osemwinyen, osaruyi; shah, sahas bikram; arkkio, antero ......in proceedings of the 7th...

6
This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Powered by TCPDF (www.tcpdf.org) This material is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user. Osemwinyen, Osaruyi; Shah, Sahas Bikram; Arkkio, Antero Thermographic method for measuring iron losses and localized loss density Published in: Proceedings of the 7th International Electric Drives Production Conference, EDPC 2017 DOI: 10.1109/EDPC.2017.8328145 Published: 29/03/2018 Document Version Peer reviewed version Please cite the original version: Osemwinyen, O., Shah, S. B., & Arkkio, A. (2018). Thermographic method for measuring iron losses and localized loss density. In Proceedings of the 7th International Electric Drives Production Conference, EDPC 2017 (Vol. 2017-December, pp. 28-31). [8328145] (International Electric Drives Production Conference). IEEE. https://doi.org/10.1109/EDPC.2017.8328145

Upload: others

Post on 07-Aug-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Osemwinyen, Osaruyi; Shah, Sahas Bikram; Arkkio, Antero ......In Proceedings of the 7th International Electric Drives Production Conference, EDPC 2017 (Vol. 2017-December, pp. 28-31)

This is an electronic reprint of the original article.This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user.

Osemwinyen, Osaruyi; Shah, Sahas Bikram; Arkkio, AnteroThermographic method for measuring iron losses and localized loss density

Published in:Proceedings of the 7th International Electric Drives Production Conference, EDPC 2017

DOI:10.1109/EDPC.2017.8328145

Published: 29/03/2018

Document VersionPeer reviewed version

Please cite the original version:Osemwinyen, O., Shah, S. B., & Arkkio, A. (2018). Thermographic method for measuring iron losses andlocalized loss density. In Proceedings of the 7th International Electric Drives Production Conference, EDPC2017 (Vol. 2017-December, pp. 28-31). [8328145] (International Electric Drives Production Conference). IEEE.https://doi.org/10.1109/EDPC.2017.8328145

Page 2: Osemwinyen, Osaruyi; Shah, Sahas Bikram; Arkkio, Antero ......In Proceedings of the 7th International Electric Drives Production Conference, EDPC 2017 (Vol. 2017-December, pp. 28-31)

T hi s i s t h e a c c e pt e d v er si o n of t h e ori gi n al arti cl e p u bli s h e d b y I E E E.

© 2 0 1 7 I E E E. P er s o n al u s e of t hi s m at eri al i s p er mitt e d. P er mi s si o n fr o m I E E E m u st b e o bt ai n e d f or all ot h er u s e s, i n a n y c u rr e nt or f ut u r e m e di a, in cl u di n g r e pri nti n g/r e p u bli s hi n g thi s m at eri a l f or a d v erti si n g o r pr o m oti o n al p ur p o s e s, cr e ati n g n e w c o ll e cti v e w ork s, f or r e s al e or r e di stri b uti o n to s e r v er s or li st s, or r e u s e of a n y c o p yri g ht e d c o m p o n e n t of thi s w or k i n o t h er w or k s.

Page 3: Osemwinyen, Osaruyi; Shah, Sahas Bikram; Arkkio, Antero ......In Proceedings of the 7th International Electric Drives Production Conference, EDPC 2017 (Vol. 2017-December, pp. 28-31)

T h er m o gr a p hi c M et h o d f or M e as uri n g Ir o n L oss es a n d L o c ali z e d L oss D e nsit y

Os ar u yi Os e m wi n y e n, S a h as Bi kr a m S h a h, A nt er o Ar k ki o

D e p art m e nt of El e ctri c al E n gi n e eri n g a n d A ut o m ati o n A alt o U ni v er sit y E s p o o, Fi nl a n d

