option market liquidity - an empirical study of option ... · in this thesis we review existing...

88
Option Market Liquidity - An empirical study of option market bid-ask spreads Master Thesis ETH Z ¨ urich Chair of Entrepreneurial Risks Mate Nemes Supervisors: Prof. Didier Sornette Dr. Peter Cauwels Dr. Mika Kastenholz December 2012 Abstract In this thesis we review existing literature on option market liquidity and give an overview of the current state of research. We also examine the impact of macroeconomic shocks and low-liquidity market conditions on bid-ask spreads of stock and ETF options. The core of the paper is a multi-angle analysis of option bid-ask spreads in times of high liquidity and liquidity squeezes, as well as across sectors, maturities, and moneyness. The empirical results show rapidly widening bid-ask spreads as the option sinks deeper into the out-of-the-money space. Large volatility of spreads and differences between sectors, along with correlation num- bers with established fear indices improve general understanding of option market spreads behavior. Impact of macroeconomic shocks and liquidity conditions in the market are clearly recognizable on the time series plots of bid-ask spreads. We also examine options on exchange traded funds to compare and contrast their spreads with simple equity options. In order to provide a practical guide to estimate how bid-ask spreads react to changes of exogenous and endogenous variables, we set up an illustrative regression model. Keywords: Options market, liquidity, bid-ask spread, fear index, market maker, re- gression framework

Upload: others

Post on 18-Oct-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

Option Market Liquidity - An empirical study ofoption market bid-ask spreads

Master Thesis

ETH Zurich

Chair of Entrepreneurial Risks

Mate Nemes

Supervisors:Prof. Didier Sornette

Dr. Peter CauwelsDr. Mika Kastenholz

December 2012

Abstract

In this thesis we review existing literature on option market liquidity and givean overview of the current state of research. We also examine the impact ofmacroeconomic shocks and low-liquidity market conditions on bid-ask spreadsof stock and ETF options. The core of the paper is a multi-angle analysis of optionbid-ask spreads in times of high liquidity and liquidity squeezes, as well as acrosssectors, maturities, and moneyness. The empirical results show rapidly wideningbid-ask spreads as the option sinks deeper into the out-of-the-money space. Largevolatility of spreads and differences between sectors, along with correlation num-bers with established fear indices improve general understanding of option marketspreads behavior. Impact of macroeconomic shocks and liquidity conditions in themarket are clearly recognizable on the time series plots of bid-ask spreads. We alsoexamine options on exchange traded funds to compare and contrast their spreadswith simple equity options. In order to provide a practical guide to estimate howbid-ask spreads react to changes of exogenous and endogenous variables, we setup an illustrative regression model.

Keywords: Options market, liquidity, bid-ask spread, fear index, market maker, re-gression framework

Page 2: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

Acknowledgements

First and foremost, I would like to express my appreciation to my supervisors for their

dedicated help and guidance throughout the preparation of this master thesis. Their in-

sights, ideas, and remarkable knowledge of the topics discussed here, were absolutely

crucial for this work. I would also like to thank Dr. Ryan Woodard for his kind assis-

tance in obtaining option market data. Without his help, it would have been impossible

to perform the analytical tests on real-life market data. In this space, I would also like

to say thank you to all the professors, lecturers, and academic staff for having the priv-

ilege to attend their lectures. Moreover, I must thank all my peers at ETH Zurich with

whom I performed project work, group exercises, or simply those who made my days

at ETH Zurich unforgettable.

Page 3: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

Contents

1 Introduction 8

2 An overview of the current state of liquidity research 9

3 Liquidity measures 12

4 Option market bid-ask spreads 16

4.1 Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1.1 Order processing cost . . . . . . . . . . . . . . . . . . . . . . 17

4.1.2 Inventory holding cost . . . . . . . . . . . . . . . . . . . . . 17

4.1.3 Model risk . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1.4 Hedging and rebalancing cost . . . . . . . . . . . . . . . . . 19

4.1.5 Other factors . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Data and methods 23

5.1 Options data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2 Underlying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.3 Examined time periods . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.4 Fear indices and Liquidity proxies . . . . . . . . . . . . . . . . . . . 26

