oregon state university – cs430 intro to ai (c) 2003 thomas g. dietterich1 probabilistic...

43
(c) 2003 Thomas G. Dietteri ch 1 Oregon State University – CS430 Intro to AI Probabilistic Representation and Reasoning Given a set of facts/beliefs/rules/evidence Evaluate a given statement Determine the probability of a statement Find a statement that optimizes a set of constraints Most probable explanation (MPE) (Setting of hidden variables that best explains observations.)

Post on 15-Jan-2016

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Oregon State University – CS430 Intro to AI (c) 2003 Thomas G. Dietterich1 Probabilistic Representation and Reasoning  Given a set of facts/beliefs/rules/evidence

(c) 2003 Thomas G. Dietterich 1

Ore

gon

Sta

te U

nive

rsit

y –

CS

430

Intr

o to

AI Probabilistic Representation and

Reasoning

Given a set of facts/beliefs/rules/evidence Evaluate a given statement

Determine the probability of a statement Find a statement that optimizes a set of

constraintsMost probable explanation (MPE) (Setting of

hidden variables that best explains observations.)

Page 2: Oregon State University – CS430 Intro to AI (c) 2003 Thomas G. Dietterich1 Probabilistic Representation and Reasoning  Given a set of facts/beliefs/rules/evidence

(c) 2003 Thomas G. Dietterich 2

Ore

gon

Sta

te U

nive

rsit

y –

CS

430

Intr

o to

AI Probability Theory

Random Variables Boolean: W1,2 (just like propositional logic). Two

possible values {true, false} Discrete: Weather 2 {sunny, cloudy, rainy, snow} Continuous: Temperature 2 <

Propositions W1,2 = true, Weather = sunny, Temperature = 65 These can be combined as in propositional logic

Page 3: Oregon State University – CS430 Intro to AI (c) 2003 Thomas G. Dietterich1 Probabilistic Representation and Reasoning  Given a set of facts/beliefs/rules/evidence

(c) 2003 Thomas G. Dietterich 3

Ore

gon

Sta

te U

nive

rsit

y –

CS

430

Intr

o to

AI Example

Consider a car described by 3 random variables: Gas 2 {true, false}: There is gas in the tank Meter 2 {empty,full}: The gas gauge shows

the tank is empty or full Starts 2 {yes,no}: The car starts when you

turn the key in the ignition

Page 4: Oregon State University – CS430 Intro to AI (c) 2003 Thomas G. Dietterich1 Probabilistic Representation and Reasoning  Given a set of facts/beliefs/rules/evidence

(c) 2003 Thomas G. Dietterich 4

Ore

gon

Sta

te U

nive

rsit

y –

CS

430

Intr

o to

AI Joint Probability Distribution

Gas Meter Starts P(G,M,S)

false empty no 0.1386

false empty yes 0.0014

false full no 0.0594

false full yes 0.0006

true empty no 0.0240

true empty yes 0.0560

true full no 0.2160

true full yes 0.5040

Each row is called a “primitive event”

Rows are mutually exclusive and exhaustive

Corresponds to an “8-sided coin” with the indicated probabilities

Page 5: Oregon State University – CS430 Intro to AI (c) 2003 Thomas G. Dietterich1 Probabilistic Representation and Reasoning  Given a set of facts/beliefs/rules/evidence

(c) 2003 Thomas G. Dietterich 5

Ore

gon

Sta

te U

nive

rsit

y –

CS

430

Intr

o to

AI Any Query Can Be Answered from

the Joint Distribution

Gas Meter Starts P(G,M,S)

false empty no 0.1386

false empty yes 0.0014

false full no 0.0594

false full yes 0.0006

true empty no 0.0240

true empty yes 0.0560

true full no 0.2160

true full yes 0.5040

P(Gas = false Æ Meter = full Æ Starts = yes) = 0.0006

P(Gas = false) = 0.2, this is the sum of all cells where Gas = false

In general: To compute P(Q), for any proposition Q, add up the probability in all cells where Q is true

Page 6: Oregon State University – CS430 Intro to AI (c) 2003 Thomas G. Dietterich1 Probabilistic Representation and Reasoning  Given a set of facts/beliefs/rules/evidence

(c) 2003 Thomas G. Dietterich 6

Ore

gon

Sta

te U

nive

rsit

y –

CS

430

Intr

o to

AI Notations

P(G,M,S) denotes the entire joint distribution (In the book, P is boldface). It is a table or function that maps from G, M, and S to a probability.

