ozkan-sor2010_sensorycorrelation with rheology_poster

1
0.000 1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000 1% Ultrathix™ P-100 1% Stabileze® QM 1% Carbopol® 980 Sensory evaluation rating Slipperiness/Lubricity Cushion Initial spreadibility Rub-out spreadibility 1%Ultrathix TM P100 1%Stabileze® QM 1%Carbopol® 980 Cushion Initial Spreadability Rub-out Spreadability Slipperiness Pick-up -2 0 2 -6 -4 -2 0 2 4 6 F2 (19.00 %) F1 (81.00 %) 1% Ultrathix™ P- 100 1% Stabileze® QM 1% Carbopol® 980 -4 -3 -2 -1 0 1 2 3 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 F2 (23.99 %) F1 (76.01 %) Observations (axes F1 and F2: 100.00 %) Cushion Initial Spreadability Rub-out Spreadability Slipperiness Pick-up ESS (w=1rps) G' S (w=1rps) ESS (w=10rps) G' S (w=10rps) ESS (w=20rps) G' S (w=20rps) ESR (w=1rps) G' R (w=1rps) SV @ 10s-1 SV @ 100s-1 SV @ 500s-1 MNF T0 m n beta s -1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1 -2 -1.75 -1.5 -1.25 -1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 F2 (23.99 %) F1 (76.01 %) Cushion Initial Spreadability Rub-out Spreadability Slipperiness Pick-up G' CR4 G'L/G'M CR4 e3 CR4 tand CR4 eta'L/eta'M CR4 v3 CR4 G' CS4 G'L/G'M CS4 e3 CS4 tand CS4 eta'L/eta'M CS4 v3 CS4 G' CR2 G'L/G'M CR2 e3 CR2 tand CR2 eta'L/eta'M CR2 v3 CR2 G' CS2 G'L/G'M CS2 e3 CS2 tand CS2 eta'L/eta'M CS2 v3 CS2 G' CS001 G'L/G'M CS001 e3 CS001 tand CS001 eta'L/eta'M CS001 v3 CS001 -1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1 -1.25 -1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1 1.25 F2 (34.28 %) F1 (65.72 %) 1% Ultrathix™ P-100 1% Stabileze® QM 1% Carbopol® 980 -6 -4 -2 0 2 4 -8 -6 -4 -2 0 2 4 6 8 F2 (34.28 %) F1 (65.72 %) 0.1 1 10 100 1000 10000 0.01 0.1 1 10 100 Shear Stress (dyn/cm 2 ),Shear viscosity (P) Time, s shear stress shear viscosity t=0 sec, shear rate=0.5 s -1 t=5 sec, shear rate=0.5 s -1 1 10 100 1000 10000 0.01 0.1 1 10 100 Shear Stress (dyn/cm 2 ),Shear viscosity (P) Time, s shear stress shear viscosity t=0 sec, shear rate=0.5 s -1 t=5 sec, shear rate=0.5 s -1 1 10 100 1000 10000 0.01 0.1 1 10 100 Shear Stress (dyn/cm 2 ),Shear viscosity (P) Time, s shear stress shear viscosity t=0 sec, shear rate=0.5 s -1 t=5 sec, shear rate=0.5 s -1 (a) (b) (c) Characterization of yield stress and slip behavior of skin/hair care gels using steady flow and LAOS measurements and their correlation with sensorial attributes Seher Ozkan and Tim W. Gillece Material Science Group, Global R&D, International Specialty Products, NJ …ABSTRACT …LAOS ANALYSIS …WALL SLIP EFFECT ON DYNAMIC AND STEADY MEASUREMENTS …References 1. Steven P. Meeker, Roger T. Bonnecaze, Michel Cloitre. “Slip and flow in pastes of soft particles: Direct observation and Rheology.J. Rheol. (2004) 48(6): 1295-1320 2. D. M. Kalyon. “Apparent slip and viscoplasticity of concentrated suspensions.J. Rheol. (2005) 49(3): 621-640 3. Randy H. Ewoldt, A. E. Hosoi and Gareth H. McKinley. “New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear.J. Rheol. (2008) 52(6): 1427-1458 4. Morten Meilgaard, Gail Vance Civille, B. Thomas Carr. Sensory Evaluation Techniques. CRC Press, 3rd edition, 1999. Gels made with three different polymers widely used as rheology modifiers in cosmetic formulations (Crosslinked poly(acrylic acid (Carbopol® 980), crosslinked methyl vinyl ether/maleic anhydride copolymer (Stabileze® QM) and crosslinked vinyl pyrrolidone/acrylic acid copolymer (Ultrathix TM P100)) were characterized by rheological and sensory evaluation methods to determine the relationship between sensorial perception and rheological parameters. Both conventional rheological characterization methods and a more recent method, Fourier Transform Rheology with Large Amplitude Oscillatory Flow data (LAOS), were utilized to characterize the material with and without wall slip. Sensorial analyses were implemented in-vivo to evaluate the perceived ease of initial and rub-out spreadability, cushion, pick-up, and slipperiness attributes of the gels. Results were