A b str a ct — T h e k n o wl e d g e of c o r e l os s es i n el e ct ri c al m a c hi n e is r e q ui r e d f o r t h e s u c c es sf ul d esi g n of hi g hl y effi ci e nt m a c hi n es. T his p a p e r p r es e nts a t h e r m o g r a p hi c t e c h ni q u e f o r m e as u ri n g c o r e l oss a n d l o c ali z e l oss d e nsit y i n a n el e ct ri c al m a c hi n e. Fi rst, a 3 D n u m e ri c al s ol uti o n of t h e st at e d p r o bl e m w as c a r ri e d o ut i n C O M S O L m ulti- p h ysi cs t o st u d y t h e p ossi bilit y of t h e m e as u r e m e nt t e c h ni q u e. T h e e x p e ri m e nt al m e as u r e m e nt p r o c ess w as d e m o nst r at e d o n a 2 4/ 1 2 V si n gl e- p h as e t r a nsf o r m e r. T h e e x cit ati o n w as s u p pli e d t o t h e t r a nsf o r m e r b y v a r yi n g t h e a p pli e d v olt a g e at a c o nst a nt f r e q u e n c y of 3 0 0 H z. I R c a m e r a w as us e d t o o bt ai n t h e i m a g es of t h e c o r e at t h e i nst a nt of s u p pl y f o r t h r e e diff e r e nt fl u x d e nsiti e s. T h e c o r e l oss es w e r e esti m at e d f r o m t h e i niti al r at e of t e m p e r at u r e ris e a n d c o m p a r e d wit h t h e c o r e l oss o bt ai n e d di r e ctl y f r o m t h e w att m et e r. T h e r es ults s h o w t h at t h e d e v el o p e d s y st e m c a n a c c u r at el y esti m at e c o r e l oss d e nsit y a n d dist ri b uti o n o v e r a wi d e r a n g e, wit h a n e r r o r m a r gi n of l e ss t h a n 6 %. H o w e v e r, t h e a c c u r a c y of t h e r e s ults o bt ai n e d is aff e ct e d b y m e as u r e m e nt c o n diti o n.

K e y w o r d s — C o r e l o ss, I R c a m er a, l o ss d e n sit y, t h er m o g r a p h y

I. IN T R O D U C TI O N

T h e i n cr e a si n g r eli a n c e o n t h e el e ctri c al m a c hi n e i n tr a ns p ort ati o n s yst e ms, es p e ci all y i n t h e a ut o m oti v e s e ct or, h as cr e at e d t h e n e e d t o fi n d o ut n e w w a ys of pr o d u ci n g m or e effi ci e nt a n d e c o n o mi c al el e ctri c al m a c hi n es. T h e d e m a n d of a hi g hl y effi ci e nt el e ctri c al m a c hi n e h as l e d m or e m a c hi n e d e si g n er s t o f o c us o n t h e st u d y of l o ss es i n diff er e nt p arts of t h e m a c hi n e. H e n c e, t his r es e ar c h w or k f o c us es o n c or e l o ss m e as ur e m e nt i n a n el e ctri c al m a c hi n e.

G e n er al pr o c e d ur es f or m e as uri n g c or e l o ss es i n ass e m bl e d el e ctri c al m a c hi n es ar e d es cri b e d i n i nt er n ati o n al I E C a n d I E E E st a n d ar d s [ 1]. T h e ir o n l o ss is o bt ai n e d fr o m t h e diff er e n c e b et w e e n i n p ut- p o w er, o ut p ut- p o w er, wi n di n g l o ss es a n d m e c h a ni c al l oss es w h e n t h e m a c hi n e is o p er at e d at s e v er al o p er ati n g p oi nts w hi c h i n cl u d e n o-l o a d t ests, l o a d t ests a n d s h ort- cir c uit t ests. H o w e v er, err or s i n t h e d et er mi n ati o n of i n p ut p o w er, o ut p ut p o w er, wi n di n g l o ss es or m e c h a ni c al l o ss e s aff e ct t h e r es ults o bt ai n e d fr o m t his m et h o d. A n ot h er a p pr o a c h us e d i n [ 2, 3] is t h e c al ori m etri c m et h o d, w h er e l o ss es ar e d et er mi n e d dir e ctl y fr o m t h e h e at dissi p ati o n of t h e m a c hi n e. H o w e v er, it r e q uir es s e v er al h o ur s t o c o m pl et e, a n d m e as ur e m e nt c o n diti o ns c o ul d v ar y wit h ti m e, w hi c h c o ul d h a v e a c o nsi d er a bl e eff e ct o n t h e a c c ur a c y of r es ults o bt ai n e d.

A n e w pr o misi n g m et h o d f or d et er mi n ati o n of ir o n l o ss distri b uti o n is t h e t e m p er at ur e ti m e t e c h ni q u e. T his a p pr o a c h is