P(true,empty,no) denotes a single probability value:

P(Gas=true Æ Meter=empty Æ Starts=no)

Page 7: Oregon State University – CS430 Intro to AI (c) 2003 Thomas G. Dietterich1 Probabilistic Representation and Reasoning  Given a set of facts/beliefs/rules/evidence

(c) 2003 Thomas G. Dietterich 7

Ore

gon

Sta

te U

nive

rsit

y –

CS

430

Intr

o to

AI Operations on Probability Tables

(1)

Marginalization (“summing away”) M,S P(G,M,S) = P(G) P(G) is called a

“marginal probability” distribution. It consists of two probabilities:

Gas P(G)

false

P(false,empty,yes) +

P(false,empty,no) +

P(false,full,yes) +

P(false,full,no)

true

P(true,empty,yes) +

P(true,empty,no) +

P(true,full,yes) +

P(true,full,no)

Page 8: Oregon State University – CS430 Intro to AI (c) 2003 Thomas G. Dietterich1 Probabilistic Representation and Reasoning  Given a set of facts/beliefs/rules/evidence

(c) 2003 Thomas G. Dietterich 8

Ore

gon

Sta

te U

nive

rsit

y –

CS

430

Intr

o to

AI Conditional Probability

Suppose we observe that M=full. What is the probability that the car will start? P(S=yes | M=full)

Definition: P(A|B) = P(A Æ B) / P(B)

Page 9: Oregon State University – CS430 Intro to AI (c) 2003 Thomas G. Dietterich1 Probabilistic Representation and Reasoning  Given a set of facts/beliefs/rules/evidence

(c) 2003 Thomas G. Dietterich 9

Ore

gon

Sta

te U

nive

rsit

y –

CS

430

Intr

o to

AI Conditional Probability

Gas Meter Starts P(G,M,S)

false empty no 0.1386

false empty yes 0.0014

false full no 0.0594

false full yes 0.0006

true empty no 0.0240

true empty yes 0.0560

true full no 0.2160

true full yes 0.5040

Select cells that match the condition (M=full)

Delete remaining cells and M column

Renormalize the table to obtain P(S,G|M=full)

Sum away Gas: G P(S,G | M=full) = P(S|M=full)

Read answer from P(S=yes | M=full) cell

Gas Meter Starts P(G,M,S)

false empty no 0.1386

false empty yes 0.0014

false full no 0.0594

false full yes 0.0006

true empty no 0.0240

true empty yes 0.0560

true full no 0.2160

true full yes 0.5040

Gas Starts P(G,S|M=full)

false no 0.0594

false yes 0.0006

true no 0.2160

true yes 0.5040

Starts P(S|M=full)

no 0.3531

yes 0.6469

Gas Starts P(G,S|M=full)

false no 0.0762

false yes 0.0008

true no 0.2769

true yes 0.6462

Gas Meter Starts P(G,M,S)

false full no 0.0594

false full yes 0.0006

true full no 0.2160

true full yes 0.5040

Gas Meter Starts P(G,M,S)

false full no 0.0594

false full yes 0.0006

true full no 0.2160

true full yes 0.5040

Page 10: Oregon State University – CS430 Intro to AI (c) 2003 Thomas G. Dietterich1 Probabilistic Representation and Reasoning  Given a set of facts/beliefs/rules/evidence