statistically analyzed by analysis of variance (ANOVA), principle component analysis (PCA) and linear regression analysis. Sensory characteristics discriminated the three materials and PCA and linear regression analyses revealed that sensory attributes could be well predicted by rheological methods. …MOTIVATION AND CHALLENGES Sensory properties of personal care products contribute substantially to the overall consumer acceptance. Different sensory evaluation techniques are applied to help the formulator to identify and define the sensory profile of a product but they are costly and time consuming. Rheological methods can be employed to mimic the sensory perception experienced by consumer and subjective descriptions sensory attributes can be correlated quantitative instrumental measurements of rheological parameters. …Conclusions Rheological methods can be successfully applied to objectively and quantitatively describe sensory attributes of cosmetic products. The occurrence of wall-slip may contribute to the sensory perception of the hydrogel based personal care products and should be characterized. Applied shear rate range may contribute to the material’s response to given deformation and sensory perception of the product . Using Fourier transform analysis in large amplitude oscillatory shear flow can be an effective method to correlate sensory rating results in skin/hair gels. Results indicate that surface roughness and being in linear, transition and non-linear region determines which LAOS analysis parameters would correlate with which sensory parameters. Wall slip has to be taken into account when correlating LAOS analysis parameters. Rheological characterization of hydrogels and gel-like percolated suspensions/emulsions and determination of yield stress present special challenges associated with thixotropy, viscoplasticity and wall slip, which renders the application of generally accepted rheological characterization methodologies difficult. Figure 2. Strain amplitude dependency of elastic stress (G’ x g ( dyn/cm 2 )) at 1 Hz frequency measured by smooth surface fixtures (a) and rough surface fixtures (b). Figure1. Strain amplitude dependency of storage modulus (G’(dyn/cm 2 )) at 1 Hz frequency measured by smooth surface fixtures (a) and rough surface fixtures (b). Figure 3. Shear stress and shear viscosity versus time measured by steady torsional experiment using 25mm parallel plate fixtures at 0.5 s -1 shear rate and 1mm gap opening for 1% Carbopol® 980 (a), 1%Stabileze® QM (b) and 1% Ultrathix TM P100 (c). Insets show the onset of slip at the material/plate interface. 100 1000 10000 100000 0.01 1 100 G' (dyn/cm 2 ) Strain, % 1%Ultrathix P100, w=1rps 1% Stabileze QM, w=1rps 1% Carbopol980, w=1rps 100 1000 10000 100000 0.01 1 100 10000 G' (dyn/cm 2 ) Strain, % 1%Ultrathix P100, w=1rps 1% Stabileze QM, w=1rps 1% Carbopol980, w=1rps (a) (b) 100 1000 10000 0.01 0.1 1 10 100 1000 Elastic Stress (dyn/cm 2 ) Strain, % 1%Ultrathix P100, w=1rps 1% Stabileze QM, w=1rps 1% Carbopol980, w=1rps 100 1000 10000 0.01 0.1 1 10 100 1000 10000 Elastic Stress (dyn/cm 2 ) Strain, % 1%Ultrathix P100, w=1rps 1% Stabileze QM, w=1rps 1% Carbopol980, w=1rps (a) (b) 1% Ultrathix™ P-100 1% Stabileze ® QM 1% Carbopol ® 980 Maximum elastic stress, Pa (w=1 Hz), smooth surface 29 139 136 Maximum elastic stress, Pa (w=10 Hz), smooth surface 159 206 209 Maximum elastic stress, Pa (w=20 Hz), smooth surface 191 246 259 Maximum elastic stress, Pa (w=1 Hz), rough surface 169 175 164 Figure 4. Shear stress versus shear rate data measured by steady torsional experiment using 20mm smooth surface parallel plate fixtures at 1mm and 1.5mm gap opening for 1% Carbopol® 980 (a) and 1% Stabileze® QM (b). Solid line represents the Herschel-Bulkley fit of slip corrected data. 1 10 100 1000 0.00001 0.001 0.1 10 1000 Shear Stress, Pa Shear Rate s -1 Steady torsional data, gap=1.5mm Steady torsional data, gap=1mm Herschel-Bulkley fit Slip corrected experimental data 1 10 100 1000 0.00001 0.001 0.1 10 1000 Shear Stress, Pa Shear Rate s -1 Steady torsional data, gap=1.5mm Steady torsional data, gap=1mm Herschel-Bulkley fit Slip corrected experimental data (a) (b) 1% Ultrathix™ P-100 1% Stabileze ® QM 1% Carbopol ® 980 0 , Pa 161.5 168.5 123.7 m, Pa.s 1/n 12 22.8 41.5 n 0.54 0.52 0.43 m.