oscillatory driving of crystal surfaces

22
Oscillatory driving of crystal surfaces Olivier Pierre-Louis * M.I. Haftel * http://consoude.ujf-grenoble.fr Grephe, Laboratoire de Spectrom´ etrie Physique, Grenoble, France Optics of Nanostructures Section Code 6331, Naval Research Laboratory Washington, DC 20375-5343

Upload: others

Post on 15-Jan-2022

19 views

Category:

Documents


0 download

TRANSCRIPT

Oscillatory driving

of crystal surfaces

Olivier Pierre-Louis∗

M.I. Haftel†

∗ http://consoude.ujf-grenoble.frGrephe,

Laboratoire de Spectrometrie Physique,Grenoble, France

† Optics of Nanostructures SectionCode 6331, Naval Research Laboratory

Washington, DC 20375-5343

Parametric oscillators:

• Inverted pendulum(Kapitza)

Pattern formation:

• Faraday instability (1831)

• Vibrated sand dishes(Swinney et al 1994)

Thermodynamic systems:

• Motion of Bloch but not Ising domain walls(Coullet et al 1990)

• Solid under EM field(Tetriakov et al 1999)

ratchets:

• Feynman, the ratchet and the pawl

• Molecular motors

oscillatory force / non-equilibrium noise

F→ Drift

→ macroscopic flux, mass transport

→ pattern formation

Solid on Solid

Steps

Continuum

Ehrlich-Schwoebel effect

EEE

s

f

d

vicinal

Example de mecanismeoscillation entre

• conc equil elevee; pas d’effet ES

• conc equil faible; pas d’effet ES

!!!!""""

##$$

%%%%&&&&''((

))**

++,,

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

...............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111

222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222

J

(a)

(c)

(b)

Physical origin of the forcing:

• temperature oscillations

• Pulsed laser

• High amplitude ultra-sound waves in thin films

• AC potential in electrochemical cell

• electromigration

Macroscopic mass fluxalong misoriented (vicinal) surfaces

→ Pattern formation or smoothening.

34343434343434343434343434343434343434343434343434343343434343434343434343434343434343434343434343434343433434343434343434343434343434343434343434343434343434334343434343434343434343434343434343434343434343434343343434343434343434343434343434343434343434343434343433434343434343434343434343434343434343434343434343434334343434343434343434343434343434343434343434343434343343434343434343434343434343434343434343434343434343433434343434343434343434343434343434343434343434343434334343434343434343434343434343434343434343434343434343

54545454545454545454545454545454545454545454545454545545454545454545454545454545454545454545454545454545455454545454545454545454545454545454545454545454545454554545454545454545454545454545454545454545454545454545545454545454545454545454545454545454545454545454545455454545454545454545454545454545454545454545454545454554545454545454545454545454545454545454545454545454545545454545454545454545454545454545454545454545454545455454545454545454545454545454545454545454545454545454554545454545454545454545454545454545454545454545454545

646464646464646464646464646464646464646464646464646646464646464646464646464646464646464646464646464646646464646464646464646464646464646464646464646464646646464646464646464646464646464646464646464646464646646464646464646464646464646464646464646464646464646646464646464646464646464646464646464646464646464646646464646464646464646464646464646464646464646464646646464646464646464646464646464646464646464646464646646464646464646464646464646464646464646464646464646646464646464646464646464646464646464646464646464646646464646464646464646464646464646464646464646464646646464646464646464646464646464646464646464646464646646464646464646464646464646464646464646464646464646646464646464646464646464646464646464646464646464646646464646464646464646464646464646464646464646464646646464646464646464646464646464646464646464646464646

7474747474747474747474747474747474747474747474747747474747474747474747474747474747474747474747474774747474747474747474747474747474747474747474747477474747474747474747474747474747474747474747474747747474747474747474747474747474747474747474747474774747474747474747474747474747474747474747474747477474747474747474747474747474747474747474747474747747474747474747474747474747474747474747474747474774747474747474747474747474747474747474747474747477474747474747474747474747474747474747474747474747747474747474747474747474747474747474747474747474774747474747474747474747474747474747474747474747477474747474747474747474747474747474747474747474747747474747474747474747474747474747474747474747474774747474747474747474747474747474747474747474747477474747474747474747474747474747474747474747474747

