overcoming dataset bias: an unsupervised domain adaptation approach boqing gong university of...

39
Overcoming Dataset Bias: An Unsupervised Domain Adaptation Approach Boqing Gong University of Southern California Joint work with Fei Sha and Kristen Grauman 1

Upload: nelson-griffin

Post on 28-Dec-2015

220 views

Category:

Documents


1 download

TRANSCRIPT

1

Overcoming Dataset Bias:An Unsupervised Domain Adaptation Approach

Boqing Gong

University of Southern California

Joint work with Fei Sha and Kristen Grauman

2

Motivation

Vision datasetsKey to computer vision research

Instrumental to benchmark different algorithms

Recent trends

Growing fast in scale: Gbytes to web-scale

Providing better coverage: objects, scenes, activities, etc

3

Object recognitionMany factors affect visual appearance

Fundamentally, have to cover an exponentially large space

Example

Limitation: datasets are biased

Images from [Saenko et al.’10].

Amazon online catalogue Office

Monitor from two datasets/domains

4

Consequence: dataset-specific classifier

TRAIN TEST

Poor cross-dataset generalizationDatasets have different underlying distributions

Classifiers overfit to datasets’ idiosyncrasies

Images from [Saenko et al.’10].

5

Mismatch is common

Object recognition

Video analysis

Pedestrian detection

[Torralba & Efros’11, Perronnin et al.’10]

[Duan et al.’09, 10]

[Dollár et al.’09]

6

Our solution: unsupervised domain adaptation

Setup

Source domain (labeled dataset)

Target domain (unlabeled dataset)

ObjectiveTrain classification model to work well on the target

{( ), 1,2,, } ~ ( ,, )S i i Sx i P X Yy N D

The two distributions are not the same!

{( ), 1,2, ,, } ~ ( , )T i TMx i P X Y D ?

7

Our algorithms

Geodesic flow kernel (GFK): Learning domain-invariant representation

Mitigating domain idiosyncrasy

LandmarksBridging two domains to have similar distributions

Training discriminatively w.r.t. target without using labels

TS

 

   ,i jz z

(0)

( )

(1)

( )

T

T

T

z xt

t

( )t

[Gong, Shi, Sha, Grauman, CVPR’12]

[Gong, Sha, Grauman, ICML’13]

8

Correcting sample biasEx. [Shimodaira’00, Huang et al.’06, Bickel et al.’07]

Assumption: marginal distributions are the only difference

Learning transductivelyEx. [Bergamo & Torresani’10, Bruzzone & Marconcini’10]

Assumption: shift classifiers via high-confident predictions

Learning a shared representationEx. [Daumé III’07, Pan et al.’09, Gopalan et al.’11]

Assumption: a latent space exists s.t. Ps(X,Y)=Pt(X,Y)

Related work

9

Our algorithms

Geodesic flow kernel (GFK): learning domain-invariant representation

mitigating domain idiosyncrasy

LandmarksBridging two domains to have similar distributions

Training discriminatively w.r.t. target without using labels

TS

 

   ,i jz z

(0)

( )

(1)

( )

T

T

T

z xt

t

( )t

[Gong, Shi, Sha, Grauman, CVPR’12]

[Gong, Sha, Grauman, ICML’13]

10

Assume low-dimensional structure

Ex. PCA, Partial Least Squares (source only)

Modeling data with linear subspaces

Target

Source

11

GFK: Domain-invariant features

(0) , , ( ) , , (1)[ ]T T Tx x

z

t x

TargetSource

 

(0)(1)

( ),0 1t t

More similar to source.

12

GFK: Domain-invariant features

(0) , , ( ) , , (1)[ ]T T Tx x

z

t x

TargetSource

 

(0)(1)

More similar to target.

( ),0 1t t

13

GFK: Domain-invariant features

(0) , , ( ) , , (1)[ ]T T Tx x

z

t x

TargetSource

 

(0)(1)

Blend the two.

( ),0 1t t

14

We define the geodesic flow kernel (GFK):

Advantages

Analytically computable

Encoded domain-invariant features

Broadly applicable: can kernelize many classifiers

GFK in closed form

1

0( ) (, ( ) ( ))T T T T

i j i j i jz t x t xz dt x Gx

15

Our algorithms

Geodesic flow kernel (GFK): learning domain-invariant representation

mitigating domain idiosyncrasy

LandmarksBridging two domains to have similar distributions

Training discriminatively w.r.t. target without using labels

[Gong, Shi, Sha, Grauman, CVPR’12]

[Gong, Sha, Grauman, ICML’13]

