overview and application to monitoring vegetation biomass ...soil moisture & vegetation opacity...

20
The new SMOS-IC L-band vegetation index (L-VOD): Overview and application to monitoring vegetation biomass at global scale CCI Biomass Workshop, Paris, Spt. 25-26, 2018 J-P Wigneron, L. Fan, et al. With Bordeaux group: A. Al-Yaari, J. Swenson, F. Frappart, X. Li.

Upload: others

Post on 12-Feb-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

  • The new SMOS-IC L-band vegetation index (L-VOD):

    Overview and application to monitoring vegetation biomass at global scale

    CCI Biomass Workshop, Paris, Spt. 25-26, 2018

    J-P Wigneron, L. Fan, et al.With Bordeaux group: A. Al-Yaari, J. Swenson, F. Frappart, X. Li.

  • VOD (definition)

    SMOS-IC L-VOD product (new , simplified, well-suited to applications)

    Applications of L-VOD to vegetation monitoring

    CCI Biomass Workshop, Paris, Spt. 25-26, 2018

  • SMOS (Soil Moisture and Ocean Salinity), PI Y Kerr

    Spatial resolution: ~ 35-50kmRevisit time: Max. 3 daysSensitivity ~ 2K over land Goal of accuracy in SM: ~ 0.04 m3/m3

    Retrieval algorithm: using multiangular and dual polarization TB

    Soil moisture & vegetation opacity (VOD)

    based on the inversion of L-MEB, (L-band Microwave Emission of the Biosphere)Wigneron et al., 2000-2018 (algorithm in ESA proposal, L-MEB, SMOS-IC product)

    Launch : Dec. 2009: ~ a 9-year data set

  • Extinction

    ATMOSPHERE

    SOIL

    VEGETATION

    eS TS TB* S TB*

    Tb*(z=H)VegetationEmission(1- )(1-ω)

    Tb*(z=0)Soil reflectivityS

    Soilemission

    Extinction

    VEGETATION

    Sol

    v

    RADAR

    s / 2

    PASSIVE

    Extinction

    ‐soil moisture (SM), determines smooth soil reflectivity smooth‐biomass (VOD), determines vegetation extinction γ = exp(‐VOD/cos())

    ‐temperature (TB = emissivity x temperature) 

    ‐canopy type  (ω), soil roughness (rough= C . smooth), and texture

    The Brightness temperature (TB) observations are sensitive to:

  • L-MEB (L-band Microwave Emission of the Biosphere model)

    VOD (nadir) = b . VWC Jackson and Schmugge, 1991

    with,

    VWC = vegetation water content (kg/m2)

    b~0.12 (0.1-0.2 for crops)

    For vegetation, L-MEB is based on a zero order solution of radiative transfer equations (- model):

    - VOD = KE. H, accounts for extinction effectsKExtinction = KAbsorption + KScatteringKAbsorption = KEmission

    - accounts for scattering effects (KScattering / KExtinction)

    TBveg=(1-e-VOD/cos())(1-)Tveg(1+soile-VOD/cos())radiometer

    SOIL

    VEG

    ATMSKY

    H=Height of Crop

    Theory

    Experimental

  • In situ:• EMIRAD (TUD) at the INRA Avignon test site (soybean, corn)• Smosrex, 2003-2010, Toulouse, with Lewis (CESBIO, CNRM, INRA, ONERA), soil, fallow• Landes forest, 2004-2007 (INRA), with EMIRAD-1 (TUD), coniferous forest

    • Elbara, 2004-2006 (ETH, U. of Bern), grass, deciduous forest• Elbara -2, 2010 (ESA funded) at the Munich, VAS, Sodankyla sites, grass, mattoral, forest

    and airborne• Carols, 2007-2010 (Cnes, ESA), Smosmania (France) and Vas sites (Spain), …

    L-MEB algorithm development /evaluation

    LEWIS at Smosrex site

    MELBEX- EMIRADINRA’01 - EMIRAD

    EMIRAD, Landes forest

  • Examples of results : SOYBEAN (INRA-1991) [Wigneron et al., RSE, 1995-2007]

    Retrieved soil moisture

    Retrieved VOD, VWC and LAI = f(time)

    Retrieved VOD

    R2=0.96 R2=0.88

    VWC LAItime

    VOD VOD VOD

    VWC

    LAI

  • -multi-angular observations ➡ simultaneous retrievals of SM and VOD (Wigneron et al., 1995, 2000)

    -in SMOS-IC SM retrievals, no need of optical indices to estimate VOD (and vice versa)

    SMAP: In the SCA algorithm, VOD is estimated from NDVIAMSR-E: iterative approach based on only 2 observations (LPRM algorithm)

    -L-band (1.4GHz, ~ 30 cm): higher sensing capabilitiesthrough dense vegetation than C- (6 GHz, ~ 5 cm) and X- bands