(Pa.s 1/nb ) nb 0.0033 0.141 0.024 s b 1.07 0.35 0.43 Table III. Herschel-Bulkley model parameters and Navier’s slip coefficients for 1% gels. Table I. Yield stress values determined from maximum elastic stress calculations for 1% gel samples at different frequency and surface conditions. 1% Ultrathix™ P-100 1% Stabileze ® QM 1% Carbopol ® 980 G’, Pa (w=1 Hz), smooth surface 859 788 565 G’, Pa (w=10 Hz), smooth surface 932 830 626 G’, Pa (w=20 Hz), smooth surface 923 884 641 G’, Pa (w=1 Hz), rough surface 851 765 550 Table II. Storage modulus, G’, values in the linear viscoelactic region for 1% gel samples at different frequency and surface conditions. …Acknowledgement We thank Dr. Gareth H. McKinley and Dr. Randy H. Ewoldt for their guidance regarding LAOS analysis and making MITlaos software available for us. CORRELATION OF SENSORY RATINGS WITH CONVENTIONAL AND LAOS RHEOLOGICAL PARAMETERS Figure 8. Sensory and LAOS analysis data together: Principle component analysis. Figure 7. Sensory and rheological parameter data together: Principle component analysis. Principle component analysis shows that cushion, slipperiness and pick-up are related while initial and rub out spreadability are related but are in contrast with cushion, slipperiness and pick-up. Figure 6. Sensory data: Principle component analysis. y = -163.84x + 1474.6 R² = 0.9822 y = -167.81x + 1551.1 R² = 0.9988 y = -159.97x + 1535.9 R² = 0.9437 y = -166.45x + 1471 R² = 0.9926 0 100 200 300 400 500 600 700 800 900 1000 0.00 2.00 4.00 6.00 G', Pa Cushion Rating w=1rps with slip w=10rps with slip w=20rps with slip w=1, no slip y = 60.561x - 181.02 R² = 0.9789 0 20 40 60 80 100 120 140 160 0.00 2.00 4.00 6.00 Normal Force During Tesnsion, g Cushion Rating y = 16.107x - 47.044 R² = 1 0 5 10 15 20 25 30 35 40 45 0.00 2.00 4.00 6.00 Consistency index, Pa.s 1/n Cushion Rating y = -0.0637x + 0.7826 R² = 0.9512 0 0.1 0.2 0.3 0.4 0.5 0.6 0.00 2.00 4.00 6.00 Power Law index Cushion Rating Figure 9. Linear regression fit results of Cushion ratings with G’ measured in linear viscoelastic region, normal force, power low index (n) and consistency index (m) of Herschel-Bulkley fit. y = 5.1178x + 15.329 R² = 0.9932 0 5 10 15 20 25 30 35 40 45 50 0.00 2.00 4.00 6.00 G', Pa Cushion Rating Rough surface, 400% strain y = 6.2687x + 6.7486 R² = 0.9971 0 5 10 15 20 25 30 35 40 45 0.00 2.00 4.00 6.00 G', Pa Cushion Rating Smooth surface, 400% strain y = -169.01x + 1453 R² = 0.9924 0 100 200 300 400 500 600 700 800 900 0.00 2.00 4.00 6.00 G', Pa Cushion Rating Smooth surface, 1% strain y = -0.3106x + 2.9379 R² = 1 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0.00 2.00 4.00 6.00 tan d Cushion Rating Smooth surface, 200% strain y = 3.6219x + 15.4 R² = 0.9895 0 5 10 15 20 25 30 35 40 45 0 2 4 6 8 G', Pa Pick-Up Rating Smooth surface, 400% strain y = 0.9344x - 9.1534 R² = 0.9967 -6 -5 -4 -3 -2 -1 0 0 2 4 6 8 v3, Pa.s Pick-Up Rating Smooth surface, 400% strain y = -0.1781x + 2.5019 R² = 0.9774 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 2 4 6 8 tan d Pick-Up Rating Smooth surface, 200% strain y = -98.159x + 1222.5 R² = 0.9952 0 100 200 300 400 500 600 700 800 900 0 2 4 6 8 G', Pa Pick-Up Rating Smooth surface, 1% strain y = 0.0814x + 0.926 R² = 0.9833 1.28 1.3 1.32 1.34 1.36 1.38 1.4 1.42 1.44 0.00 2.00 4.00 6.00 8.00 EtaL/ EtaM Initial Spreadability Rating Rough surface, 200% strain y = -0.0215x + 1.0434 R² = 0.9552 0.905 0.91 0.915 0.92 0.925 0.93 0.935 0.94 0.945 0.00 2.00 4.00 6.00 8.00 G'L/G'M Initial Spreadability Rating Smooth surface, 1% strain y = 1.2779x - 4.5112 R² = 0.9236 0 0.5 1 1.5 2 2.5 3 3.5 4 0.00 2.00 4.00 6.00 8.00 v3, Pa.s Initial Spreadability Rating Smooth