5.4.1 VIX (Bloomberg: VIX Index) . . . . . . . . . . . . . . . . . 26

5.4.2 Ted-Spread (Bloomberg: BASTDSP Index) . . . . . . . . . . 27

5.4.3 US 10-year Treasury yields (Bloomberg: USGG10YR Index . 27

5.4.4 German 10-year government bond yields (Bloomberg: GDBR10

Index) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.4.5 Italian 2-year government bond yields (Bloomberg: GBTP2YR

Index) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.4.6 OTC-X Liquidity Index (Bloomberg: BNKILIQ Index) . . . . 30

5.4.7 Capital Markets Liquidity Index (Bloomberg: CPMKTL Index) 31

5.4.8 Euro-dollar basis swap spread (Bloomberg: EUBSC Index . . 32

5.5 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.5.1 Time series of average bid-ask spreads . . . . . . . . . . . . . 33

5.5.2 Banks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.5.3 Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3

Page 4: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

5.5.4 Regression model . . . . . . . . . . . . . . . . . . . . . . . . 35

6 Results 36

6.1 Cross-sectoral analysis . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.1.1 Differences across tenors . . . . . . . . . . . . . . . . . . . . 36

6.1.2 Cross-sectoral differences . . . . . . . . . . . . . . . . . . . 36

6.2 ETFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.3 Deep dive: bank sector . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.3.1 High-capitalization vs. low-capitalization banks . . . . . . . . 51

6.3.2 US vs. European banks . . . . . . . . . . . . . . . . . . . . . 56

6.4 Pin risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.5 Regression model of bid-ask spreads . . . . . . . . . . . . . . . . . . 63

7 Conclusions 70

8 Outlook 72

A Appendix A 78

B Appendix B 81

C Appendix C 87

4

Page 5: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

List of Figures

1 VIX index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2 TED spread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 US 10-year Treasury yields . . . . . . . . . . . . . . . . . . . . . . . 28