(c) 2003 Thomas G. Dietterich 10

Ore

gon

Sta

te U

nive

rsit

y –

CS

430

Intr

o to

AI Operations on Probability Tables (2):

Conditionalizing

Construct P(G,S | M) by normalizing the subtable corresponding to M=full and normalizing the subtable corresponding to M=empty

Gas Meter Starts P(G,M,S)

false empty no 0.1386

false empty yes 0.0014

false full no 0.0594

false full yes 0.0006

true empty no 0.0240

true empty yes 0.0560

true full no 0.2160

true full yes 0.5040

0.0762

0.0008

0.2769

0.6462

0.6300

0.0064

0.1091

0.2545

Page 11: Oregon State University – CS430 Intro to AI (c) 2003 Thomas G. Dietterich1 Probabilistic Representation and Reasoning  Given a set of facts/beliefs/rules/evidence

(c) 2003 Thomas G. Dietterich 11

Ore

gon

Sta

te U

nive

rsit

y –

CS

430

Intr

o to

AI Chain Rule of Probability

P(A,B,C) = P(A|B,C) ¢ P(B|C) ¢ P(C) Proof:

Page 12: Oregon State University – CS430 Intro to AI (c) 2003 Thomas G. Dietterich1 Probabilistic Representation and Reasoning  Given a set of facts/beliefs/rules/evidence

(c) 2003 Thomas G. Dietterich 12

Ore

gon

Sta

te U

nive

rsit

y –

CS

430

Intr

o to

AI Chain Rule (2)

Holds for distributions too:

P(A,B,C) = P(A | B,C) ¢ P(B | C) ¢ P(C)

This means that for each setting of A,B, and C, we can substitute into the equation, and it is true.

Page 13: Oregon State University – CS430 Intro to AI (c) 2003 Thomas G. Dietterich1 Probabilistic Representation and Reasoning  Given a set of facts/beliefs/rules/evidence

(c) 2003 Thomas G. Dietterich 13

Ore

gon

Sta

te U

nive

rsit

y –

CS

430

Intr

o to

AI Belief Networks (1):

Independence

Defn: Two random variables X and Y are independent iff

P(X,Y) = P(X) ¢ P(Y) Example:

X is a coin with P(X=heads) = 0.4 Y is a coin with P(Y=heads) = 0.8 Joint distribution:

P(X,Y) X=heads X=tails

Y=heads 0.32 0.48

Y=tails 0.08 0.12

Page 14: Oregon State University – CS430 Intro to AI (c) 2003 Thomas G. Dietterich1 Probabilistic Representation and Reasoning  Given a set of facts/beliefs/rules/evidence

(c) 2003 Thomas G. Dietterich 14

Ore

gon

Sta

te U

nive

rsit

y –

CS

430

Intr

o to

AI Belief Networks (2)

Conditional Independence

Defn: Two random variables X and Y are conditionally independent given Z iffP(X,Y | Z) = P(X|Z) ¢ P(Y|Z)

Example:P(S,M | G) = P(S | G) ¢ P(M | G)Intuition: G independently causes S and M

S M G=no G=yes

no empty 0.693 0.030

no full 0.297 0.270

yes empy 0.007 0.070

yes full 0.003 0.630

S G=no G=yes

no 0.99 0.30

yes 0.01 0.70

M G=no G=yes

empty 0.70 0.10

full 0.30 0.90

Page 15: Oregon State University – CS430 Intro to AI (c) 2003 Thomas G. Dietterich1 Probabilistic Representation and Reasoning  Given a set of facts/beliefs/rules/evidence

(c) 2003 Thomas G. Dietterich 15

Ore

gon

Sta

te U

nive

rsit

y –

CS

430

Intr

o to

AI Operations on Probability Tables (3):

Conformal Product

Allocate space for resulting table and then fill in each cell with the product of the corresponding cells:

P(S,M | G) = P(S | G) ¢ P(M | G)