surface, 1% strain y = -0.21x + 2.255 R² = 0.9423 0 0.2 0.4 0.6 0.8 1 1.2 1.4 0.00 2.00 4.00 6.00 8.00 EtaL/ EtaM Initial Spreadability Rating Smooth surface, 200% strain y = 0.0364x + 0.9388 R² = 0.9619 1.09 1.095 1.1 1.105 1.11 1.115 1.12 1.125 1.13 1.135 1.14 1.145 0.00 2.00 4.00 6.00 EtaL/ EtaM Rub-Out Spreadability Rating Rough surface, 400% strain y = -0.0268x + 1.063 R² = 0.8176 0.905 0.91 0.915 0.92 0.925 0.93 0.935 0.94 0.945 0.95 0.00 2.00 4.00 6.00 G'L/G'M Rub-Out Spreadability Rating Smooth surface, 1% strain Figure 10. Linear regression fit results of sensory ratings and various LAOS analysis parameters. Strain amplitude, % G’, Pa G’ L /G’ M e 3 , Pa tand h L /h M v 3 , Pa.s Physical meaning 1% Ultrathix™ P-100 400 34.38 3.74 11.45 2.11 1.14 -2.56 Shear thinning, Strain stiffening 1% Stabileze ® QM 400 37.06 4.08 12.57 2.35 1.10 -3.15 Shear thinning, Strain stiffening 1% Carbopol ® 980 400 43.64 1.79 8.48 1.65 1.12 -1.61 Shear thinning, Strain stiffening 1% Ultrathix™ P-100 200 89.22 1.78 15.16 1.32 1.43 3.06 Shear thickening, Strain stiffening 1% Stabileze ® QM 200 86.96 2.07 14.79 1.44 1.31 2.63 Shear thickening, Strain stiffening 1% Carbopol ® 980 200 90.01 1.28 8.29 1.05 1.32 3.32 Shear thickening, Strain stiffening Table IV. Chebyshev coefficients, which are calculated from large amplitude oscillatory flow (LAOS) data using MITlaos software, of 1% gels. Experiments were conducted 1 Hz frequency using rough surface fixtures at 200% and 400% strain amplitudes. Strain amplitude, % G’, Pa G’ L /G’ M e 3 , Pa tand h L /h M v 3 , Pa.s Physical meaning 1% Ultrathix™ P-100 400 29.51 3.79 10.38 2.68 0.83 -5.55 Shear thinning, Strain stiffening 1% Stabileze ® QM 400 34.27 4.46 12.48 2.59 1.03 -4.21 Shear thinning, Strain stiffening 1% Carbopol ® 980 400 41.10 1.86 8.48 1.80 1.04 -2.56 Shear thinning, Strain stiffening 1% Ultrathix™ P-100 200 65.78 1.79 11.7 1.8 0.95 -2.82 Shear thinning, Strain stiffening 1% Stabileze ® QM 200 81.00 1.93 14.87 1.59 1.24 1.25 Shear thickening, Strain stiffening 1% Carbopol ® 980 200 84.50 1.40 9.54 1.23 1.25 1.70 Shear thickening, Strain stiffening 1% Ultrathix™ P-100 1 843.2 0.91 -4.5 0.07 2.07 3.44 Shear thickening, Strain softening 1% Stabileze ® QM 1 704.97 0.94 -1.79 0.08 1.89 1.70 Shear thickening, Strain softening 1% Carbopol ® 980 1 529.09 0.94 -1.58 0.08 1.87 1.56 Shear thickening, Strain softening Table III. Chebyshev coefficients, which are calculated from large amplitude oscillatory flow (LAOS) data using MITlaos software, of 1% gels. Experiments were conducted 1 Hz frequency using smooth surface fixtures at 1%, 200% and 400% strain amplitudes. Fourier transform analysis on the large amplitude oscillatory data collected with rough and smooth surfaces at 1, 200 and 400% strain amplitude values. Sinusoidal stress response signal collected from the sample was decomposed into elastic and viscous stress contributions using symmetry arguments following the methods given by Cho et al. (2005) and Ewoldt et al (2008). Chebyshev polynomials (closely related to the Fourier decomposition) were calculated using MITlaos software (Ewoldt et al (2008)) -500.0 -400.0 -300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 -4000.0 -3000.0 -2000.0 -1000.0 0.0 1000.0 2000.0 3000.0 4000.0 Strain(t) [%] stress(t) ( ) [dyn/cm²] stress(t) 1%UltrathixP100, w=1rps, 400% Strain 1%StabilezeQM, w=1rps, 400% Strain 1%Carbopol980, w=1rps, 400% Strain -500.0 -400.0 -300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 -4000.0 -3000.0 -2000.0 -1000.0 0.0 1000.0 2000.0 3000.0 4000.0 Strain(t) [%] stress(t) ( ) [dyn/cm²] stress(t) 1%Carbopol980, w=1rps, 400% Strain, smooth surface 1%UltrathixP100, w=1rps, 400% Strain, smooth surface 1%StabilezeQM, w=1rps, 400% Strain, smooth surface Figure5. Comparison of Lissajous representation of the measured stress response upon a sinusoidal strain input for 1% gels of UltrathixP100, StabilezeQM and Carbopol980 (pH adjusted to 7). 400% strain amplitude and 1rps frequency.