b as e d o n t h e pri n ci pl e t h at l o ss es g e n er at e d i n t h e diff er e nt p arts of el e ctri c al m a c hi n e c o ntri b ut e dir e ctl y t o t h e t e m p er at ur e ris e of t h e m a c hi n e. H e n c e, m e as uri n g t h e t e m p er at ur e ris e at a n y p oi nt i n a m a c hi n e, t h e l oss distri b uti o n c a n b e dir e ctl y d et er mi n e d. T his pri n ci pl e h as b e e n wi d el y a p pli e d b y pr e vi o us r es e ar c h er s [ 4 – 7] t o m e as ur e l o c ali z e d p o w er l o ss i n m a g n eti c c or es. I n t h eir a p pr o a c h, t h e y us e d t h er mist ors a n d t h er m o c o u pl es s ol d er e d t o t h e i n v esti g at e d r e gi o n of t h e m a c hi n e t o o bt ai n t h e l o c ali z e d l o ss distri b uti o n. H o w e v er, t h er e ar e s o m e diffi c ulti es f a ci n g t his a p pr o a c h. T h e pr o b a bilit y of s e ns or f ail ur e is hi g h d uri n g ass e m bli n g of t h e c or e, f or a m or e c o m p a ct m a c hi n e. If t h e s e ns or s ar e n ot i ns ert e d b ef or e ass e m bli n g, it will b e diffi c ult t o i ns ert t h e t e m p er at ur e s e ns or i nt o t h e r e gi o n of i nt er est. Als o, t his a p pr o a c h is n ot s uit e d f or si m ult a n e o us m e as ur e m e nts of m ulti pl e s a m pli n g p oi nts at a gi v e n ti m e. A n ot h er a p pr o a c h us e d t o o bt ai n t h e s urf a c e t e m p er at ur e is t h e I R t h er m o gr a p h y [ 8, 9, 1 0]. T his a p pr o a c h i n v ol v es a n o n- c o nt a ct m e as ur e m e nt of s urf a c e t e m p er at ur e usi n g a n i nfr ar e d c a m er a wit h a t h er m o gr a p hi c d et e ct or. Wit h I R c a m er a, t e m p er at ur e m e a s ur e m e nt c a n b e o bt ai n e d o v er a wi d e ar e a c o nt ai ni n g a m assi v e n u m b er of s a m pli n g p oi nts. H e n c e, l o ss distri b uti o n c a n b e d et er mi n e d b y a l ar g e ar e a of t h e s a m pl e wit h 2 D i m a g es, u nli k e t h e s e ns or t h at gi v es l o c al h e at fl u x at a si n gl e p oi nt ( or a s p ati al a v er a g e d o n e). H o w e v er, t h e diffi c ult y of m e as uri n g t e m p er at ur e ris e i nsi d e t h e st at or c or e of t h e el e ctri c al m a c hi n es wit h I R d et e ct or is o n e m aj or c h all e n g e f a ci n g t his a p pr o a c h.

I n t his p a p er, t h e t h er m o gr a p hi c m et h o d of a c q uiri n g s urf a c e t e m p er at ur e ris e w as pr es e nt e d. T h e c or e l o ss a n d l o c ali z e d l oss d e nsit y w er e c al c ul at e d fr o m t h e m e as ur e d t e m p er at ur e gr a di e nt usi n g t h e t h e or y d e v el o p e d i n s e cti o n II. T h e f e asi bilit y of t h e l o ss c o m p ut ati o n m et h o d w as v erifi e d usi n g C O M S O L m ulti-p h ysi cs si m ul ati o n of t h e st at e d pr o bl e m.

II. T H E O R Y O F L O S S C O M P U T A TI O N

C or e l o ss es i n el e ctri c al m a c hi n es c o ntri b ut e dir e ctl y t o t h e t e m p er at ur e ris e of t h e c or e. H e n c e, fr o m t h e first l a w of t h er m o d y n a mi cs, l et us writ e t h e p o w er b al a n c e e q u ati o n f or t h e h e at l o ss i n a m e di u m.

= + , ( 1)

w h er e [ W/ k g] is t h e t ot al p o w er s u p pli e d t o t h e m e di u m, [ W/ k g] is t h e r at e of h e at g e n er ati o n d u e t o c o n d u cti o n of t h e m e di u m a n d [ W/ k g] is t h e r at e of h e at tr a nsf er at t h e b o u n d ar y i nt erf a c e wit h s urr o u n di n g d u e t o c o n v e cti o n. Fr o m ( 1) it c a n b e o b s er v e d t h at t h e o nl y h e at tr a nsf er m e c h a nis m

T hi s r es e ar c h w or k h a s r e c ei v e d f u n di n g fr o m t h e E ur o p e a n R es e ar c hC o u n cil u n d er t h e E ur o p e a n U ni o n’s S e v e nt h Fr a m e w or k Pr o gr a m m e( F P 7/ 2 0 0 7- 2 0 1 3) / E R C Gr a nt A gr e e m e nt n. 3 3 9 3 8 0.