    -passive observations are much less sensitive to structural effects of vegetation (row, vertical structure), soil (roughness, surface geometry), topography, etc. than radar observations

    the b and parameter are relatively constant for varying vegetation conditions

    = 0.07 for forests = 0.1 for other vegetation types

    (no need for parameter tuning)

    Key features of SMOS to retrieve VOD:

  • Dynamics of carbon stocks in Africa over 2010-2016

    X-VOD

    SMOS-IC L-VOD

    Biomass(Baccini map2007-2008)

    -spatial calibration L-VOD / Biomass in 2011

    -’space’ for time substitution: L-VOD is used to monitor time changes in carbon stocks in Africa

    Biomass(Baccini map2007-2008)

  • F. Tian,, et al. "Coupling of ecosystem-scale plant water storage and leaf phenology observed by satellite", Nature EE

    Pre-rain Miombo forest© C. Ryan, University of Edinburgh

    A high temporal decoupling between plant water storage and LAI in dry Tropical forests(especially in Miombo)

    L-VOD

    LAI

    Time variation in L-VOD and LAI (Miombo)© F. Tian, University of Copenhagen

    Time lag between L-VOD and LAI© F. Tian, University of Copenhagen

    Miombo

  • THANK YOU!

  • Green vegetation:gv =f°(LAI) =f°(VWC) (gv =b•VWC, b~0.1)

    Retrieving of the # components of optical depth:[Saleh et al., RSE, 2006]

    retrieving VOD_GV (standing vegetation):

    for dry conditions : dry litter and no interception

  • Nadir path

    Satellite

    Spacecraftvelocity

    d N

    Swath1000 km

    30°

    = 55°

    Local incidenceangle

    Earth

    m

    SMOS : le Système d’Observation:

    Champ de vue (FOV)

    visées multi-angulaires: un point au sol est vu sous différents angles de visée au fur et à mesure que le satellite avance:

  • 18SMOS Brightness Temperature (L1C product), Browse product at 42.5°

    SMOS : un Système d’Observation Multiangulaire

  • Le principe:

    Mesure de la réflectivité du sol = f(constante diélectrique ε)

    sCte diélectrique

    εHumidité du sol SM (m3/m3)

    Texturestructure du sol

    s_lisseMesure radarou passifCorrection

    rugosité

    SM

    fort contraste sol sec (ε~5) et sol humide (ε~30)

    Soil dielectric constant = f(SM) à 1.4GHZ

    Ulaby et al. (1986)

    Soil dielectric

    constant ε

  • Mesures dans les Micro‐ondes• Le principe: mesure de la reflectivité du sol =

    f(constante dielectrique ε)Il existe un fort contraste entre la constante dielectrique d’un sol sec (ε~5) et celle d’un sol humide (ε~30)

    • Mesures dites ‘Actives’ (Radar) ou ‘Passives’• actif →reflectivité• passif →émissivité (= 1-Réflectivité)

    • Mesures dans le domaine ‘basse fréquence’ ~ 1.4 Ghz (bande L) et 10 Ghz (bande X):-faible sensibilité aux effets atmosphériques:(mesure tout temps & corrections précises)-faible atténuation du signal sol par la végétation

    Soil dielectric constant = f(SM) à 1.4GHZ

    Ulaby et al. (1986)

  • Nadir path

    Satellite

    Spacecraftvelocity

    d N

    Swath1000 km

    30°

    = 55°

    Local incidenceangle

    Earth

    m

    SMOS : Multi‐angular observation system

    Field of view (FOV)

    multi-angular observations:

    -a given site on Earth is seen at different incidence angles as the satellite moves ahead.

    -larger angle ranges for sites close to the sub-satellite track

  • soil

    vegetation

    atmosphere

    vegetationemission

    Reflected (Гs)vegetationemission

    soil emission : (1-Гs) Ts

    TB* Гs TB* (1-Гs) Ts

    TB

    TB*(z=0)

    TB*(z=-d)

    diffusion absorption

    ()

    diffusion absorption

    ()

  • Vegetation attenuation increases as frequency increases

    Saturation of Biomass = f(VOD) comes quicker at high frequencies

    X-band (~10 GHz, ~3 cm), AMSR-EC-band (~5 GHz, ~6 cm), AMSR-E, ASCAT… ~100 t/haL-band (1.4 GHz, ~30 cm), ESA/SMOS, NASA/SMAP …, ~250 t/haP-band (~0.4 GHz, ~75 cm), ESA/Biomass…, ~ no saturation ?

    Quicker saturation for active vs passive systems

  • Time variations in L-VOD, SM, EVI,

    rainfall

    (Most) Dense tropical forests in the Amazon basin (Guyana) = an extreme case

    -SM can be clearly related to rainfall

    Tian et al., 2017