osurc hallway poster 2013 - oregon nasa space grant...

1
SCHOOL OF MECHANICAL, INDUSTRIAL, & MANUFACTURING ENGINEERING In the nottoodistant future humankind accomplishes one of its greatest milestones: a recurring series of human expedi8ons to Mars. Every 26 months, a new crew launches to our neighboring planet as a previous crew makes its way home. While on Mars, most of the current expedi8on’s crew members leave the base unit each day to explore the Mar8an environment. At all 8mes, at least one astronaut remains at the base to serve the role of HabCom. Although this individual may not physically leave the unit during this 8me, he or she can use remotely controlled rovers to gather data, collect samples, service equipment installa8ons, and support the astronauts who are out in the field. Universi8es compe8ng in the University Rover Challenge par8cipate in this visionary scenario by designing and building a standalone mobile plaLorm that func8ons as an expedi8on crew’s support rover. In the Marslike desert of southern Utah, the role of HabCom is simulated by remotely opera8ng rovers to complete a series of specified tasks out in the field. Each team must control their rover from within a command tent nearby. Equipment Servicing: Perform several dexterous opera8ons, such as pushing buNons and flipping switches, on a mockup equipment panel at a remote loca8on according to the instruc8ons printed on the panel. Also, clean a solar panel of debris, like mud and dust, then take the voltage to ensure that it is higher than 60V. Astronaut Assistance: Find and deliver mul8ple emergency supply containers to simulated astronauts (25) as quickly as possible. Approximate GPS coordinates will be given for each astronaut. 1 or 2 astronauts will be inten8onally placed out of line of sight. Sample Return: Given mul8ple sites, collect and return a single sample from a site determined to have the greatest likelihood of containing photosynthe8c bacteria, other bacterial colonies, and nonbacterial extremophiles such as lichen. AllTerrain: Maneuver a predetermined course scaNered with rocks, ledges and slopes approaching or exceeding 60degrees. Chassis Design Carbon fiber composite structure Independent 360degree turning on each wheel enabling driving in unique orienta8ons including at a diagonal Zero turning radius mode for precise turning Rocker bogie suspension system seen in previous designs We could use your help! Visit us on the Web at: hBp://groups.engr.oregonstate.edu/osurc/urc/ Portable Electronics Bay Quickrelease access panels Analog video system Garmin GPS enables reliable naviga8on and orienta8on feedback Base sta8on command and status relayed via 900MHz packet serial link Weatherresistant power and data connectors Vision Systems Usercontrollable pan8lt for drive cameras Longdistance op8cal zoom for terrain maneuvering Highresolu8on photos for science observa8ons 4 pinhole cameras strategically placed along robo8c arm for increased visibility during dexterous opera8ons SoGware and User Interfaces BeagleBone embedded development plaLorm running Ubuntu 12.04 provides central control All devices communicate over RS485 bus architecture Custom control sobware runs on Linux Laptop wriNen in Python Various satellite modules include motor drivers, arm and tripod controllers, cameras, sensors, and antenna User interface provides satellite imagery, topographical informa8on, GPS posi8on, and sites of interest. Simula8ons show graphical representa8ons of the posi8ons of the robo8c arm and chassis ThreeAxis MulNpurpose Arm Three DOF spherical coordinate system Carbon fiber structure with aluminum joints Two taskspecific hotswappable end effectors Stowed posi8on for traversing complex terrain Four dedicated pinhole cameras on arm Challenge Scenario Four Tasks Payload Delivery System Sturdy aluminum construc8on Mounts to chassis U8lizes simple solenoids to release payloads Soil Science Cul8vate extremophiles commonly found in the Utah desert Research biological soil crusts & types Exercise organic material analysis and extrac8on techniques Use of Stevens Hydra Probe II soil analysis tool gives us onsystem in the field informa8on on soil type, temperature, moisture, pH, permeability and conduc8vity. 2013 UNIVERSITY ROVER CHALLENGE Equipment Servicing Soil Sample Scoop GPS Interface Science Task Interface

Upload: buidat

Post on 08-Apr-2018

219 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: OSURC Hallway Poster 2013 - Oregon NASA Space Grant …spacegrant.oregonstate.edu/.../files/PDF/osurc_mars_rov… ·  · 2013-03-13•Rocker!bogie!suspension!system!seen!in!previous!