4 German 10-year government bond yields . . . . . . . . . . . . . . . . 29

5 Italian 2-year government bond yields . . . . . . . . . . . . . . . . . 30

6 OTC-X Liquidity index . . . . . . . . . . . . . . . . . . . . . . . . . 31

7 Capital Markets Liquidity index . . . . . . . . . . . . . . . . . . . . 32

8 EUR-USD basis swap spread . . . . . . . . . . . . . . . . . . . . . . 33

9 Low-cap cross-sectoral bid-ask spreads in a low-liquidity regime . . . 39

10 Low-cap cross-sectoral bid-ask spreads in a high-liquidity regime . . 39

11 High-cap cross-sectoral bid-ask spreads in a low-liquidity regime . . 40

12 High-cap cross-sectoral bid-ask spreads in a high-liquidity regime . . 40

13 Average bid-ask spreads across various moneyness levels in the Bank

and Technology sectors in the high liquidity regime . . . . . . . . . . 42

14 Average bid-ask spreads across various moneyness levels in the Bank

and Technology sectors in the low liquidity regime . . . . . . . . . . . 42

15 OTM high-cap vs. low-cap bid-ask spreads in the tech sector in a low

liquidity regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

16 OTM high-cap bid-ask spreads in the tech sector in a low vs. high

liquidity regime (x-axis shows a day count for the sake of comparison) 46

17 Tech sector high-cap vs. low cap average trading volume in a low

liquidity regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

18 Tech sector high-cap average trading volume in a high liquidity vs. low

liquidity regime (x-axis shows a day count for the sake of comparison) 47

19 Tech sector high-cap average open interest in a high liquidity vs. low

liquidity regime (x-axis shows a day count for the sake of comparison) 47

20 Tech sector high-cap vs. low-cap average open interest in a high liq-

uidity regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

21 Average bid-ask spreads of options on the most popular ETFs with 1-m

maturity in the low liquidity period . . . . . . . . . . . . . . . . . . . 50

22 Average bid-ask spreads of high-cap US banks in a high-liquidity period 55

23 Average bid-ask spreads of high-cap US banks in a low-liquidity period 55

5

Page 6: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

24 Average bid-ask spreads of US banks in a high-liquidity period . . . . 59

25 Average bid-ask spreads of European banks in a high-liquidity period 60

26 Apple OTM option . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

27 Apple ATM option . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

28 Apple ITM option . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

29 Apple OTM vs. ATM vs. ITM in July . . . . . . . . . . . . . . . . . . 63

30 The comparison of the actual and the predicted values for the simple

linear model in the low liquidity period . . . . . . . . . . . . . . . . 66

31 The comparison of the actual and the predicted values for the simple

linear model in the high liquidity period . . . . . . . . . . . . . . . . 66

32 The comparison of the transformed spread and the predicted values for

the final model in the low liquidity period . . . . . . . . . . . . . . . 70

33 The comparison of the transformed spread and the predicted values for

the final model in the high liquidity period . . . . . . . . . . . . . . . 70

34 The output of the Breusch-Pagan test for the simple linear model . . . 87

List of Tables

1 Average relative bid-ask spreads of OTM options (at 90% of the strike

price) across maturities and sectors . . . . . . . . . . . . . . . . . . 36

2 25th, 50th and 75th percentiles of daily sector spreads distribution in

the high liquidity regime at 90% moneyness . . . . . . . . . . . . . . 38

3 25th, 50th and 75th percentiles of daily sector spreads distribution in

the low liquidity regime at 90% moneyness . . . . . . . . . . . . . . . 38

4 Correlation of high-cap vs. low-cap banks with the VIX index across

various moneyness levels and with 1-month maturity . . . . . . . . . 53

5 Correlation of high-cap vs. low-cap banks with the VIX index across

different maturities at 90% moneyness . . . . . . . . . . . . . . . . . 53

6 Correlation of high-cap vs. low-cap banks with the various fear and

liquidity indices at 90% moneyness and with 1-month maturity . . . . 54

7 Average bid-ask spreads of high-cap vs. low-cap US banks with 1-

month maturity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

8 Correlation of US vs. European banks with the VIX index across vari-

ous moneyness levels with 1-month maturity . . . . . . . . . . . . . . 58

6

Page 7: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

9 Correlation of US vs. European banks with the VIX index across dif-

ferent maturities at 90% moneyness . . . . . . . . . . . . . . . . . . 58

10 Correlation of US vs. European banks with various fear indices at 90%

moneyness and with 1-month maturity . . . . . . . . . . . . . . . . . 58

11 Average bid-ask spreads of US vs. European banks with 1-m maturity 59

12 The coefficients of the simple linear model . . . . . . . . . . . . . . . 65

13 The ANOVA table of the simple linear model . . . . . . . . . . . . . . 65

14 The normality test of the simple linear model . . . . . . . . . . . . . 67

15 The model summary of the final model . . . . . . . . . . . . . . . . . 68

16 The coefficients of the final model . . . . . . . . . . . . . . . . . . . 69

17 The normality test of the final model . . . . . . . . . . . . . . . . . . 69

18 Average annualized volatility of OTM (at 90% of the strike price) bid-

ask spreads across sectors . . . . . . . . . . . . . . . . . . . . . . . 81

19 Cross-moneyness correlation with the VIX index . . . . . . . . . . . . 82

20 Cross-index correlation of OTM (at 90% of the strike price) bid-ask

spreads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

21 Cross-maturity correlation with the VIX index at 90% moneyness . . . 82

22 Average bid-ask spread, trading volume and open interest across sectors 83

23 Statistical significance of correlation coefficients of the bank sector (p-

values) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

24 Average bid-ask spread of options on the most popular ETFs with 1-m

maturity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

25 Model summary of the simple linear model . . . . . . . . . . . . . . . 87

26 The residual statistics of the simple linear model . . . . . . . . . . . . 88

7

Page 8: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

1 Introduction

Since 15 September 2008, liquidity has been on the forefront of financial markets’ at-

tention. On that day Lehman Brothers, one of the longest standing and most renowned

investment banks, collapsed and its demise triggered a rapid dry-up of liquidity in al-

most all major markets. Lehman Brothers was deeply rooted in Wall Street’s strong cul-

ture and it was unimaginable that such a well-connected and powerful institution could

fail. As Gorton and Metrick (2011) also discussed the topic, the woes that directly

lead to its final collapse started from its prime brokerage division, which conducted

business with hedge funds and other large institutional investors, providing margin

lending, running large scale repo and reverse repo operations, and most of all relying

heavily on short term repo and commercial paper funding. Lehman Brothers, at the

same time, owned large mortgage-backed securities (ABS) portfolios which consisted