Page 4: Osemwinyen, Osaruyi; Shah, Sahas Bikram; Arkkio, Antero ......In Proceedings of the 7th International Electric Drives Production Conference, EDPC 2017 (Vol. 2017-December, pp. 28-31)

c o nsi d er e d h er e is t h e c o n d u cti o n h e at tr a nsf er i n t h e s oli d c or e a n d t h e c o n v e cti o n h e at tr a nsf er at t h e b o u n d ar y i nt erf a c e of t h e c or e wit h t h e s urr o u n di n g. T h er ef or e, t h e t h er m al p o w er l o ss d u e t o c o n d u cti o n c a n b e o bt ai n e d fr o m t h e h e at of c o n d u cti o n e q u ati o n a s,

= − λ + + . ( 2)

Fr o m ( 2), if w e ass u m e t h at t h e t e m p er at ur e distri b uti o n at t = 0 is u nif or m i n all dir e cti o n, t h e h e at l o ss d u e t o c o n d u cti o n will b e pr o p orti o n al t o t h e i niti al r at e of t e m p er at ur e ris e as,

= . ( 3)

T h e t h er m al e n er g y l o ss d u e t o h e at tr a nsf er t o t h e s urr o u n di n g p er u nit ti m e is o bt ai n e d fr o m N e wt o n’s l a w of c o oli n g as,

= ℎ ( ( ) − ) . (4 )

T h er ef or e, s u bstit uti n g ( 3) a n d ( 4) i nt o ( 1) t h e h e at s u p pli e d p er u nit ti m e t o t h e m e di u m is gi v e n as,

= + ℎ ( ( ) − ) , ( 5)

w h er e, T [ K] is t h e t e m p er at ur e, λ [ W/ m K] is t h e t h er m al c o n d u cti vit y of t h e m at eri al, [ J/ k g K] is t h e s p e cifi c h e at c a p a cit y of t h e m at eri al a n d ℎ [ W/ m2 K] is t h e h e at tr a nsf er c o effi ci e nt. H o w e v er, t o esti m at e t h e c or e l o ss it is ass u m e d t h at t h e h e at tr a nsf er t o t h e s urr o u n di n g is z er o d u e t o t h e s m all i nt er v al of m e as uri n g t e m p er at ur e ris e. H e n c e, ( 5) is r e d u c e d t o ( 3) m e a ni n g t h at t h e t ot al p o w er s u p pli e d t o t h e m e di u m is us e dt o r ais e t h e t e m p er at ur e of t h e m at eri al.

III. M E A S U R E M E N T S E T U P

Fi g. 1 s h o ws t h e m e as ur e m e nt s yst e m s c h e m ati c f or esti m ati n g t h e c or e l o ss distri b uti o n. T h e m e as ur e m e nt pr o c ess w as d e m o nstr at e d o n a 2 4/ 1 2 V tr a nsf or m er. A C v olt a g e is s u p pli e d at 3 0 0 H z t o t h e pri m ar y wi n di n g of t h e tr a nsf or m er wit h t h e s e c o n d ar y o p e n cir c uit e d. T h e a m m et er ( A) a n d w att m et er ( W) r e a di n gs i n di c at e t h e n o-l o a d c urr e nt a n d i n p ut p o w er of t h e tr a nsf or m er. Si n c e t h e s e c o n d ar y i s o p e n cir c uit e d, t h er e is n o o ut p ut p o w er. T h er ef or e, t h e i n p ut p o w er c o nsists of

t h e c or e l o ss es a n d t h e pri m ar y wi n di n g l o ss d u e t o t h e n o-l o a d c urr e nt.

Fr o m t h e or y, t h e c or e l o ss is pr o p orti o n al t o t h e t e m p er at ur e gr a di e nt. T h er ef or e, a n I R c a m er a p o siti o n e d i n fr o nt of t h e c or e is us e d t o r e c or d t h e t e m p er at ur e ris e of t h e c or e d uri n g v olt a g e s u p pl y i nt er v al. B ef or e r e c or di n g, t h e c a m er a c ali br ati o n is c arri e d o ut wit h t h e f oll o wi n g p ar a m et er s: e missi vit y, a p p ar e nt r efl e ct e d t e m p er at ur e, r el ati v e h u mi dit y, a m bi e nt t e m p er at ur e a n d m e as ur e d o bj e ct dist a n c e fr o m t h e c a m er a. I m a g e a c q uisiti o n s p e e d of t h e I R c a m er a us e d i n t his m e as ur e m e nt is 3 0 s a m pl es p er s e c o n d a n d t h e t ot al r e c or di n g ti m e of t e m p er at ur e ri s e of t h e c or e w a s f or 3 0 s e c o n d s.