84848484848484848484848484848484848484848484848484848848484848484848484848484848484848484848484848484848488484848484848484848484848484848484848484848484848484884848484848484848484848484848484848484848484848484848848484848484848484848484848484848484848484848484848488484848484848484848484848484848484848484848484848484884848484848484848484848484848484848484848484848484848848484848484848484848484848484848484848484848484848488484848484848484848484848484848484848484848484848484884848484848484848484848484848484848484848484848484848

94949494949494949494949494949494949494949494949494949949494949494949494949494949494949494949494949494949499494949494949494949494949494949494949494949494949494994949494949494949494949494949494949494949494949494949949494949494949494949494949494949494949494949494949499494949494949494949494949494949494949494949494949494994949494949494949494949494949494949494949494949494949949494949494949494949494949494949494949494949494949499494949494949494949494949494949494949494949494949494994949494949494949494949494949494949494949494949494949

:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4::4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4::4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4::4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4::4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4::4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4::4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4::4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4::4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4::4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4::4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4::4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4::4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4::4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4::4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4::4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:

;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;

<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<4<

=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4==4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4==4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4==4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4==4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4==4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4==4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4==4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4==4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4==4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4==4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4==4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4==4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=4=

>4>4>4>4>4>4>4>4>4>4>4>4>4>4>4>4>4>4>4>4>4>4>4>4>4>4>>4>4>4>4>4>4>4>4>4>4>4>4>4>4>4>4>4>4>4>4>4>4>4>4>4>4>>4>4>4>4>4>4>4>4>4>4>4>4>4>4>4>4>4>4>4>4>4>4>4>4>4>4>>4>4>4>4>4>4>4>4>4>4>4>4>4>4>4>4>4>4>4>4>4>4>4>4>4>4>

?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4??4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4??4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4??4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?

@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@4@

A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4AA4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4AA4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4AA4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4AA4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4AA4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4AA4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4AA4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4AA4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4AA4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4AA4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4AA4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4AA4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A

B4B4B4B4B4B4B4B4B4B4B4B4B4B4B4B4B4B4B4B4B4B4B4B4B4B4BB4B4B4B4B4B4B4B4B4B4B4B4B4B4B4B4B4B4B4B4B4B4B4B4B4B4BB4B4B4B4B4B4B4B4B4B4B4B4B4B4B4B4B4B4B4B4B4B4B4B4B4B4BB4B4B4B4B4B4B4B4B4B4B4B4B4B4B4B4B4B4B4B4B4B4B4B4B4B4B

C4C4C4C4C4C4C4C4C4C4C4C4C4C4C4C4C4C4C4C4C4C4C4C4C4C4CC4C4C4C4C4C4C4C4C4C4C4C4C4C4C4C4C4C4C4C4C4C4C4C4C4C4CC4C4C4C4C4C4C4C4C4C4C4C4C4C4C4C4C4C4C4C4C4C4C4C4C4C4CC4C4C4C4C4C4C4C4C4C4C4C4C4C4C4C4C4C4C4C4C4C4C4C4C4C4C

Unstable

Unstable

Stable

Stable

D4D4D4D4D4D4D4D4D4D4D4D4D4D4D4D4D4D4DD4D4D4D4D4D4D4D4D4D4D4D4D4D4D4D4D4D4DD4D4D4D4D4D4D4D4D4D4D4D4D4D4D4D4D4D4DD4D4D4D4D4D4D4D4D4D4D4D4D4D4D4D4D4D4DD4D4D4D4D4D4D4D4D4D4D4D4D4D4D4D4D4D4DD4D4D4D4D4D4D4D4D4D4D4D4D4D4D4D4D4D4DD4D4D4D4D4D4D4D4D4D4D4D4D4D4D4D4D4D4DD4D4D4D4D4D4D4D4D4D4D4D4D4D4D4D4D4D4DD4D4D4D4D4D4D4D4D4D4D4D4D4D4D4D4D4D4DD4D4D4D4D4D4D4D4D4D4D4D4D4D4D4D4D4D4DD4D4D4D4D4D4D4D4D4D4D4D4D4D4D4D4D4D4DD4D4D4D4D4D4D4D4D4D4D4D4D4D4D4D4D4D4DD4D4D4D4D4D4D4D4D4D4D4D4D4D4D4D4D4D4D

E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4EE4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4EE4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4EE4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4EE4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4EE4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4EE4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4EE4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4EE4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4EE4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4EE4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4EE4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4EE4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E