Upload: seher-ozkan

Post on 23-Jan-2017

29 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Ozkan-SOR2010_SensoryCorrelation with Rheology_Poster

0.000

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

1% Ultrathix™ P-100 1% Stabileze® QM 1% Carbopol® 980

Sens

ory

eval

uatio

n ra

ting

Slipperiness/Lubricity

Cushion

Initial spreadibility

Rub-out spreadibility

1%UltrathixTM P100

1%Stabileze® QM

1%Carbopol® 980

CushionInitial Spreadability

Rub-out Spreadability

SlipperinessPick-up

-2

0

2

-6 -4 -2 0 2 4 6

F2 (1

9.00 %

)

F1 (81.00 %)

Biplot (axes F1 and F2: 100.00 %)

1% Ultrathix™ P-100

1% Stabileze® QM

1% Carbopol® 980

-4

-3

-2

-1

0

1

2

3

4

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5

F2 (2

3.99

%)

F1 (76.01 %)

Observations (axes F1 and F2: 100.00 %)

Cushion

Initial Spreadability

Rub-out Spreadability

Slipperiness

Pick-up

ESS (w=1rps)G' S (w=1rps)ESS (w=10rps)

G' S (w=10rps)ESS (w=20rps)

G' S (w=20rps)

ESR (w=1rps)

G' R (w=1rps)

SV @ 10s-1SV @ 100s-1

SV @ 500s-1

MNF

T0

m

n

beta

s

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

-2 -1.75 -1.5 -1.25 -1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

F2 (2

3.99

%)

F1 (76.01 %)

Variables (axes F1 and F2: 100.00 %)

Cushion

Initial Spreadability

Rub-out Spreadability

SlipperinessPick-up

G' CR4

G'L/G'M CR4

e3 CR4

tand CR4

eta'L/eta'M CR4

v3 CR4

G' CS4

G'L/G'M CS4

e3 CS4

tand CS4

eta'L/eta'M CS4

v3 CS4

G' CR2

G'L/G'M CR2

e3 CR2

tand CR2

eta'L/eta'M CR2

v3 CR2

G' CS2

G'L/G'M CS2

e3 CS2

tand CS2

eta'L/eta'M CS2

v3 CS2

G' CS001

G'L/G'M CS001

e3 CS001

tand CS001

eta'L/eta'M CS001

v3 CS001

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

-1.25 -1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1 1.25

F2 (3

4.28

%)

F1 (65.72 %)

1% Ultrathix™ P-100

1% Stabileze® QM

1% Carbopol® 980

-6

-4

-2

0

2

4

-8 -6 -4 -2 0 2 4 6 8

F2 (3

4.28

%)

F1 (65.72 %)

0.1

1

10

100

1000

10000

0.01 0.1 1 10 100

Sh

ear S

tress

(d

yn

/cm

2),

Sh

ear v

iscosi

ty (

P)

Time, s

shear stress

shear viscosity

t=0 sec, shear rate=0.5 s-1

t=5 sec, shear rate=0.5 s-1

1

10

100

1000

10000

0.01 0.1 1 10 100

Sh

ear S

tress

(d

yn

/cm

2),

Sh

ear v

iscosi

ty (

P)

Time, s

shear stress

shear viscosity

t=0 sec, shear rate=0.5 s-1

t=5 sec, shear rate=0.5 s-1

1

10

100

1000

10000

0.01 0.1 1 10 100

Sh

ear S

tress

(d

yn

/cm

2),

Sh

ear v

iscosi

ty (

P)

Time, s

shear stress

shear viscosity

t=0 sec, shear rate=0.5 s-1

t=5 sec, shear rate=0.5 s-1

(a) (b) (c)

Characterization of yield stress and slip behavior of skin/hair care gels using steady flow and LAOS

measurements and their correlation with sensorial attributes

Seher Ozkan and Tim W. Gillece

Material Science Group, Global R&D, International Specialty Products, NJ

…ABSTRACT …LAOS ANALYSIS

…WALL SLIP EFFECT ON DYNAMIC AND STEADY MEASUREMENTS

…References1. Steven P. Meeker, Roger T. Bonnecaze, Michel Cloitre. “Slip and flow in pastes of soft particles: Direct observation and Rheology.” J. Rheol. (2004) 48(6): 1295-1320

2. D. M. Kalyon. “Apparent slip and viscoplasticity of concentrated suspensions.” J. Rheol. (2005) 49(3): 621-640

3. Randy H. Ewoldt, A. E. Hosoi and Gareth H. McKinley. “New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear.” J. Rheol.

(2008) 52(6): 1427-1458

4. Morten Meilgaard, Gail Vance Civille, B. Thomas Carr. Sensory Evaluation Techniques. CRC Press, 3rd edition, 1999.

Gels made with three different polymers widely used as rheology modifiers in cosmetic formulations (Crosslinked

poly(acrylic acid (Carbopol® 980), crosslinked methyl vinyl ether/maleic anhydride copolymer (Stabileze® QM) and

crosslinked vinyl pyrrolidone/acrylic acid copolymer (UltrathixTM P100)) were characterized by rheological and sensory evaluation

methods to determine the relationship between sensorial perception and rheological parameters.

Both conventional rheological characterization methods and a more recent method, Fourier Transform Rheology with Large

Amplitude Oscillatory Flow data (LAOS), were utilized to characterize the material with and without wall slip. Sensorial analyses were

implemented in-vivo to evaluate the perceived ease of initial and rub-out spreadability, cushion, pick-up, and slipperiness attributes of

the gels.