I n or d er t o i m pr o v e t h e a c c ur a c y of t h e m e a s ur e d t e m p er at ur e, e a c h m e as ur e m e nt h as b e e n r e p e at e d a n u m b er of ti m es. T h e n, t h e gr a di e nt w as e xtr a ct e d i n e a c h st e p a n d a v er a g e d. T h e r es ult is us e d t o c o m p ut e t h e c or e l o ss usi n g ( 3).

I V. N U M E RI C A L SI M U L A TI O N

T o v erif y t h e f e asi bilit y of t h e c or e l o ss c al c ul at e d fr o m t h e i niti al r at e of t e m p er at ur e ris e, a 3 D ti m e d e p e n d e nt h e at tr a nsf er m o d el of t h e tr a nsf or m er w as i m pl e m e nt e d i n C O M S O L m ulti-p h ysi cs. Fi g. 2 s h o ws t h e g e o m etr y of t h e tr a nsf or m er m o d el us e d. T h e si m ul ati o n m o d el dir e ctl y s ol v es M a x w ell’s e q u ati o ns i n ti m e d e p e n d e nt d o m ai n t o o bt ai n t h e c urr e nt d e nsit y distri b uti o n. T h e el e ctr o m a g n eti c l o ss m o d el b as e d o n A- V f or m ul ati o n is d es cri b e d b el o w:

∇ × = − ( 6)

∇ × = ( 7)

= ( 8)

∇ ∙ = 0 ( 9)

w h er e E is t h e el e ctri c fi el d [ V/ m], B is t h e m a g n eti c fl u x d e nsit y [ T], H is t h e m a g n eti c fi el d i nt e nsit y [ A/ m], is t h e p er m e a bilit y of ir o n a n d J is t h e c urr e nt d e nsit y [ A/ m 2 ]. T h e m a g n eti c fl u x d e nsit y i n t er ms of v e ct or p ot e nti al A is gi v e n b y :

= ∇ × ( 1 0)

t h er ef or e, fr o m ( 6), a n d ( 9), it f oll o ws t h at,

= − + ∇ ( 1 1)

w h er e V is a s c al ar p ot e nti al. T h e c urr e nt d e nsit y i n t h e tr a nsf or m er aft er e x cit ati o n is gi v e n b y:

= + ( 1 2)

w h er e is t h e el e ctri c al c o n d u cti vit y [ S/ m] a n d is t h e e xt er n al c urr e nt d e nsit y c al c ul at e d fr o m tr a nsf or m er wi n di n g e x cit ati o n. S u b stit uti n g ( 1 0) a n d ( 1 1) i nt o ( 7) w e h a v e;

∇ × ( ∇ × ) = − + ∇ + ( 1 3)

T h e b o u n d ar y c o n diti o n is e ns ur e d b y i m p o si n g t h e c o nti n uit y c o n d u cti o n as gi v e n i n ( 9) at t h e b o u n d ar y i nt erf a c e. E q u ati o n (1 3) i s t h e n s ol v e d usi n g fi nit e el e m e nt m et h o d t o o bt ai n t h ev e ct or p ot e nti al w hi c h is us e d f or c al c ul ati n g t h e el e ctri c fi el da n d c urr e nt d e nsit y i n d u c e d i n t h e c or e. T h e n o nli n e arit y of t h e

Fi g. 1. M e a s ur e m e nt s et u p s c h e m ati c s

Page 5: Osemwinyen, Osaruyi; Shah, Sahas Bikram; Arkkio, Antero ......In Proceedings of the 7th International Electric Drives Production Conference, EDPC 2017 (Vol. 2017-December, pp. 28-31)

m at eri al i n t h e si m ul ati o n is c o nsi d er e d fr o m m a g n eti z ati o n c ur v e w hi c h ori gi n at es fr o m t h e m e as ur e d B H c ur v e of t h e tr a nsf or m er c or e.

T h e c or e l o ss is d eri v e d fr o m t h e c urr e nt d e nsit y usi n g t h e e q u ati o n b el o w:

= ʃ×

V ( 1 4)

w h er e is t h e c urr e nt d e nsit y i n d u c e d i n t h e c or e a n d is t h e si m ul at e d c or e l o ss [ W/ k g]. Si n c e t his l o ss m a nif ests t h e ms el v es t hr o u g h h e at pr o d u cti o n i n t h e c or e d u e t o J o ul e eff e ct. T h e el e ctr o m a g n eti c l o ss m o d el is dir e ctl y c o u pl e d wit h h e at tr a nsf er m o d el a c c or di n g t o ( 5) t o o bt ai n t h e t e m p er at ur e distri b uti o n of t h e tr a nsf or m er c or e.