F4F4F4F4F4F4F4F4F4F4F4F4F4F4F4F4F4FF4F4F4F4F4F4F4F4F4F4F4F4F4F4F4F4F4FF4F4F4F4F4F4F4F4F4F4F4F4F4F4F4F4F4FF4F4F4F4F4F4F4F4F4F4F4F4F4F4F4F4F4FF4F4F4F4F4F4F4F4F4F4F4F4F4F4F4F4F4FF4F4F4F4F4F4F4F4F4F4F4F4F4F4F4F4F4FF4F4F4F4F4F4F4F4F4F4F4F4F4F4F4F4F4FF4F4F4F4F4F4F4F4F4F4F4F4F4F4F4F4F4FF4F4F4F4F4F4F4F4F4F4F4F4F4F4F4F4F4FF4F4F4F4F4F4F4F4F4F4F4F4F4F4F4F4F4F

G4G4G4G4G4G4G4G4G4G4G4G4G4G4G4G4G4GG4G4G4G4G4G4G4G4G4G4G4G4G4G4G4G4G4GG4G4G4G4G4G4G4G4G4G4G4G4G4G4G4G4G4GG4G4G4G4G4G4G4G4G4G4G4G4G4G4G4G4G4GG4G4G4G4G4G4G4G4G4G4G4G4G4G4G4G4G4GG4G4G4G4G4G4G4G4G4G4G4G4G4G4G4G4G4GG4G4G4G4G4G4G4G4G4G4G4G4G4G4G4G4G4GG4G4G4G4G4G4G4G4G4G4G4G4G4G4G4G4G4GG4G4G4G4G4G4G4G4G4G4G4G4G4G4G4G4G4GG4G4G4G4G4G4G4G4G4G4G4G4G4G4G4G4G4G

H4H4H4H4H4H4H4H4H4H4H4H4H4HH4H4H4H4H4H4H4H4H4H4H4H4H4HH4H4H4H4H4H4H4H4H4H4H4H4H4HH4H4H4H4H4H4H4H4H4H4H4H4H4HH4H4H4H4H4H4H4H4H4H4H4H4H4HH4H4H4H4H4H4H4H4H4H4H4H4H4HH4H4H4H4H4H4H4H4H4H4H4H4H4HH4H4H4H4H4H4H4H4H4H4H4H4H4HH4H4H4H4H4H4H4H4H4H4H4H4H4HH4H4H4H4H4H4H4H4H4H4H4H4H4HH4H4H4H4H4H4H4H4H4H4H4H4H4H

I4I4I4I4I4I4I4I4I4I4I4I4I4II4I4I4I4I4I4I4I4I4I4I4I4I4II4I4I4I4I4I4I4I4I4I4I4I4I4II4I4I4I4I4I4I4I4I4I4I4I4I4II4I4I4I4I4I4I4I4I4I4I4I4I4II4I4I4I4I4I4I4I4I4I4I4I4I4II4I4I4I4I4I4I4I4I4I4I4I4I4II4I4I4I4I4I4I4I4I4I4I4I4I4II4I4I4I4I4I4I4I4I4I4I4I4I4II4I4I4I4I4I4I4I4I4I4I4I4I4II4I4I4I4I4I4I4I4I4I4I4I4I4I

Step model -Burton Cabrera Frank (1951)

νν+

-

zx

S

D

E

Terrace diffusion

∂tc = D∇2c + F − c

τ

Kinetic Boundary Conditions (Schwoebel 1969)

J = −Dn.∇c − vnc

J± = ∓ν±(c± − ceq)

Mass conservation

vn

Ω= J− − J+

Low frequency, Square, Finite amplitudeoscillation of model parameters:

D = D0 + D1sign[cos(ω0t)]

d± = d0± + d1±sign[cos(ω0t)] ,

ceq = c0eq + c1eqsign[cos(ω0t)]

A mass flux along the vicinal is found.

〈J〉 ≈ Ωc1eqω0

d1+ − d1− + 2m(d1+d0− − d1−d0+)

[1 + m(d0 + d1)][1 + m(d0 − d1)]

where d = d+ + d−

• case A, Uphill fluxd0+ = d1+ = 0, c1eq = c0eq and d1− = d0−

• case B, Downhill fluxd0+ = d1+ = 0, c1eq = c0eq and d1− = −d0−

Kinetic Monte Carlo Simulation, SOS model

Parameters:Es Schwoebel barrier,Eb bond energy,T temperature

• Hopping rate rate: ∼ exp(−E/T )

• Activation barrier: E = nn ∗ Eb + ΘEs

• nn number of in plane nearest neighbors

• Θ = 1 for interlayer exchange, else Θ = 0

For step model:

• D = 1/4 a2MCSPS−1

• d+ = 0

• d− = a(exp(Es/T ) − 1)

• ceq = exp(−2Eb/T )/a2

Kinetic Monte Carlo Simulation, SOS model

(b)x

yx

y

(a)

(d)

(c)

ω0 = 0.1 MCSPS−1, Eb = 1., E1b = 0.3, Es = 2, and T = 0.4.