S M G=no G=yes

no empty a00¢b00 a01¢b01

no full a00¢b10 a01¢b11

yes empy a10¢b00 a11¢b01

yes full a10¢b10 a11¢b11

S G=no G=yes

no a00 a01

yes a10 a11

M G=no G=yes

empty b00 b01

full b10 b11= ¢

Page 16: Oregon State University – CS430 Intro to AI (c) 2003 Thomas G. Dietterich1 Probabilistic Representation and Reasoning  Given a set of facts/beliefs/rules/evidence

(c) 2003 Thomas G. Dietterich 16

Ore

gon

Sta

te U

nive

rsit

y –

CS

430

Intr

o to

AI Properties of Conformal Products

Commutative Associative Work on normalized or unnormalized

tables Work on joint or conditional tables

Page 17: Oregon State University – CS430 Intro to AI (c) 2003 Thomas G. Dietterich1 Probabilistic Representation and Reasoning  Given a set of facts/beliefs/rules/evidence

(c) 2003 Thomas G. Dietterich 17

Ore

gon

Sta

te U

nive

rsit

y –

CS

430

Intr

o to

AI Conditional Independence Allows

Us to Simplify the Joint Distribution

P(G,M,S) = P(M,S | G) ¢ P(G) [chain rule]

= P(M | G) ¢ P(S | G) ¢ P(G) [CI]

Page 18: Oregon State University – CS430 Intro to AI (c) 2003 Thomas G. Dietterich1 Probabilistic Representation and Reasoning  Given a set of facts/beliefs/rules/evidence

Bayesian Networks

One node for each random variable Each node stores a probability

distribution P(node | parents(node)) Only direct dependencies are shown Joint distribution is conformal product of

node distributions:P(G,M,S) = P(G) ¢ P(M | G) ¢ P(S | G)

Gas

StartsMeter

Page 19: Oregon State University – CS430 Intro to AI (c) 2003 Thomas G. Dietterich1 Probabilistic Representation and Reasoning  Given a set of facts/beliefs/rules/evidence

(c) 2003 Thomas G. Dietterich 19

Ore

gon

Sta

te U

nive

rsit

y –

CS

430

Intr

o to

AI Inference in Bayesian Networks

Suppose we observe that M=full. What is the probability that the car will start? P(S=yes | M=full)

Before, we handled this by the following steps: Remove all rows corresponding to M=empty Normalize remaining rows to get P(S,G|M=full) Sum over G: G P(S,G|M=full) = P(S | M=full) Read answer from the S=yes entry in the table

We want to get the same result, but without constructing the joint distribution first.

Page 20: Oregon State University – CS430 Intro to AI (c) 2003 Thomas G. Dietterich1 Probabilistic Representation and Reasoning  Given a set of facts/beliefs/rules/evidence

(c) 2003 Thomas G. Dietterich 20

Ore

gon

Sta

te U

nive

rsit

y –

CS

430

Intr

o to

AI Inference in Bayesian Networks (2)

Remove all rows corresponding to M=empty from all nodes P(G) – unchanged P(M | G) becomes P[G] P(S | G) – unchanged

Sum over G: G P(G) ¢ P[G] ¢ P(S | G)

Normalize to get P(S|M=full) Read answer from the S=yes entry in the table

Page 21: Oregon State University – CS430 Intro to AI (c) 2003 Thomas G. Dietterich1 Probabilistic Representation and Reasoning  Given a set of facts/beliefs/rules/evidence

(c) 2003 Thomas G. Dietterich 21

Ore

gon

Sta

te U

nive

rsit

y –

CS

430

Intr

o to

AI Inference with Tables

P(M|G) G=no G=yes

empty 0.70 0.10

full 0.30 0.90

P(S|G) G=false G=true

no 0.99 0.30

yes 0.01 0.70

G P(G)

false 0.20

true 0.80

G

Page 22: Oregon State University – CS430 Intro to AI (c) 2003 Thomas G. Dietterich1 Probabilistic Representation and Reasoning  Given a set of facts/beliefs/rules/evidence