Results were statistically analyzed by analysis of variance (ANOVA), principle component analysis (PCA) and linear regression

analysis. Sensory characteristics discriminated the three materials and PCA and linear regression analyses revealed that sensory

attributes could be well predicted by rheological methods.

…MOTIVATION AND CHALLENGESSensory properties of personal care products contribute substantially to the overall consumer acceptance.

Different sensory evaluation techniques are applied to help the formulator to identify and define the

sensory profile of a product but they are costly and time consuming.

Rheological methods can be employed to mimic the sensory perception experienced by consumer and

subjective descriptions sensory attributes can be correlated quantitative instrumental measurements of

rheological parameters.

…Conclusions Rheological methods can be successfully applied to objectively and quantitatively describe sensory attributes of cosmetic products.

The occurrence of wall-slip may contribute to the sensory perception of the hydrogel based personal care products and should be characterized.

Applied shear rate range may contribute to the material’s response to given deformation and sensory perception of the product.

Using Fourier transform analysis in large amplitude oscillatory shear flow can be an effective method to correlate sensory rating results in skin/hair

gels. Results indicate that surface roughness and being in linear, transition and non-linear region determines which LAOS analysis parameters would

correlate with which sensory parameters. Wall slip has to be taken into account when correlating LAOS analysis parameters.

Rheological characterization of hydrogels and gel-like percolated suspensions/emulsions and determination of yield stress present

special challenges associated with thixotropy, viscoplasticity and wall slip, which renders the application of generally accepted

rheological characterization methodologies difficult.

Figure 2. Strain amplitude dependency of elastic stress (G’ x g (dyn/cm2)) at 1 Hz frequency measured by

smooth surface fixtures (a) and rough surface fixtures (b).

Figure1. Strain amplitude dependency of storage modulus (G’(dyn/cm2)) at 1 Hz frequency measured by

smooth surface fixtures (a) and rough surface fixtures (b).

Figure 3. Shear stress and shear viscosity versus time measured by steady torsional experiment using 25mm parallel plate fixtures at 0.5 s-1 shear rate and 1mm gap opening for 1% Carbopol® 980 (a), 1%Stabileze® QM

(b) and 1% UltrathixTM P100 (c). Insets show the onset of slip at the material/plate interface.

100

1000

10000

100000

0.01 1 100

G' (d

yn

/cm

2)

Strain, %

1%Ultrathix P100, w=1rps

1% Stabileze QM, w=1rps

1% Carbopol980, w=1rps

100

1000

10000

100000

0.01 1 100 10000

G' (d

yn

/cm

2)

Strain, %

1%Ultrathix P100, w=1rps

1% Stabileze QM, w=1rps

1% Carbopol980, w=1rps

(a) (b)

100

1000

10000

0.01 0.1 1 10 100 1000

Ela

stic

Str

ess

(d

yn

/cm

2)

Strain, %

1%Ultrathix P100, w=1rps

1% Stabileze QM, w=1rps

1% Carbopol980, w=1rps

100

1000

10000

0.01 0.1 1 10 100 1000 10000

Ela

stic

Str

ess

(d

yn

/cm

2)

Strain, %

1%Ultrathix P100, w=1rps

1% Stabileze QM, w=1rps

1% Carbopol980, w=1rps

(a) (b)

1% Ultrathix™ P-100

1% Stabileze

® QM

1% Carbopol

® 980

Maximum elastic stress, Pa (w=1 Hz), smooth surface

29

139

136

Maximum elastic stress, Pa (w=10 Hz), smooth surface

159

206

209

Maximum elastic stress, Pa (w=20 Hz), smooth surface

191

246

259

Maximum elastic stress, Pa (w=1 Hz), rough surface

169

175

164

Figure 4. Shear stress versus shear rate data measured by steady torsional experiment using 20mm smooth surface

parallel plate fixtures at 1mm and 1.5mm gap opening for 1% Carbopol® 980 (a) and 1% Stabileze® QM (b). Solid line

represents the Herschel-Bulkley fit of slip corrected data.

1

10

100

1000

0.00001 0.001 0.1 10 1000

Sh

ear

Str

ess,

Pa

Shear Rate s-1

Steady torsional data, gap=1.5mm

Steady torsional data, gap=1mm

Herschel-Bulkley fit

Slip corrected experimental data

1

10

100

1000

0.00001 0.001 0.1 10 1000

Sh

ear

Str

ess,

Pa

Shear Rate s-1

Steady torsional data, gap=1.5mm

Steady torsional data, gap=1mm

Herschel-Bulkley fit

Slip corrected experimental data

(a) (b)

1% Ultrathix™ P-100

1% Stabileze

® QM

1% Carbopol

® 980

0, Pa

161.5

168.5

123.7

m, Pa.s1/n

12

22.8

41.5

n

0.54

0.52

0.43

m.(Pa.s1/nb)nb

0.0033

0.141

0.024

sb

1.07

0.35

0.43

Table III. Herschel-Bulkley model parameters and Navier’s slip coefficients for 1% gels.