For (a) and (b) E1s = 1.9; for (a) and (d) E1s = −1.9.

Case A step meander

For slopes large enough, no nucleation.

jup =Ωc1

eq

2

ω0

1

2m

Stabilizing thermodynamic part:

jdown = −〈DΩceq∇(

µ

kBT

)

Step Free Energy:

F =

ds γ(θ)

Local chemical potential:

µ

kBT=

1

kBT

δFδN = Γκ ,

where Γ = Ωγ/kBT .

Case A step meander

Small pertu h = m0z + hωq exp(iωt + iqx)Linear Dispersion relation

ω =jup(m0)

m0

q2 − 〈DΓΩceq〉m0

q4

m (a/2b)1/2k =

a /4b2

Re[i ]ω

k

λm = 2π√

2

[〈ΓDΩceq〉jup(m0)

]1/2

ω0/2π = 0.1 → λm = 14, KMC → 17.1 ± 2ω0/2π = 0.01 → λm = 45, KMC → 28.5 ± 2

Case A: Mound formation

For slopes large enough, no nucleation.

jup =Ωc1

eq

2

ω0

1

2m

Stabilizing part:

jdown = 〈DΩceq

`

∆µ

kBT〉

Chemical potential difference

∆µ

kBT= Γ(R−1

n+1 − R−1n )

where Γ = Ωγ/kBT .

Since Rn+1 − Rn = `

jdown ≈ 〈DΩceqΓ〉2R2

large m → jup dominates

case A: 1D mounds

j =Ωc1

eqω0

8πmfc(m) + jstab

screening function fc → 1/0 for m large/small

j0

j0

h =a t0 01/2

λ

λ /2

λ /4

m

0

s

Top advected

High slope parts

case A: 1D mounds

high slope parts: hhs = A(t)ghs(x)

hhs =(

Ωc1eq

ω0

8πt)1/2

erf−1(x/λhs)

Top and bottom parts: htb = B(t) + gtb(x).

Mass conservation:

2j0 = λ0∂th0 → B(t) ∼(

Ωc1eq

ω0

2πt)1/2

→ W ≡ 〈h2〉 = W0

(

Ωc1eq

ω0

2πt)1/2

KMC→ W ∼ t0.44, λ ∼ t0.09,→ correct activation energy,→ W0 = 0.46 .

Ag surfaces in electro-chemical cell

Ag(100)

V Ed Ef Es

0.75 0.59 0.38 -0.0710.28 0.38 0.51 0.0610.0 0.40 0.55 0.039

-0.17 0.39 0.58 0.004-0.61 0.30 0.67 0.103

Ag(111)

V Ed Ef Es

-1.11 0.06 0.77 0.21-1.0 0.07 0.76 0.200.0 0.12 0.85 0.120.85 0.06 0.92 1.16

For step model:

• D = a2ν0 exp(−Ed/T ) a2MCSPS−1

• d+ = 0

• d− = a(exp(Es/T ) − 1)

• ceq = exp(−Ef/T )/a2

Example -Case A: Mound formation on Ag(100)

• V cycles from -0.17V to 0.103V

• ω0/2π = 105Hz

• T = 350K

Surface roughness

W = W0

(

Ωc1eq

ω0

2πt)1/2

= 6 a

(≡ pyramids of 21 a high.)

Small sinusoidaloscillation of model parameters:

D = D0 + εD1 cos(ω0t)

d± = d0± + ε d1± cos(ω0t) ,

ceq = c0eq + ε c1eq cos(ω0t)

To second order:

〈J〉 = ε2Ω

2

D0c1eqm

1 + m(d0+ + d0−)×

<e

[

λd1+(ch − 1 + λd0−sh) − d1−(ch − 1 + λd0+sh)

(1 + d0+d0−λ2)sh + λ(d0− + d0+)ch

]

λ2 = iω0/D.