(c) 2003 Thomas G. Dietterich 22

Ore

gon

Sta

te U

nive

rsit

y –

CS

430

Intr

o to

AI Inference with Tables

P(S|G) G=false G=true

no 0.99 0.30

yes 0.01 0.70

G P(G)

false 0.20

true 0.80

Step 1: Delete M=empty rows from all tables

G

G=false G=true

0.30 0.90

Page 23: Oregon State University – CS430 Intro to AI (c) 2003 Thomas G. Dietterich1 Probabilistic Representation and Reasoning  Given a set of facts/beliefs/rules/evidence

(c) 2003 Thomas G. Dietterich 23

Ore

gon

Sta

te U

nive

rsit

y –

CS

430

Intr

o to

AI Inference with Tables

P(S|G) G=false G=true

no 0.99 0.30

yes 0.01 0.70

G P(G)

false 0.20

true 0.80

Step 1: Delete M=empty rows from all tables

G

G=false G=true

0.30 0.90

Step 2: Perform algebra to push summation inwards (no-op in this case)

Page 24: Oregon State University – CS430 Intro to AI (c) 2003 Thomas G. Dietterich1 Probabilistic Representation and Reasoning  Given a set of facts/beliefs/rules/evidence

(c) 2003 Thomas G. Dietterich 24

Ore

gon

Sta

te U

nive

rsit

y –

CS

430

Intr

o to

AI Inference with Tables

Step 1: Delete M=empty rows from all tables

G

Step 2: Perform algebra to push summation inwards (no-op in this case)

Step 3: Form conformal product

S G=false G=true

no 0.0594 0.2160

yes 0.0006 0.5040

Page 25: Oregon State University – CS430 Intro to AI (c) 2003 Thomas G. Dietterich1 Probabilistic Representation and Reasoning  Given a set of facts/beliefs/rules/evidence

(c) 2003 Thomas G. Dietterich 25

Ore

gon

Sta

te U

nive

rsit

y –

CS

430

Intr

o to

AI Inference with Tables

Step 1: Delete M=empty rows from all tables

Step 2: Perform algebra to push summation inwards (no-op in this case)

Step 3: Form conformal product

Step 4: Sum away G

S

no 0.2754

yes 0.5046

Page 26: Oregon State University – CS430 Intro to AI (c) 2003 Thomas G. Dietterich1 Probabilistic Representation and Reasoning  Given a set of facts/beliefs/rules/evidence

(c) 2003 Thomas G. Dietterich 26

Ore

gon

Sta

te U

nive

rsit

y –

CS

430

Intr

o to

AI Inference with Tables

Step 1: Delete M=empty rows from all tables

Step 2: Perform algebra to push summation inwards (no-op in this case)

Step 3: Form conformal product

Step 4: Sum away G

Step 5: Normalize

S

no 0.3531

yes 0.6469

Page 27: Oregon State University – CS430 Intro to AI (c) 2003 Thomas G. Dietterich1 Probabilistic Representation and Reasoning  Given a set of facts/beliefs/rules/evidence

(c) 2003 Thomas G. Dietterich 27

Ore

gon

Sta

te U

nive

rsit

y –

CS

430

Intr

o to

AI Inference with Tables

Step 1: Delete M=empty rows from all tables

Step 2: Perform algebra to push summation inwards (no-op in this case)

Step 3: Form conformal product

Step 4: Sum away G

Step 5: Normalize

S

no 0.3531

yes 0.6469

Step 6: Read answer from table: 0.6469

Page 28: Oregon State University – CS430 Intro to AI (c) 2003 Thomas G. Dietterich1 Probabilistic Representation and Reasoning  Given a set of facts/beliefs/rules/evidence