16

Landmarks

Labeled source instances that

are distributed as could be sampled from the target

serve as conduit for discriminative loss in target domain

Landmarks

Target

Source

17

Key steps

Landmarks

Target

Source

1 Identify landmarksat multiple scales.

18

Key steps

2 Construct auxiliary domain adaptation tasks

3 MKL

4

19

Identifying landmarks

Select landmarks

such that

1) landmark distribution ≈ target distribution

2) #landmarks are balanced across different categories

Select landmarks

Landmarks

Target

20

Identifying landmarks

Landmarks

Target

Select landmarks

1) landmark distribution

2) #landmarks are bala

Integer P QP

Distribution

Category balance

21

Multi-scale analysis

: GFK

σ : multi-scale analysis multiple sets of landmarks

Select landmarks

such that

1) landmark distribution

2) #landmarks are bala

QP

22

Headphone Mug

target

σ=2

σ=2

σ=2

unselected

Exemplar images of landmarks

TargetS

ource

6

0

-3

23

Use of multiple sets of landmarks

1. Auxiliary task

At each scale,

Target

Source

Landmarks

Source’ = source - landmarks Target’ = target + landmarks

24

Use of multiple sets of landmarks

1. Auxiliary task

At each scale,

Provably easier to solve

Target

Source

Landmarks

Source’ = source - landmarks Target’ = target + landmarks

25

Use of multiple sets of landmarks

2. Discriminative learning, w.r.t. target

Train classifiers using labeled landmarks

Discriminative loss is measured towards target via landmarks

Target

Source

Landmarks

Experimental study

Setup

Cross-dataset generalization for object recognition among four domains

Re-examine dataset’s values in light of domain adaptation

Evaluation

Caltech-256

Amazon

DSLR

Webcam

[Griffin et al.’07, Saenko et al.’10]

27

Classification accuracy: baseline

Acc

ura

cy (

%)

A-->C A-->D C-->A C-->W W-->A W-->C0

10

20

30

40

50

60

No adaptation Gopalan et al.'11 Pan et al.'09GFK-SVM Landmark

Source Target

28

Classification accuracy: existing methods

Acc

ura

cy (

%)

A-->C A-->D C-->A C-->W W-->A W-->C0

10

20

30

40

50

60

No adaptation Gopalan et al.'11 Pan et al.'09GFK-SVM Landmark

Source Target

29

Classification accuracy: GFK (ours)

Acc

ura

cy (

%)

A-->C A-->D C-->A C-->W W-->A W-->C0

10

20

30

40

50

60

No adaptation Gopalan et al.'11 Pan et al.'09GFK-SVM Landmark

Source Target

30

Classification accuracy: landmark (ours)

Acc

ura

cy (

%)

A-->C A-->D C-->A C-->W W-->A W-->C0

10

20

30

40

50

60

No adaptation Gopalan et al.'11 Pan et al.'09GFK-SVM Landmark

Source Target

31

Cross-dataset generalization [Torralba & Efros’11]

PASCAL ImageNet Caltech-10130

40

50

60

70

Self Cross (no adaptation) Cross (with adaptation)

Acc

ura

cy (

%)

Caltech-101 generalizes the worst.Performance drop of ImageNet is big.

Analyzing datasets in light of domain adaptation

Performance drop!

32

Cross-dataset generalization [Torralba & Efros’11]

PASCAL ImageNet Caltech-10130

40

50

60

70

Self Cross (no adaptation) Cross (with adaptation)

Acc

ura

cy (

%) Performance

drop becomes smaller!

Caltech-101 generalizes the worst (w/ or w/o adaptation).There is nearly no performance drop of ImageNet.

Analyzing datasets in light of domain adaptation

33

Summary

Datasets are biased

Overcome by domain adaptation (DA)

Our solutions: new learning methods for DA

Geodesic flow kernel (GFK)

Learn a shared representation of domains

Landmarks

Discriminative loss is measured towards target via landmarks

Data collection guided by DAInformative data: those cannot be classified well by

adapting from existing datasets

34

Thank you!Headphone Mug

target

σ=2

σ=2

σ=2

unselected

TargetS

ource

6

0

-3

35

36

Discussion

ScalabilityGFK: eigen-decomposition, Landmarks: QP

Overall, polynomial time

Target

Source

Landmarks

37

Which domain should be used as the source?

?

?

?

DSLR

Caltech-256

Webcam

Amazon

38

We introduce the Rank of Domains measure:

Intuition– Geometrically, how subspaces disagree– Statistically, how distributions disagree

Automatically selecting the best

39

Possible sources

Our ROD

measure

Caltech-256 0.003

Amazon 0

DSLR 0.26

Webcam 0.05

Caltech-256 adapts the best to Amazon.

Acc

ura

cy (

%)

W-->A C256-->A D-->A10

20

30

40

No adaptation [Gopalan et al.'11] GFK (ours)

SourceTarget

Automatically selecting the best