• slope dependant

• frequency dependant

• Change of sign of the fluxas a function of the slope

JKJKJKJKJKJKJKJKJKJKJKJKJKJKJJKJKJKJKJKJKJKJKJKJKJKJKJKJKJJKJKJKJKJKJKJKJKJKJKJKJKJKJKJJKJKJKJKJKJKJKJKJKJKJKJKJKJKJJKJKJKJKJKJKJKJKJKJKJKJKJKJKJJKJKJKJKJKJKJKJKJKJKJKJKJKJKJJKJKJKJKJKJKJKJKJKJKJKJKJKJKJJKJKJKJKJKJKJKJKJKJKJKJKJKJKJJKJKJKJKJKJKJKJKJKJKJKJKJKJKJ

LKLKLKLKLKLKLKLKLKLKLKLKLKLKLLKLKLKLKLKLKLKLKLKLKLKLKLKLKLLKLKLKLKLKLKLKLKLKLKLKLKLKLKLLKLKLKLKLKLKLKLKLKLKLKLKLKLKLLKLKLKLKLKLKLKLKLKLKLKLKLKLKLLKLKLKLKLKLKLKLKLKLKLKLKLKLKLLKLKLKLKLKLKLKLKLKLKLKLKLKLKLLKLKLKLKLKLKLKLKLKLKLKLKLKLKLLKLKLKLKLKLKLKLKLKLKLKLKLKLKL

MKMKMKMKMKMKMKMKMKMKMKMKMKMKMMKMKMKMKMKMKMKMKMKMKMKMKMKMKMMKMKMKMKMKMKMKMKMKMKMKMKMKMKMMKMKMKMKMKMKMKMKMKMKMKMKMKMKMMKMKMKMKMKMKMKMKMKMKMKMKMKMKMMKMKMKMKMKMKMKMKMKMKMKMKMKMKMMKMKMKMKMKMKMKMKMKMKMKMKMKMKMMKMKMKMKMKMKMKMKMKMKMKMKMKMKMMKMKMKMKMKMKMKMKMKMKMKMKMKMKM

NKNKNKNKNKNKNKNKNKNKNKNKNKNKNNKNKNKNKNKNKNKNKNKNKNKNKNKNKNNKNKNKNKNKNKNKNKNKNKNKNKNKNKNNKNKNKNKNKNKNKNKNKNKNKNKNKNKNNKNKNKNKNKNKNKNKNKNKNKNKNKNKNNKNKNKNKNKNKNKNKNKNKNKNKNKNKNNKNKNKNKNKNKNKNKNKNKNKNKNKNKNNKNKNKNKNKNKNKNKNKNKNKNKNKNKNNKNKNKNKNKNKNKNKNKNKNKNKNKNKN

OKOKOKOKOKOKOKOKOKOKOKOKOKOKOOKOKOKOKOKOKOKOKOKOKOKOKOKOKOOKOKOKOKOKOKOKOKOKOKOKOKOKOKOOKOKOKOKOKOKOKOKOKOKOKOKOKOKOOKOKOKOKOKOKOKOKOKOKOKOKOKOKOOKOKOKOKOKOKOKOKOKOKOKOKOKOKOOKOKOKOKOKOKOKOKOKOKOKOKOKOKOOKOKOKOKOKOKOKOKOKOKOKOKOKOKOOKOKOKOKOKOKOKOKOKOKOKOKOKOKO

PKPKPKPKPKPKPKPKPKPKPKPKPKPKPPKPKPKPKPKPKPKPKPKPKPKPKPKPKPPKPKPKPKPKPKPKPKPKPKPKPKPKPKPPKPKPKPKPKPKPKPKPKPKPKPKPKPKPPKPKPKPKPKPKPKPKPKPKPKPKPKPKPPKPKPKPKPKPKPKPKPKPKPKPKPKPKPPKPKPKPKPKPKPKPKPKPKPKPKPKPKPPKPKPKPKPKPKPKPKPKPKPKPKPKPKPPKPKPKPKPKPKPKPKPKPKPKPKPKPKPQKQKQKQKQKQKQKQKQKQKQKQKQKQKQ