(c) 2003 Thomas G. Dietterich 28

Ore

gon

Sta

te U

nive

rsit

y –

CS

430

Intr

o to

AI Notes

We never created the joint distribution Deleting the M=empty rows from the

individual table followed by conformal product has the same effect as performing the conformal product first and then deleting the M=empty rows

Normalization can be postponed to the end

Page 29: Oregon State University – CS430 Intro to AI (c) 2003 Thomas G. Dietterich1 Probabilistic Representation and Reasoning  Given a set of facts/beliefs/rules/evidence

(c) 2003 Thomas G. Dietterich 29

Ore

gon

Sta

te U

nive

rsit

y –

CS

430

Intr

o to

AI Another Example: “Asia”

(all variables Boolean)

Suppose we observe Sneeze What is P(Cold | Sneeze) = P(Co|S)?

Cat

ScratchSneeze

AllergyCold

Page 30: Oregon State University – CS430 Intro to AI (c) 2003 Thomas G. Dietterich1 Probabilistic Representation and Reasoning  Given a set of facts/beliefs/rules/evidence

(c) 2003 Thomas G. Dietterich 30

Ore

gon

Sta

te U

nive

rsit

y –

CS

430

Intr

o to

AI Answering the query

Joint distribution:A,Ca,Sc P(Co) ¢ P(A) ¢ P(Sn | Co,A) ¢ P(Ca) ¢ P(A | Ca) ¢ P(Sc | Ca)

Apply evidence: sn (Sneeze = true)A,Ca,Sc P(Co) ¢ P(A) ¢ P[Co,A]¢ P(Ca) ¢ P(A | Ca) ¢ P(Sc | Ca)

Push summations in as far as possible: P(Co) ¢ A P(A) ¢ P[Co,A] ¢ Ca P(A | Ca) ¢ P(Ca) ¢ Sc P(Sc | Ca)

Evaluate: P(Co) ¢ A P(A) ¢ P[Co,A] ¢ Ca P(A | Ca) ¢ P(Ca) ¢ P[Ca]

P(Co) ¢ A P(A) ¢ P[Co,A] ¢ P[A]P(Co) ¢ P[Co]P[Co]

Normalize and extract answer

Page 31: Oregon State University – CS430 Intro to AI (c) 2003 Thomas G. Dietterich1 Probabilistic Representation and Reasoning  Given a set of facts/beliefs/rules/evidence

(c) 2003 Thomas G. Dietterich 31

Ore

gon

Sta

te U

nive

rsit

y –

CS

430

Intr

o to

AI Pruning Leaves

Leaf nodes not involved in the evidence or the query can be pruned. Example: Scratch

Cat

ScratchSneeze

AllergyCold

Evidence

Query

Page 32: Oregon State University – CS430 Intro to AI (c) 2003 Thomas G. Dietterich1 Probabilistic Representation and Reasoning  Given a set of facts/beliefs/rules/evidence

(c) 2003 Thomas G. Dietterich 32

Ore

gon

Sta

te U

nive

rsit

y –

CS

430

Intr

o to

AI Greedy algorithm for choosing the

elimination order

nodes = set of tables (after evidence)V = variables to sum overwhile |nodes| > 1 do

Generate all pairs of tables in nodes that share at least one variableCompute size of table that would result from conformal product of each pair (summing over as many variables in V as possible)Let (T1,T2) be the pair with smallest resulting sizeDelete T1 and T2 from nodesAdd conformal product V T1¢T2 to nodes

end

Page 33: Oregon State University – CS430 Intro to AI (c) 2003 Thomas G. Dietterich1 Probabilistic Representation and Reasoning  Given a set of facts/beliefs/rules/evidence