Table I. Yield stress values determined from maximum elastic

stress calculations for 1% gel samples at different frequency and

surface conditions.

1% Ultrathix™ P-100

1% Stabileze

® QM

1% Carbopol

® 980

G’, Pa (w=1 Hz), smooth surface

859

788

565

G’, Pa (w=10 Hz), smooth surface

932

830

626

G’, Pa (w=20 Hz), smooth surface

923

884

641

G’, Pa (w=1 Hz), rough surface

851

765

550

Table II. Storage modulus, G’, values in the linear viscoelactic region for

1% gel samples at different frequency and surface conditions.

…AcknowledgementWe thank Dr. Gareth H. McKinley and Dr. Randy H. Ewoldt for their guidance regarding LAOS analysis and making MITlaos software available for us.

…CORRELATION OF SENSORY RATINGS WITH CONVENTIONAL AND LAOS

RHEOLOGICAL PARAMETERS

Figure 8. Sensory and LAOS analysis data together:

Principle component analysis.

Figure 7. Sensory and rheological parameter data together:

Principle component analysis.

Principle component analysis shows that cushion, slipperiness and

pick-up are related while initial and rub out spreadability are related

but are in contrast with cushion, slipperiness and pick-up.

Figure 6. Sensory data: Principle component analysis.

y = -163.84x + 1474.6

R² = 0.9822

y = -167.81x + 1551.1

R² = 0.9988

y = -159.97x + 1535.9

R² = 0.9437

y = -166.45x + 1471

R² = 0.9926

0

100

200

300

400

500

600

700

800

900

1000

0.00 2.00 4.00 6.00

G', P

aCushion Rating

w=1rps with slip

w=10rps with slip

w=20rps with slip

w=1, no slip

y = 60.561x - 181.02

R² = 0.9789

0

20

40

60

80

100

120

140

160

0.00 2.00 4.00 6.00

Norm

al F

orce

Dur

ing

Tesn

sion,

g

Cushion Rating

y = 16.107x - 47.044

R² = 1

0

5

10

15

20

25

30

35

40

45

0.00 2.00 4.00 6.00Cons

isten

cy in

dex,

Pa.s1/n

Cushion Rating

y = -0.0637x + 0.7826

R² = 0.9512

0

0.1

0.2

0.3

0.4

0.5

0.6

0.00 2.00 4.00 6.00

Powe

r Law

inde

x

Cushion Rating

Figure 9. Linear regression fit results of Cushion ratings with G’ measured in

linear viscoelastic region, normal force, power low index (n) and consistency index

(m) of Herschel-Bulkley fit.

y = 5.1178x + 15.329

R² = 0.9932

0

5

10

15

20

25

30

35

40

45

50

0.00 2.00 4.00 6.00

G', P

a

Cushion Rating

Rough surface, 400% strain

y = 6.2687x + 6.7486

R² = 0.9971

0

5

10

15

20

25

30

35

40

45

0.00 2.00 4.00 6.00

G', P

a

Cushion Rating

Smooth surface, 400% strain

y = -169.01x + 1453

R² = 0.9924

0

100

200

300

400

500

600

700

800

900

0.00 2.00 4.00 6.00

G', P

a

Cushion Rating

Smooth surface, 1% strain

y = -0.3106x + 2.9379

R² = 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.00 2.00 4.00 6.00

tan d

Cushion Rating

Smooth surface, 200% strain

y = 3.6219x + 15.4

R² = 0.9895

0

5

10

15

20

25

30

35

40

45

0 2 4 6 8

G', P

a

Pick-Up Rating

Smooth surface, 400% strain

y = 0.9344x - 9.1534

R² = 0.9967

-6

-5

-4

-3

-2

-1

0

0 2 4 6 8

v3, P

a.s

Pick-Up Rating

Smooth surface, 400% strain

y = -0.1781x + 2.5019

R² = 0.9774

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 2 4 6 8

tan d

Pick-Up Rating

Smooth surface, 200% strain

y = -98.159x + 1222.5

R² = 0.9952

0

100

200

300

400

500

600

700

800

900

0 2 4 6 8

G', P

a

Pick-Up Rating

Smooth surface, 1% strain

y = 0.0814x + 0.926

R² = 0.9833

1.28

1.3

1.32

1.34

1.36

1.38

1.4

1.42

1.44

0.00 2.00 4.00 6.00 8.00

EtaL

/ Eta

M

Initial Spreadability Rating

Rough surface, 200% strain

y = -0.0215x + 1.0434

R² = 0.9552

0.905

0.91

0.915

0.92

0.925

0.93

0.935

0.94

0.945

0.00 2.00 4.00 6.00 8.00

G'L

/G'M

Initial Spreadability Rating

Smooth surface, 1% strain

y = 1.2779x - 4.5112

R² = 0.9236

0

0.5

1

1.5

2

2.5

3

3.5

4

0.00 2.00 4.00 6.00 8.00

v3, P

a.s

Initial Spreadability Rating

Smooth surface, 1% strain

y = -0.21x + 2.255

R² = 0.9423

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.00 2.00 4.00 6.00 8.00

EtaL

/ Eta

M

Initial Spreadability Rating

Smooth surface, 200% strain

y = 0.0364x + 0.9388

R² = 0.9619

1.09

1.095

1.1

1.105

1.11

1.115

1.12

1.125

1.13

1.135

1.14

1.145

0.00 2.00 4.00 6.00

EtaL

/ Eta

M

Rub-Out Spreadability Rating

Rough surface, 400% strain

y = -0.0268x + 1.063

R² = 0.8176

0.905

0.91

0.915

0.92

0.925

0.93

0.935

0.94

0.945

0.95

0.00 2.00 4.00 6.00

G'L

/G'M

Rub-Out Spreadability Rating

Smooth surface, 1% strain

Figure 10. Linear regression fit results of sensory ratings

and various LAOS analysis parameters.