QKQKQKQKQKQKQKQKQKQKQKQKQKQKQQKQKQKQKQKQKQKQKQKQKQKQKQKQKQ

RKRKRKRKRKRKRKRKRKRKRKRKRKRKRRKRKRKRKRKRKRKRKRKRKRKRKRKRKRRKRKRKRKRKRKRKRKRKRKRKRKRKRKR

SKSKSKSKSKSKSKSKSKSKSKSKSKSKSSKSKSKSKSKSKSKSKSKSKSKSKSKSKSSKSKSKSKSKSKSKSKSKSKSKSKSKSKSSKSKSKSKSKSKSKSKSKSKSKSKSKSKSSKSKSKSKSKSKSKSKSKSKSKSKSKSKS

TKTKTKTKTKTKTKTKTKTKTKTKTKTKTTKTKTKTKTKTKTKTKTKTKTKTKTKTKTTKTKTKTKTKTKTKTKTKTKTKTKTKTKTTKTKTKTKTKTKTKTKTKTKTKTKTKTKTTKTKTKTKTKTKTKTKTKTKTKTKTKTKT

UKUKUKUKUKUKUKUKUKUKUKUKUKUKUUKUKUKUKUKUKUKUKUKUKUKUKUKUKUUKUKUKUKUKUKUKUKUKUKUKUKUKUKUUKUKUKUKUKUKUKUKUKUKUKUKUKUKUUKUKUKUKUKUKUKUKUKUKUKUKUKUKUUKUKUKUKUKUKUKUKUKUKUKUKUKUKUUKUKUKUKUKUKUKUKUKUKUKUKUKUKUUKUKUKUKUKUKUKUKUKUKUKUKUKUKU

VKVKVKVKVKVKVKVKVKVKVKVKVKVKVVKVKVKVKVKVKVKVKVKVKVKVKVKVKVVKVKVKVKVKVKVKVKVKVKVKVKVKVKVVKVKVKVKVKVKVKVKVKVKVKVKVKVKVVKVKVKVKVKVKVKVKVKVKVKVKVKVKVVKVKVKVKVKVKVKVKVKVKVKVKVKVKVVKVKVKVKVKVKVKVKVKVKVKVKVKVKVVKVKVKVKVKVKVKVKVKVKVKVKVKVKV

Slope Selection

WKWKWKWKWKWKWKWKWKWKWKWKWKWKWWKWKWKWKWKWKWKWKWKWKWKWKWKWKWWKWKWKWKWKWKWKWKWKWKWKWKWKWKWWKWKWKWKWKWKWKWKWKWKWKWKWKWKWWKWKWKWKWKWKWKWKWKWKWKWKWKWKWWKWKWKWKWKWKWKWKWKWKWKWKWKWKWWKWKWKWKWKWKWKWKWKWKWKWKWKWKWWKWKWKWKWKWKWKWKWKWKWKWKWKWKWWKWKWKWKWKWKWKWKWKWKWKWKWKWKW

XKXKXKXKXKXKXKXKXKXKXKXKXKXKXXKXKXKXKXKXKXKXKXKXKXKXKXKXKXXKXKXKXKXKXKXKXKXKXKXKXKXKXKXXKXKXKXKXKXKXKXKXKXKXKXKXKXKXXKXKXKXKXKXKXKXKXKXKXKXKXKXKXXKXKXKXKXKXKXKXKXKXKXKXKXKXKXXKXKXKXKXKXKXKXKXKXKXKXKXKXKXXKXKXKXKXKXKXKXKXKXKXKXKXKXKXXKXKXKXKXKXKXKXKXKXKXKXKXKXKX

YKYKYKYKYKYKYKYKYKYKYKYKYKYKYYKYKYKYKYKYKYKYKYKYKYKYKYKYKYYKYKYKYKYKYKYKYKYKYKYKYKYKYKYYKYKYKYKYKYKYKYKYKYKYKYKYKYKYYKYKYKYKYKYKYKYKYKYKYKYKYKYKYYKYKYKYKYKYKYKYKYKYKYKYKYKYKYYKYKYKYKYKYKYKYKYKYKYKYKYKYKYYKYKYKYKYKYKYKYKYKYKYKYKYKYKYYKYKYKYKYKYKYKYKYKYKYKYKYKYKY

ZKZKZKZKZKZKZKZKZKZKZKZKZKZKZZKZKZKZKZKZKZKZKZKZKZKZKZKZKZZKZKZKZKZKZKZKZKZKZKZKZKZKZKZZKZKZKZKZKZKZKZKZKZKZKZKZKZKZZKZKZKZKZKZKZKZKZKZKZKZKZKZKZZKZKZKZKZKZKZKZKZKZKZKZKZKZKZZKZKZKZKZKZKZKZKZKZKZKZKZKZKZZKZKZKZKZKZKZKZKZKZKZKZKZKZKZZKZKZKZKZKZKZKZKZKZKZKZKZKZKZ