(c) 2003 Thomas G. Dietterich 33

Ore

gon

Sta

te U

nive

rsit

y –

CS

430

Intr

o to

AI Example of Greedy Algorithm

Given tables P(Co), P[Co,A], P(A|Ca), P(Ca) Variables to sum: A, Ca

Choose: P[A] = Ca P(A|Ca) ¢ P(Ca)

candidate pair size of product sum over size of result

P(Co) ¢ P[Co,A] 2 nil 2

P[Co,A] ¢ P(A|Ca) 3 A 2

P(A|Ca) ¢ P(Ca) 2 Ca 1

Page 34: Oregon State University – CS430 Intro to AI (c) 2003 Thomas G. Dietterich1 Probabilistic Representation and Reasoning  Given a set of facts/beliefs/rules/evidence

(c) 2003 Thomas G. Dietterich 34

Ore

gon

Sta

te U

nive

rsit

y –

CS

430

Intr

o to

AI Example of Greedy Algorithm (2)

Given tables P(Co), P[Co,A], P[A] Variables to sum: A

Choose: P[Co] = A P[Co,A] ¢ P[A]

candidate pair size of product sum over size of result

P(Co) ¢ P[Co,A] 2 nil 2

P[Co,A] ¢ P[A] 2 A 2

Page 35: Oregon State University – CS430 Intro to AI (c) 2003 Thomas G. Dietterich1 Probabilistic Representation and Reasoning  Given a set of facts/beliefs/rules/evidence

(c) 2003 Thomas G. Dietterich 35

Ore

gon

Sta

te U

nive

rsit

y –

CS

430

Intr

o to

AI Example of Greedy Algorithm (3)

Given tables P(Co), P[Co] Variables to sum: none

Choose: P2[Co] = P(Co) ¢ P[Co]

Normalize and extract answer

candidate pair size of product sum over size of result

P(Co) ¢ P[Co] 1 nil 1

Page 36: Oregon State University – CS430 Intro to AI (c) 2003 Thomas G. Dietterich1 Probabilistic Representation and Reasoning  Given a set of facts/beliefs/rules/evidence

(c) 2003 Thomas G. Dietterich 36

Ore

gon

Sta

te U

nive

rsit

y –

CS

430

Intr

o to

AI Bayesian Network For WUMPUS

P(P1,1,P1,2, …, P4,4, B1,1, B1,2, …, B4,4) 1,4 2,4 3,4 4,4

1,3 2,3 3,3 4,3

1,2 2,2 3,2 4,2

1,1 2,1 3,1 4,1

P2,2P1,1 P1,2 P2,1

B1,1 B1,2 B2,1 B1,3 B2,2 B3,1 B1,4 B2,3 B4,1

P1,3 P3,1 P1,4

B2,4…

Page 37: Oregon State University – CS430 Intro to AI (c) 2003 Thomas G. Dietterich1 Probabilistic Representation and Reasoning  Given a set of facts/beliefs/rules/evidence

(c) 2003 Thomas G. Dietterich 37

Ore

gon

Sta

te U

nive

rsit

y –

CS

430

Intr

o to

AI Probabilistic Inference in

WUMPUS

Suppose we have observed No breeze in 1,1 Breeze in 1,2 and 2,1 No pit in 1,1, 1,2, and 1,3

What is the probability of a pit in 1,3?

P(P1,3|:B1,1,B1,2,B2,1, :P1,1,:P1,2,:P2,1)

1,3

????

1,2

B

OK

2,2

1,1

OK

2,1

B

OK

3,1

Page 38: Oregon State University – CS430 Intro to AI (c) 2003 Thomas G. Dietterich1 Probabilistic Representation and Reasoning  Given a set of facts/beliefs/rules/evidence

(c) 2003 Thomas G. Dietterich 38

Ore

gon

Sta

te U

nive

rsit

y –

CS

430

Intr

o to

AI What is

P(P1,3|:B1,1,B1,2,B2,1, :P1,1,:P1,2,:P2,1)?