mainly of mortgage-backed securities (MBSs), collateral debt obligations (CDOs) and

synthetic CDOs (both are potentially packaged and layered sets of mortgages and other

mortgage backed securities). As the federal housing market started to decline and

house prices behind these assets suffered significant decrease, the homeowners could

not refinance their mortgages, which led to rising delinquency rates on the mortgages

packaged into the aforementioned bonds. Investors started questioning the value of

these assets as well as the firm’s accounting and valuation policy, demanding adequate

write-downs on impacted assets. Concerns grew over time which were, among others,

reflected in collateral requirements on repos. Increasing collateral requirements and

margin calls signaled the growing reluctance to lend to the firm which in turn led to

the complete dry-up of liquidity. This is considered the start of the 2008-2009 finan-

cial crisis. Since then, regulators and investors have put large emphasis on addressing

systemic and firm-level liquidity issues. Announcements about large-scale liquidity-

boosting central bank programs and open market interventions have been dominating

market sentiment around the globe. The Basel 3 framework, developed by the Basel

Committee on Banking Supervision (2011) and is scheduled to start the testing phase in

2013, already includes a Liquidity Coverage Ratio (LCR) which requires banks to hold

sufficient amount of liquid assets that covers the total net cash outflows over a 30-day

period. Banks and large trading institutions started monitoring and partly controlling

liquidity risk, at least on an intraday (operational) level including payment queues, cash

flow forecasts. However, liquidity risk measurement and control have not reached ade-

8

Page 9: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

quate levels and there is plenty of room for improvement. In this thesis, we aim to give

an overview of liquidity in option markets, introduce common liquidity measures and

examine bid-ask spreads, one of the well-known measures, closely. We look at bid-ask

spreads along moneyness and focus specifically on their characteristics for out-of-the-

money options. The objective is not to set up a comprehensive guide to liquidity risk

but to give an overview that highlights possible future research topics and looks at op-

tion market liquidity from an empirical perspective.

In Section 2, we give an overview of the current state of liquidity research followed

by Section 3 about liquidity measures. Option market bid-ask spreads are introduced

in Section 4. Data and methods used in this paper are described in Section 5 and our

results are presented in Section 6. In Section 7 we conclude our analysis and finish the

paper with an outlook in Section 8.

2 An overview of the current state of liquidity research

Literature on option market liquidity is thin. Most published papers cover currency

options, accessible material on equity options are rather difficult to organize in a clear-

cut framework. Mayhew et al. (1999), Kalodera and Schlag (2004) and Cao and Wei

(2010) conducted empirical research on individual equity options and published some

of the most frequently cited papers on this topic. Mayhew et al. (1999) found that op-

tions are more liquid for stocks with higher price, greater volatility and higher trading

volume. Kalodera and Schlag (2004) examined specifically German stocks and found

that the higher the trading volume of a stock, the higher the frequency and volume of

option trades on the stock. Cao and Wei (2010) examined the overall equity option mar-

ket and with regard to commonality and other features. They found that commonality

for various liquidity measures is strong even after controlling for the underlying stock

market’s liquidity and volatility. In addition, they also claimed that the market-wide

option liquidity is closely linked to the underlying stock market’s movements and that

information asymmetry plays a more dominant role than inventory risk as a determi-

nant of liquidity.

As similar line of research was conducted by George and Longstaff (1993), who an-

alyzed the bid-ask spread of S&P 100 options in 1989 using various strike prices and

maturities and concluded that the cross-sectional differences are related to costs of mar-

9

Page 10: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

ket makers and frequency of trading. They also found that call and put options behave

as substitutes, their trading volume is dependent upon the ratio of their bid-ask spreads

(if put options have higher bid-ask spreads, trading volumes of call options are higher).

Time series properties of liquidity are only examined by a few researchers. Wei and

Zheng (2010) focused on the trading activity and bid-ask spreads of individual eq-

uity options and found that option return volatility (the option elasticity - the absolute

value of the option’s delta - times the stock return volatility) explains bid-ask spread

changes to a much higher extent than previously considered measures such as stock

return volatility and option trading volume. Another finding was the substitution effect

of maturities due to unavailability (market participants tend to trade with the options

that have a maturity closest to the desired one and have sufficient liquidity). Lastly,

the third, rather intuitive, outcome is the moneyness substitution effect described by

the switch to out-of-the-money (OTM) options from in-the-money (ITM)options when

stock return volatility increases, resulting in tightening bid-ask spreads for the OTM

options (in isolation from the increase in volatility).