[K[K[K[K[K[K[K[K[K[K[K[K[K[K[K[[K[K[K[K[K[K[K[K[K[K[K[K[K[K[K[[K[K[K[K[K[K[K[K[K[K[K[K[K[K[K[[K[K[K[K[K[K[K[K[K[K[K[K[K[K[K[[K[K[K[K[K[K[K[K[K[K[K[K[K[K[K[[K[K[K[K[K[K[K[K[K[K[K[K[K[K[K[[K[K[K[K[K[K[K[K[K[K[K[K[K[K[K[[K[K[K[K[K[K[K[K[K[K[K[K[K[K[K[[K[K[K[K[K[K[K[K[K[K[K[K[K[K[K[

\K\K\K\K\K\K\K\K\K\K\K\K\K\K\\K\K\K\K\K\K\K\K\K\K\K\K\K\K\\K\K\K\K\K\K\K\K\K\K\K\K\K\K\\K\K\K\K\K\K\K\K\K\K\K\K\K\K\\K\K\K\K\K\K\K\K\K\K\K\K\K\K\\K\K\K\K\K\K\K\K\K\K\K\K\K\K\\K\K\K\K\K\K\K\K\K\K\K\K\K\K\\K\K\K\K\K\K\K\K\K\K\K\K\K\K\\K\K\K\K\K\K\K\K\K\K\K\K\K\K\]K]K]K]K]K]K]K]K]K]K]K]K]K]K]

]K]K]K]K]K]K]K]K]K]K]K]K]K]K]]K]K]K]K]K]K]K]K]K]K]K]K]K]K]

^K^K^K^K^K^K^K^K^K^K^K^K^K^K^^K^K^K^K^K^K^K^K^K^K^K^K^K^K^^K^K^K^K^K^K^K^K^K^K^K^K^K^K^

_K_K_K_K_K_K_K_K_K_K_K_K_K_K__K_K_K_K_K_K_K_K_K_K_K_K_K_K__K_K_K_K_K_K_K_K_K_K_K_K_K_K__K_K_K_K_K_K_K_K_K_K_K_K_K_K__K_K_K_K_K_K_K_K_K_K_K_K_K_K_

`K`K`K`K`K`K`K`K`K`K`K`K`K`K``K`K`K`K`K`K`K`K`K`K`K`K`K`K``K`K`K`K`K`K`K`K`K`K`K`K`K`K``K`K`K`K`K`K`K`K`K`K`K`K`K`K``K`K`K`K`K`K`K`K`K`K`K`K`K`K`

aKaKaKaKaKaKaKaKaKaKaKaKaKaKaKaaKaKaKaKaKaKaKaKaKaKaKaKaKaKaKaaKaKaKaKaKaKaKaKaKaKaKaKaKaKaKaaKaKaKaKaKaKaKaKaKaKaKaKaKaKaKaaKaKaKaKaKaKaKaKaKaKaKaKaKaKaKaaKaKaKaKaKaKaKaKaKaKaKaKaKaKaKaaKaKaKaKaKaKaKaKaKaKaKaKaKaKaKaaKaKaKaKaKaKaKaKaKaKaKaKaKaKaKa

bKbKbKbKbKbKbKbKbKbKbKbKbKbKbbKbKbKbKbKbKbKbKbKbKbKbKbKbKbbKbKbKbKbKbKbKbKbKbKbKbKbKbKbbKbKbKbKbKbKbKbKbKbKbKbKbKbKbbKbKbKbKbKbKbKbKbKbKbKbKbKbKbbKbKbKbKbKbKbKbKbKbKbKbKbKbKbbKbKbKbKbKbKbKbKbKbKbKbKbKbKbbKbKbKbKbKbKbKbKbKbKbKbKbKbKb

Metastability

• Change of sign of the fluxas a function of frequency

Conclusion

• Morphological instabilities: mounding, bunching,meandering. Flattening.

• slope selection, metastability and flux inversion

Open questions

• Nonlinear analysis → morphology

• Roughening laws different from growth?New universality classes?

• Line tension, step interactions, nucleation

• Oscillatory driving during growth, sublimation

Applications:

• In situ and real time control of surface patterns

• Separation of species