Strain

amplitude, %G’, Pa G’L/G’M e3, Pa tand hL/hM v3, Pa.s Physical meaning

1% Ultrathix™ P-100 400 34.38 3.74 11.45 2.11 1.14 -2.56 Shear thinning, Strain stiffening

1% Stabileze® QM 400 37.06 4.08 12.57 2.35 1.10 -3.15 Shear thinning, Strain stiffening

1% Carbopol® 980 400 43.64 1.79 8.48 1.65 1.12 -1.61 Shear thinning, Strain stiffening

1% Ultrathix™ P-100 200 89.22 1.78 15.16 1.32 1.43 3.06Shear thickening, Strain stiffening

1% Stabileze® QM 200 86.96 2.07 14.79 1.44 1.31 2.63Shear thickening, Strain stiffening

1% Carbopol® 980 200 90.01 1.28 8.29 1.05 1.32 3.32Shear thickening, Strain stiffening

Table IV. Chebyshev coefficients, which are calculated from large amplitude oscillatory flow (LAOS) data using MITlaos software,

of 1% gels. Experiments were conducted 1 Hz frequency using rough surface fixtures at 200% and 400% strain amplitudes.

Strain

amplitude, %G’, Pa G’L/G’M e3, Pa tand hL/hM v3, Pa.s Physical meaning

1% Ultrathix™ P-100 400 29.51 3.79 10.38 2.68 0.83 -5.55 Shear thinning, Strain stiffening

1% Stabileze® QM 400 34.27 4.46 12.48 2.59 1.03 -4.21 Shear thinning, Strain stiffening

1% Carbopol® 980 400 41.10 1.86 8.48 1.80 1.04 -2.56 Shear thinning, Strain stiffening

1% Ultrathix™ P-100 200 65.78 1.79 11.7 1.8 0.95 -2.82 Shear thinning, Strain stiffening

1% Stabileze® QM 200 81.00 1.93 14.87 1.59 1.24 1.25 Shear thickening, Strain stiffening

1% Carbopol® 980 200 84.50 1.40 9.54 1.23 1.25 1.70 Shear thickening, Strain stiffening

1% Ultrathix™ P-100 1 843.2 0.91 -4.5 0.07 2.07 3.44 Shear thickening, Strain softening

1% Stabileze® QM 1 704.97 0.94 -1.79 0.08 1.89 1.70 Shear thickening, Strain softening

1% Carbopol® 980 1 529.09 0.94 -1.58 0.08 1.87 1.56 Shear thickening, Strain softening

Table III. Chebyshev coefficients, which are calculated from large amplitude oscillatory flow (LAOS) data using MITlaos software,

of 1% gels. Experiments were conducted 1 Hz frequency using smooth surface fixtures at 1%, 200% and 400% strain amplitudes.

Fourier transform analysis on the large amplitude oscillatory data collected with rough and smooth surfaces at 1, 200 and 400% strain

amplitude values. Sinusoidal stress response signal collected from the sample was decomposed into elastic and viscous stress

contributions using symmetry arguments following the methods given by Cho et al. (2005) and Ewoldt et al (2008). Chebyshev

polynomials (closely related to the Fourier decomposition) were calculated using MITlaos software (Ewoldt et al (2008))

-500.0 -400.0 -300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0

-4000.0

-3000.0

-2000.0

-1000.0

0.0

1000.0

2000.0

3000.0

4000.0

Strain(t) [%]

stre

ss(t)

()

[

dyn/

cm²]

stress(t)

1%UltrathixP100, w=1rps, 400% Strain

1%StabilezeQM, w=1rps, 400% Strain

1%Carbopol980, w=1rps, 400% Strain

-500.0 -400.0 -300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0

-4000.0

-3000.0

-2000.0

-1000.0

0.0

1000.0

2000.0

3000.0

4000.0

Strain(t) [%]

stre

ss(t)

()

[dyn

/cm²]

stress(t)

1%Carbopol980, w=1rps, 400% Strain, smooth surface

1%UltrathixP100, w=1rps, 400% Strain, smooth surface

1%StabilezeQM, w=1rps, 400% Strain, smooth surface

Figure5. Comparison of Lissajous representation of the measured stress response

upon a sinusoidal strain input for 1% gels of UltrathixP100, StabilezeQM and

Carbopol980 (pH adjusted to 7). 400% strain amplitude and 1rps frequency.