Chacko et al. (2010) constructed and index-based measure of liquidity, which consists

of long positions in exchange-traded funds (ETF) and short the underlying assets. The

authors observed systematic pricing discrepancies between the ETF and the underlying

assets. They argue that the reason for the pricing discrepancies can be attributed two

things. First, markets are inefficient and the pricing discrepancies represent arbitrages.

Second, the positions differ on liquidity. They assume that systematic arbitrages are

not possible and conclude that, in general, ETFs are more liquid than the individual

components of the ETF. This broadly confirms the common intuition about liquidity of

ETFs.

A rather separate line of research is represented by Bouchaud et al. (2004), who exam-

ined the details of prices changes at a trade by trade level and the impact of a series of

individual trades on the price and volatility of stocks. The first finding is that the trades

are almost purely diffusive, the random walk behavior of stock prices also prevails at

the trade by trade level and the diffusion constant is on the order of the average square

of the bid-ask spread. Supported by various examples, Bouchaud et al. (2004) argues

10

Page 11: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

that the fluctuation for small tick-size stocks is constant and approximately equals the

tick size, whereas the bid-ask spread is two ticks. Thus, every transaction typically

moves the mid-price by half of the bid-ask spread. Bouchaud et al. (2004) also intro-

duces the market impact factor which shows how much the price increases in average

over time after an initial buy order, depending on a power-law function of the volume

of the trade:

R(T, v) = E[(pT − p0)ε0|v0 = v]

R(T = ∆t, v) α vψ(∆t); ψ(∆t) ≤ 1,

where v is the volume; ∆t is the elementary time scale, ranging from the average trans-

action time to hours or days; p is the price at the respective point in time; and ψ is an

exponent increasing with the elementary time scale, taking rather small values for in-

dividual trades and increasing towards 1 when ∆t corresponds to several thousands of

trades.

The second important result based on this is that the temporal structure of the impact

function first increases up to a maximum after 100-1000 trades, and then starts to de-

crease with a rather limited variation. Third, as Bouchaud et al. (2004) put it, ”the

sign of the trades shows surprisingly long-range (power-law) correlations, at least up

to 15000 trades (two trading days)”.

A recent interesting empirical finding is the role of high-frequency trading in market

liquidity and how it revealed the fundamental differences between volume and liquid-

ity. As discussed by Lauricella (2010) and The Technical Committee of the Interna-

tional Organization of Securities Commissions (2011), high-frequency trading played

a pivotal role in the flash crash on 6 May 2010. Typically, HFT algorithms submit thou-

sands of orders with low volumes in a matter of seconds (and often also revoke them)

and thereby deceiving the market with the perception of high liquidity. However, in re-

ality, HFTs are willing to provide these volumes in normal and usually slightly trending

market conditions but only in very small lots. In other words, the depth of the quotes

and the depth of the HFT-dominated markets are very low and even this level of liq-

uidity is dependent on other factors. HFTs withdraw liquidity from the market in a

split second if they detect any unusual activity or pattern. This means that in a severe

11

Page 12: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

downturn or in a situation when markets need liquidity, HFTs do the exact opposite

and take away liquidity. These algorithms also often account for a significant portion

of the total trading volumes. If the algorithm shuts down, a large volume will be taken

away from the market which amplifies the liquidity problems, creates further swings,

and prevents other market participants from trading, damaging the whole market.

3 Liquidity measures

In order to examine liquidity in option markets, we require adequate ways and prox-

ies to measure it, which can be implemented without excessive computational or data

requirements. There are various measures of liquidity in option markets in academic

literature. However, some of these measures do not match the practitioner’s view of liq-

uidity and often provide counter intuitive or conflicting results. In this space, only the

most important and commonly accepted measures are discussed without the intention

to provide a complete list of available ones. We rely mainly on Cao and Wei (2010) for

the list of measures below:

• Contract volume, defined as the total number of options traded during the day.

• Dollar Trading volume: the midpoint of the bid and ask quotes times the volume

summed over all the options within the day.

• Trading volume represents the number of shares traded in a certain time period.

