb$when$

−2d

35.)  

x

x '

ctct '

event 1

event 2

activator

well's

front

d/2

β = .866c

event 1(the nub end of detonator reaches outside edge of activator)

event 4(the nub of detonator reachesbottom of well . . . assuming it could)

event 3(the outside edge of well reaches the bomb)

well's

bottom

In  bare-­‐bones  form  (the  way  you  would  normally  see  it  in  a  textbook,  or  where  ever):  

Page 36: p. bomb paradoxfaculty.polytechnic.org/physics/1 Astronomy, Cosmology, Relativity... · BOMB$PARADOX A$staonary$bomb$is$aached$ to$anub;shaped$detonator$that will$blow$the$bomb$when$

Here  comes  the  fun  stuff:  It  seems  reasonable  to  assume  that  when  the  front  of  the  bomb  hits  the  front  of  the  ac1vator-­‐well  (event  2),  the  bomb  and  nub  will  crumple  together  the  same  way  the  hood  of  a  sta-onary  car  and  the  hood  of  a  speed  car  will  crumple  together  if  the  speeding  car  rams  into  the  sta-onary  car.    What’s  more,  the  sketch  of  our  ac-vator/nub  situa-on  makes  it  look  as  though  those  two  crumpled  surfaces  will  bring  the  ac-vator  to  a  stop  long  before  event  3  can  come  to  pass  (that  is,  it  looks  as  though  the  nub-­‐end  will  never  reach  the  bo.om  of  the  well  so  the  bomb  will  never  be  ac-vated).    I  have  only  one  word  in  response  to  that.    OH,  CONTRARE!    (well,  OK,  maybe  two  words)    But  how  can  I  make  such  an  outrageous  statement?  

36.)  

β = .866c

event 1(the nub end of detonator reaches outside edge of activator)

event 3(the nub of detonator reaches bottom of well . . . assuming it could)

event 2(the outside edge of well reaches the bomb)

x = 0

Page 37: p. bomb paradoxfaculty.polytechnic.org/physics/1 Astronomy, Cosmology, Relativity... · BOMB$PARADOX A$staonary$bomb$is$aached$ to$anub;shaped$detonator$that will$blow$the$bomb$when$

When  event  2  occurs,  the  bomb’s  front  end  and  the  ac1vator’s  front  surface  immediately  begin  to  slow  toward  rest  with  respect  to  one  another.    That’s  all  fine  and  well  for  those  two  surfaces,  but  how  does  the  lem-­‐end  of  the  nub  located  “d”  units  from  the  bomb’s  front  end  know  it’s  supposed  to  stop?  That  is,  what  is  the  physical  mechanism  that  brings  the  nub’s  end  to  a  halt?      That  mechanism  is  the  consequence  of  a  kind  of  domino  effect.    Molecules  at  the  collision  surface  slow  thereby  pulling  back  on  the  molecules  next  to  them.    Those  molecules  slow  pulling  back  on  the  molecules  next  to  them.    In  other  words,  it  is  as  though  individual  molecules  are  responding  to  a  signal  that  propagates  through  the  material,  a  signal  whose  speed  is  governed  by  the  elas-c  nature  of  the  molecular  bonding  of  the  structure.    

37.)  

β = .866c

this  surface  stops  upon  contact  

this  surface  con-nues  to  move  for  a  while  

Page 38: p. bomb paradoxfaculty.polytechnic.org/physics/1 Astronomy, Cosmology, Relativity... · BOMB$PARADOX A$staonary$bomb$is$aached$ to$anub;shaped$detonator$that will$blow$the$bomb$when$

−2d activator well depth38.)  

nub

ct '

event 1

event 2

event 3

activator

well's

front

d/2

well's

bottom

(at  this  point  the  nub-­‐end  comes  in  contact  with  the  bo5om  of  the  well  as  the  signal  to  stop  has  not  yet  arrived—in  other  words,  BOOM!)  

(at  this  point  the  bomb’s  front  end  comes  in  contact  with  the  well’s  front  end)  

(nub  enters  well)  

So  let’s  assume  this  signal  is  emi5ed  when  the  collision  occurs.    Let’s  also  assume  the  signal  moves  at  the  speed  of  light  (being  a  mechanical  effect,  the  actual  “signal”  is  nowhere  close  to  that  fast,  but  assume  it  is).    Punng  a  light-­‐line  on  our  space-­‐-me  diagram  emana-ng  from  event  2,  we  see  that  the  light  will  arrive  at  the  nub-­‐end  (the  lem  ver-cal  line  on  the  space-­‐-me  diagram)  AFTER  event  3  occurs  (i.e.,  amer  the  nub-­‐end  strikes  the  bo.om  of  the  ac1vator-­‐well).    In  other  words,  the  nub-­‐end  will  set  off  the  bomb  BEFORE  the  light  beam  signal  reaches  it  signaling  that  it  is  -me  to  begin  slowing.    As  the  actual  signal  moves  much,  much  slower  than  light,  this  effect  is  even  more  pronounced  and  the  nub-­‐end  will  posi-vely  set  off  the  bomb.    

Page 39: p. bomb paradoxfaculty.polytechnic.org/physics/1 Astronomy, Cosmology, Relativity... · BOMB$PARADOX A$staonary$bomb$is$aached$ to$anub;shaped$detonator$that will$blow$the$bomb$when$

Put  a  li5le  differently,  during  the  -me  it  takes  the  signal  to  reach  the  end  of  the  nub,  the  nub  will  have  apparently  GROWN  to  the  length  of  the  well  (plus  some  if  the  bomb  doesn’t  go  off)  and  its  contact  with  the  well’s  bo5om  will  set  off  the  bomb.    Graphically  (altering  the  sketch  some  to  accommodate  commentary),  this  looks  like:  

39.)  

1.) event 2(blue  bomb  stopped,  nub-­‐end  s-ll  moving)  

2.) event 2++

(blue  part  of  nub  stopped,  aqua  part  of  nub  s-ll  moving)  

3.) event 2++++

(blue  part  of  nub  stopped,  aqua  part  of  nub  s-ll  moving)  

4.) event 3(blue  part  of  nub  stopped,  aqua  part  of  nub  s-ll  moving)  

β = .866c

β = .866c

v = 0

v = 0

v = 0

β = .866c

BOOM

Page 40: p. bomb paradoxfaculty.polytechnic.org/physics/1 Astronomy, Cosmology, Relativity... · BOMB$PARADOX A$staonary$bomb$is$aached$ to$anub;shaped$detonator$that will$blow$the$bomb$when$

As  I  said  before,      

AIN’T  THAT  COOL!!!  

40.)