I n t h e st u d y, t h e c or e l o ss is c o nsi d er e d h o m o g e n e o us i nsi d e t h e c or e a n d at t h e b o u n d ar y i nt erf a c e wit h t h e air, N e wt o n's l a w of c o oli n g h ol d tr u e. H e n c e, fr e e c o n v e cti o n is ass u m e d o n t h e s urf a c e of t h e c or e.

V. R E S U L T S A N D DI S C U S SI O N S

A. C O M S O L si m ul ati o n

Wit h a si n us oi d al v olt a g e of 1 4 4 V at 3 0 0 H z fr e q u e n c ya p pli e d t o t h e pri m ar y wi n di n g of t h e tr a nsf or m er, t h e ti m e-d e p e n d e nt s ol uti o n of t h e st at e d pr o bl e m w as o bt ai n e d f or 0. 0 5 s e c o n d s. Fi g. 3 s h o ws t h e r es ulti n g s urf a c e t e m p er at ur e distri b uti o n of t h e c or e at a fl u x d e nsit y of 1. 3 4 T. It c a n b e o bs er v e d fr o m t h e fi g ur e t h at t h e h e ati n g of t h e c or e is al m o st u nif or m, wit h t h e hi g h est t e m p er at ur e ris e i n t h e mi d dl e li m b. It is m ai nl y d u e t o t h e diffi c ult y of c o oli n g o wi n g t o t h e pr es e n c e of t h e wi n di n g. H o w e v er, i n pr a cti c al m e as ur e m e nt, t h at ar e a of t h e c or e is diffi c ult t o a c c ess wit h t h e I R c a m er a.

Fi g. 4 s h o ws t h e t e m p er at ur e ris e pl ot o bt ai n e d fr o m o n e of t h e si d e li m b s of t h e c or e. T h e li n e ar a p pr o xi m ati o n w as us e d t o esti m at e t h e i niti al r at e of t e m p er at ur e ris e. Fi n all y, t h e c or e l o ss w as c al c ul at e d usi n g ( 3); t h e s ol uti o n o bt ai n e d is c o m p ar e d wit h t h e c or e l o ss dir e ctl y c al c ul at e d fr o m t h e el e ctr o m a g n eti c m o d el usi n g t h e c urr e nt d e nsit y i n t h e c or e.

T A B L E I. C O R E L O S S C A L C U L A T E D F R O M SI M U L A TI O N

B. E x p e ri m e nt al R e s ult

T a bl e. II s h o ws t h e m e as ur e d b o u n d ar y c o n diti o ns us e d f orc ali br ati n g t h e I R c a m er a.

T h e tr a nsf or m er w as e x cit e d at diff er e nt v olt a g es, 1 2 0, 1 3 6, 1 4 4, 1 5 0 V w hil e k e e pi n g t h e fr e q u e n c y c o nst a nt at 3 0 0 H z t o o bt ai n t h e c or e l o ss at diff er e nt fl u x d e nsiti es. T h e t e m p er at ur e ris e of t h e c or e w as r e c or d e d at diff er e nt fl u x d e nsiti es b y a dj usti n g t h e v olt a g e s u p pli e d at a c o nst a nt fr e q u e n c y. Fi g. 5 & 6 s h o ws t h e t e m p er at ur e ris e pl ot a n d t h er m o gr a p hi c i m a g e of t h e tr a nsf or m er c or e r e c or d e d f or 3 0 s e c o n d s d ur ati o n at a fl u x d e nsit y of 1. 4 8 T.

T A B L E II. C A M E R A C A LI B R A TI O N P A R A M E T E R S

Fl u x D e nsit y ( T)

C o r e L o ss ( W/ k g) Diff e r e n c e ( %)

1. 3 4 6 9 9. 2 9 7 0 1. 8 7 0. 3 6 8

P a r a m et e r s V al u e s

E mi ssi vit y 0. 6

R efl e ct e d t e m p er at ur e 2 4 0 C

M e a s ur e m e nt di st a n c e 0. 0 9 m

At m os p h eri c t e m p er at ur e 2 0 0 C

R el ati v e h u mi dit y 5 0 %

S p e cifi c h e at c a p a cit y 4 8 5. 6 J/ k g 0 C

C or e w ei g ht 0. 3 6 3 6 k g

Fi g. 2. G e o m etr y of tr a n sf or m er m o d el

Fi g. 3. S urf a c e t e m p er at ur e di stri b uti o n

Fi g. 4. Si d e li m b t e m p er at ur e ri s e pl ot

Page 6: Osemwinyen, Osaruyi; Shah, Sahas Bikram; Arkkio, Antero ......In Proceedings of the 7th International Electric Drives Production Conference, EDPC 2017 (Vol. 2017-December, pp. 28-31)