P2,2P1,1 P1,2 P2,1

B1,1 B1,2 B2,1 B1,3 B2,2 B3,1 B1,4 B2,3 B4,1

P1,3 P3,1 P1,4

B2,4…

false true true

false false false query

Page 39: Oregon State University – CS430 Intro to AI (c) 2003 Thomas G. Dietterich1 Probabilistic Representation and Reasoning  Given a set of facts/beliefs/rules/evidence

(c) 2003 Thomas G. Dietterich 39

Ore

gon

Sta

te U

nive

rsit

y –

CS

430

Intr

o to

AI Prune Leaves Not Involved in Query or

Evidence

P2,2P1,1 P1,2 P2,1

B1,1 B1,2 B2,1 B1,3 B2,2 B3,1 B1,4 B2,3 B4,1

P1,3 P3,1 P1,4

B2,4…

false true true

false false false query

Page 40: Oregon State University – CS430 Intro to AI (c) 2003 Thomas G. Dietterich1 Probabilistic Representation and Reasoning  Given a set of facts/beliefs/rules/evidence

(c) 2003 Thomas G. Dietterich 40

Ore

gon

Sta

te U

nive

rsit

y –

CS

430

Intr

o to

AI Prune Independent Nodes

P2,2P1,1 P1,2 P2,1

B1,1 B1,2 B2,1

P1,3 P3,1 P1,4

false true true

false false false query

Page 41: Oregon State University – CS430 Intro to AI (c) 2003 Thomas G. Dietterich1 Probabilistic Representation and Reasoning  Given a set of facts/beliefs/rules/evidence

(c) 2003 Thomas G. Dietterich 41

Ore

gon

Sta

te U

nive

rsit

y –

CS

430

Intr

o to

AI Solve Remaining Network

P2,2P1,1 P1,2 P2,1

B1,1 B1,2 B2,1

P1,3 P3,1

false true true

false false false query

P2,2,P3,1 P(B1,1|P1,1,P1,2,P2,1) ¢ P(B1,2|P1,1,P1,2,P1,3) ¢ P(B2,1|P1,1,P2,1,P2,2,P3,1) ¢ P(P1,1) ¢ P(P1,2) ¢ P(P2,1) ¢ P(P2,2) ¢ P(P1,3) ¢ P(P3,1)

Page 42: Oregon State University – CS430 Intro to AI (c) 2003 Thomas G. Dietterich1 Probabilistic Representation and Reasoning  Given a set of facts/beliefs/rules/evidence

(c) 2003 Thomas G. Dietterich 42

Ore

gon

Sta

te U

nive

rsit

y –

CS

430

Intr

o to

AI Performing the Inference

NORM{ P2,2,P3,1 P(B1,1|P1,1,P1,2,P2,1) ¢ P(B1,2|P1,1,P1,2,P1,3) ¢ P(B2,1|P1,1,P2,1,P2,2,P3,1) ¢ P(P1,1) ¢ P(P1,2) ¢ P(P2,1) ¢ P(P2,2) ¢ P(P1,3) ¢ P(P3,1) }

NORM{ P2,2,P3,1 P[P1,3] ¢ P[P2,2,P3,1] ¢ P(P2,2) ¢ P(P1,3) ¢ P(P3,1) }

NORM{ P[P1,3] ¢ P(P1,3) ¢ P2,2 P(P2,2) ¢ P3,1 P[P2,2,P3,1] ¢ P(P3,1) }

We have reduced the inference to a simple computation over 2x2 tables.

P(P1,3) = h0.69, 0.31i 31% chance of WUMPUS!

Page 43: Oregon State University – CS430 Intro to AI (c) 2003 Thomas G. Dietterich1 Probabilistic Representation and Reasoning  Given a set of facts/beliefs/rules/evidence

(c) 2003 Thomas G. Dietterich 43

Ore

gon

Sta

te U

nive

rsit

y –

CS

430

Intr

o to

AI Summary

The Joint Distribution is analogous to the truth table for propositional logic. It exponentially large, but any query can be answered using it

Conditional independence allows us to factor the joint distribution using conformal products

Conditional independence relationships are conveniently visualized and encoded in a belief network DAG

Given evidence, we can reason efficiently by algebraic manipulation of the factored representation