SCHOOL OF MECHANICAL, INDUSTRIAL, & MANUFACTURING ENGINEERING �

Visit us on the Web at:

http://mime.oregonstate.edu

     In  the  not-­‐too-­‐distant  future  humankind  accomplishes  one  of  its  greatest  milestones:    a  recurring  series  of  human  expedi8ons  to  Mars.    Every  26  months,  a  new  crew  launches  to  our  neighboring  planet  as  a  previous  crew  makes  its  way  home.      While  on  Mars,  most  of  the  current  expedi8on’s  crew  members  leave  the  base  unit  each  day  to  explore  the  Mar8an  environment.  At  all  8mes,  at  least  one  astronaut  remains  at  the  base  to  serve  the  role  of  HabCom.  Although  this  individual  may  not  physically  leave  the  unit  during  this  8me,  he  or  she  can  use  remotely  controlled  rovers  to  gather  data,  collect  samples,  service  equipment  installa8ons,  and  support  the  astronauts  who  are  out  in  the  field.    Universi8es  compe8ng  in  the  University  Rover  Challenge  par8cipate  in  this  visionary  scenario  by  designing  and  building  a  stand-­‐alone  mobile  plaLorm  that  func8ons  as  an  expedi8on  crew’s  support  rover.    In  the  Mars-­‐like  desert  of  southern  Utah,  the  role  of  HabCom  is  simulated  by  remotely  opera8ng  rovers  to  complete  a  series  of  specified  tasks  out  in  the  field.  Each  team  must  control  their  rover  from  within  a  command  tent  nearby.  

     Equipment  Servicing:  Perform  several  dexterous  opera8ons,  such  as  pushing  buNons  and  flipping  switches,  on  a  mock-­‐up  equipment  panel  at  a  remote  loca8on  according  to  the  instruc8ons  printed  on  the  panel.  Also,  clean  a  solar  panel  of  debris,  like  mud  and  dust,  then  take  the  voltage  to  ensure  that  it  is  higher  than  60V.  

 Astronaut  Assistance:  Find  and  deliver  mul8ple  emergency  supply  containers  to  simulated  astronauts  (2-­‐5)  as  quickly  as  possible.  Approximate  GPS  coordinates  will  be  given  for  each  astronaut.  1  or  2  astronauts  will  be  inten8onally  placed  out  of  line  of  sight.  

 Sample  Return:  Given  mul8ple  sites,  collect  and  return  a  single  sample  from  a  site  determined  to  have  the  greatest  likelihood  of  containing  photosynthe8c  bacteria,  other  bacterial  colonies,  and  nonbacterial  extremophiles  such  as  lichen.    

 All-­‐Terrain:  Maneuver  a  predetermined  course  scaNered  with  rocks,  ledges  and  slopes  approaching  or  exceeding  60-­‐degrees.  

Chassis  Design  • Carbon  fiber  composite  structure  • Independent  360-­‐degree  turning  on  each  wheel  enabling  driving  in  unique  orienta8ons  including  at  a  diagonal  • Zero  turning  radius  mode  for  precise  turning  • Rocker  bogie  suspension  system  seen  in  previous  designs  

We  could  use  your  help!  Visit  us  on  the  Web  at:      

hBp://groups.engr.oregonstate.edu/osurc/urc/  

Portable  Electronics  Bay  • Quick-­‐release  access  panels  • Analog  video  system  • Garmin  GPS  enables  reliable  naviga8on  and  orienta8on  feedback  • Base  sta8on  command  and  status  relayed  via  900MHz  packet  serial  link  • Weather-­‐resistant  power  and  data  connectors  

Vision  Systems  • User-­‐controllable  pan-­‐8lt  for  drive  cameras  • Long-­‐distance  op8cal  zoom  for  terrain  maneuvering  • High-­‐resolu8on  photos  for  science  observa8ons  • 4  pinhole  cameras  strategically  placed  along  robo8c  arm  for  increased  visibility  during  dexterous  opera8ons  

SoGware  and  User  Interfaces  • BeagleBone  embedded  development  plaLorm  running  Ubuntu  12.04  provides  central  control  • All  devices  communicate  over  RS-­‐485    bus  architecture  • Custom  control  sobware  runs  on  Linux  Laptop  wriNen  in  Python  • Various  satellite  modules  include  motor  drivers,  arm  and  tripod  controllers,  cameras,  sensors,  and  antenna  • User  interface  provides  satellite  imagery,  topographical  informa8on,  GPS  posi8on,  and  sites  of  interest.  • Simula8ons  show  graphical  representa8ons  of  the  posi8ons  of  the  robo8c  arm  and  chassis   Three-­‐Axis  MulNpurpose  Arm  

• Three  DOF  spherical  coordinate  system  • Carbon  fiber  structure  with  aluminum  joints  • Two  task-­‐specific  hot-­‐swappable  end  effectors  • Stowed  posi8on  for  traversing  complex  terrain  • Four  dedicated  pinhole  cameras  on  arm  

Challenge Scenario Four Tasks

Payload  Delivery  System  • Sturdy  aluminum  construc8on  • Mounts  to  chassis  • U8lizes  simple  solenoids  to  release  payloads    

Soil  Science  • Cul8vate  extremophiles    commonly  found  in  the  Utah  desert  • Research  biological  soil  crusts  &  types  • Exercise  organic  material  analysis  and  extrac8on  techniques    • Use  of  Stevens  Hydra  Probe  II  soil  analysis  tool  gives  us  on-­‐system  in  the  field  informa8on  on  soil  type,  temperature,  moisture,  pH,  permeability  and  conduc8vity.  

2013  UNIVERSITY  ROVER  CHALLENGE  

Equipment  Servicing Soil  Sample  Scoop

GPS  Interface Science  Task  Interface