T h e m e as ur e d c or e l o ss is o bt ai n e d b y s u btr a cti n g t h e n o-l o a d wi n di n g l o ss fr o m t h e w att m et er r e a di n g a n d di vi di n g t his v al u e b y t h e c or e w ei g ht. T h e r es ult o bt ai n e d is c o m p ar e d wit h t h e c or e l o ss c al c ul at e d fr o m t h e i niti al r at e of t e m p er at ur e ris e as s h o w n i n T a bl e III.

T A B L E III. C O R E L O S S C A L C U L A T E D F R O M M E A S U R E M E N T S

VI. C O N C L U SI O N S

In t his p a p er, a m et h o d f or m e as uri n g ir o n l o ss distri b uti o n a n d c or e l oss d e nsit y i n a n el e ctri c al m a c hi n e h as b e e n d e v el o p e d b as e d o n t h er m o gr a p hi c t e c h ni q u es. T h e d e v el o p e d m et h o d h as b e e n a p pli e d t o a 2 4/ 1 2 V tr a nsf or m er.

Fir st, a si m pl e n u m eri c al m o d el of t h e pr o p o s e d m e as ur e m e nt t o c h e c k t h e f e asi bilit y of t h e l oss c al c ul ati o n pr o c ess fr o m t h e i niti al r at e of t e m p er at ur e ris e w as si m ul at e d i n C O M S O L. A s atisf a ct or y r es ult w as o bt ai n e d w h e n c o m p ar e d wit h t h e n u m eri c al s ol uti o n of c or e l o ss as s h o w n i n T a bl e I. S e c o n dl y, a n e x p eri m e nt al m e as ur e m e nt of t h e c or e t e m p er at ur e ris e w as c arri e d o ut at diff er e nt fl u x d e nsiti es. T h e c or e l o ss o bt ai n e d fr o m t h e i niti al r at e of t e m p er at ur e ris e w as c o m p ar e d wit h t h e m e as ur e d v al u es fr o m w att m et er. R es ults s h o w t h at t h e y ar e i n cl os e a gr e e m e nt, wit h hi g h est p er c e nt a g e d e vi ati o n of 6 %, w hi c h is pr o b a bl y c a us e d b y e x p eri m e nt al c o n diti o ns a n d m e as ur e m e nt p ar a m et er.

Fi n all y, b as e d o n t h e e x p eri m e nt al r es ult, it c a n b e c o n cl u d e d t h at t h er m o gr a p hi c t e c h ni q u es pr es e nt a f ast er a n d si m pl er w a y f or m e as uri n g c or e l o ss. T h e m et h o d i n v ol v es a c o nt a ctl ess a n d n o n d estr u cti v e m e as ur e m e nt of t e m p er at ur e ris e f or l o ss c o m p ut ati o n, u nli k e ot h er t e c h ni q u es t h at r e q uir e c o m pl e x e q ui p m e nt. I n a d diti o n, t h e r es ults o bt ai n e d fr o m tr a nsf or m er c or e m e as ur e m e nt d e m o nstr at e t h at t his t e c h ni q u e c a n b e us e d t o d et er mi n e l o c ali z e d c or e l o ss es. H o w e v er, r es ults ar e aff e ct e d b y f a ct or s li k e e missi vit y of t h e c or e m at eri al, m at eri al c o nst a nt, a n d t h e e n vir o n m e nt al c o n diti o ns.

R E F E R E N C E S

[ 1] I E E E G ui d e: T est Pr o c e d ur es f or S y n c hr o n o u s M a c hi n es P art I –A c c e pt a n c e a n d P erf or m a n c e T esti n g P art II- T est Pr o c e d ur es a n dP ar a m et er D et er mi n ati o n f or D y n a mi c A n al ysi s, 1 9 9 6.

[ 2] P. R a sil o, J. E k str o m, A. H a a vi st o, A. B el a h c e n, a n d A. Ar k ki o,“ C al ori m etri c s yst e m f or m e a s ur e m e nt of s y n c hr o n o u s m a c hi n e l oss es, ”IE T El e ctri c P o w er A p pli c ati o n s, v ol. 6, n o. 5, p p. 2 8 6- 2 9 4, 2 0 1 2.

[ 3] W. C a o, G. M. As h er, X. H u a n g, H. Z h a n g, I. Fr e n c h, J. Z h a n g, a n d M.S h ort, “ C al ori m et ers a n d t e c h ni q u es us e d f or p o w er l oss m e a s ur e m e nt s i n el e ctri c al m a c hi n es, ” I E E E I n str u m e nt ati o n M e a s ur e m e nt M a g a zi n e, v ol. 1 3, n o. 6, p p. 2 6- 3 3, 2 0 1 0.

[ 4] A. J. Gil b ert, “ A m et h o d of m e a s uri n g l oss di stri b uti o n i n el e ctri c alm a c hi n es, ” Pr o c e e di n gs of t h e I E E - P art A: P o w er E n gi n e eri n g, v ol. 1 0 8, n o. 3 9, p p. 2 3 9- 2 4 4, 1 9 6 1.

[ 5] A. B o u s b ai n e, “ A t h er m o m etri c a p pr o a c h t o t h e d et er mi n ati o n of ir o nl oss es i n si n gl e p h as e i n d u cti o n m ot ors, ” I E E E Tr a n s a cti o n s o n E n er g yC o n v ersi o n, v ol. 1 4, n o. 3, p p. 2 7 7- 2 8 3, 1 9 9 9.

[ 6] H. H a m z e h b a h m a ni, A. J. M os es, a n d F. J. A n a yi, “ O p p ort u niti es a n dpr e c a uti o n s i n m e a s ur e m e nt of p o w er l oss i n el e ctri c al st e el l a mi n ati o n su si n g t h e i niti al r at e of ris e of t e m p er at ur e m et h o d, ” I E E E Tr a n s a cti o n so n M a g n eti c s, v ol. 4 9, n o. 3, p p. 1 2 6 4- 1 2 7 3, 2 0 1 3.

[ 7] A. Kri n gs, S. N at e g h, O. W all m ar k, a n d J. S o ul ar d, “ L o c al ir o n l ossi d e ntifi c ati o n b y t h er m al m e a s ur e m e nt s o n a n o ut er-r ot or p er m a n e ntm a g n et s y n c hr o n o u s m a c hi n e, ” i n El e ctri c al M a c hi n es a n d S yst e ms(I C E M S), 2 0 1 2 1 5t h I nt er n ati o n al C o nf er e n c e o n, 2 0 1 2.

[ 8] H. S hi m oji, B. E. B or k o ws ki, T. T o d a k a, a n d M. E n o ki z o n o,“ M e a s ur e m e nt of c or e-l oss di stri b uti o n u si n g t h er m o gr a p h y, ” I E E ETr a n s a cti o n s o n M a g n eti c s, v ol. 4 7, n o. 1 0, p p. 4 3 7 2- 4 3 7 5, 2 0 1 1.

[ 9] H. S hi m oji, B. E. B or k o ws ki, T. T o d a k a a n d M. E n o ki z o n o, " Vi s u ali zi n g ir o n l oss di stri b uti o n i n p er m a n e nt m a g n et m ot ors, " 2 0 1 2 1 5t hInt er n ati o n al C o nf er e n c e o n El e ctri c al M a c hi n es a n d S yst e ms (I C E M S),S a p p or o, 2 0 1 2, p p. 1- 5.

[ 1 0] R. Us a m e nti a g a, P. V e n e g a s, J. G u er e di a g a, L. V e g a, J. M oll e d a, a n d F.B ul n es, “I nfr ar e d t h er m o gr a p h y f or t e m p er at ur e m e a s ur e m e nt a n d n o n-d estr u cti v e t esti n g, ” S e n s ors, 2 0 1 4.

Fl u x D e nsi t y

( T)

C o r e L o ss ( W/ k g) Diff e r e n c e ( %) W att m et er

1. 0 9 1 3. 3 7 1 2. 6 8 5. 4 4

1. 2 4 1 6. 9 9 1 6. 5 0 2. 9 7

1. 3 6 2 5. 7 0 2 4. 2 6 5. 9 4

1. 4 8 3 4. 4 7 3 2. 9 4 4. 6 4

1. 5 3 3 7. 4 8 3 6. 3 9 3. 0 0

Fi g. 6. T h er m o gr a p hi c i m a g e of tr a n sf or m er c or e s h o wi n g t h e t e m p er at ur e di stri b uti o n aft er 3 0 s e c o n d s d ur ati o n of s u p pl y

Fi g. 5. C or e t e m p er at ur e ri s e at 1. 4 8 T