It can be calculated for various intervals, starting from yearly turnover down

to daily granularity. Trading volume inherently shows a high correlation with

issued or outstanding amount for all securities, therefore it should only be used

with awareness and as a complementary measure.

• Turnover is equal to the product of the volume and the price of the same transac-

tion summed up during a specific time period. Turnover makes comparison be-

tween different securities of the same type possible and serves as a better proxy

for liquidity. However, it is often used in a relative form to further correct for

differences across securities in a certain market.

• Relative turnover is simply the absolute turnover described above, normalized

with the number of shares outstanding, floating free on an exchange. Regard-

ing liquidity, relative turnover provides a more accurate picture augmented by a

12

Page 13: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

capitalization weighting. This relative turnover as described by Sarr and Lybek

(2002), shows how many times securities change hands. Relative turnover is us-

ing the same analogy as the velocity of money, as also mentioned by Sarr and

Lybek (2002).

• Sarr and Lybek (2002) suggested another measure; although mostly used in

academic research only, where they combined two additional liquidity measures:

the market index average daily price change and the ratio of the market index

daily price change and turnover rate.

The market index average daily price change is closely related to the market-level

volatility. A lower level would indicate a higher liquidity. By their logic, a higher

price change suggests lower liquidity. The ratio of the market index average daily

price change and the turnover rate represents the effect of turnover and market

capitalization on index volatility. The higher the ratio, the lower the liquidity and

possibly the lower the depth due to the greater impact of large transactions on

the price and the lack of high-volume transactions with tight spreads.

• Quote/Market depth tells us the number of option contracts for which the quote

is valid. Low number of ask prices, relative to previous prices, might only be

valid for a significantly lower number of available options, meaning the depth of

the quote is rather low. According to common practice, a higher market depth

contributes to higher liquidity. Market depth is defined as the size threshold of a

trade necessary to move the market a given amount.

• Frequency of trades tells us how many times securities change owners in a time

interval. Alternatively, the time between two consecutive trades can be mea-

sured, in order to express how often transactions occur. In isolation, higher fre-

quency figures are commonly, although often falsely, assumed to indicate higher

liquidity. Higher readings of the time between two consecutive transactions sug-

gest lower liquidity; however, this is certainly not sufficient for determining liq-

uidity. Number of orders is also commonly used instead of number of transac-

tions during a certain period of time. Number of transactions in an interval is

used by practitioners for comparison between various markets. The difference

between the frequency of trades and relative turnover is that the latter uses free

float as the correction, while the former considers the trades only. This means

13

Page 14: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

that the two measures are certainly not the same (simply turnover is a ”dollar

amount”, while frequency is the reciprocal of time between trades). An interest-

ing point here is the impact high frequency traders (HFT) have on the market.

These traders post hundreds, thousands, or even higher number of orders per

minute, often also execute trades with a very high frequency. This gives the im-

pression of high liquidity in the market. However, these high frequency orders

have little depth, often only one or a few units. This can certainly not be consid-

ered high liquidity as trades with higher amounts will not be executed on these

prices or will not be executed at all. HFTs are often built on trend-following

strategies (i.e. scalping or skimming) which generate volume but reduce liquid-

ity or on liquidity-making strategies which utilize liquidity rebates offered by

exchanges for providing securities for trade when needed in reality but do not

provide real liquidity due to negligible quote depths.

• Open interest means the total number of option contracts currently open. Ac-

cording to Graham (2012), these are the contracts that have been traded but not

liquidated yet by an exercise or by an offsetting trade. Note that open interest is

not the same measure as trading volume. If a trader buys 10 calls on a particular

stock, buying the calls to open, it adds 10 to the open interest. When the trader

sells these options to close, open interest falls by 10. Selling options can also

add to open interest if the trade is a sale to open transaction. For example, the

trader owns sufficient number of shares of a particular company and intends to

do a covered call by selling 10 call options. This adds 10 to the open interest

again. If the trader later repurchased the options (buy to close), open interest

would decrease by 10. In case the options traded in a transaction are not cre-

ated by the same transaction, calculation is more complicated. If a trader sold

10 calls to open but the other side of the trade was taken by someone who buys

to close, the overall open interest number would not change. From a liquidity

perspective, open interest is a very informative measure. If the open interest for

an option is low or zero, there is no secondary market for that option. The higher

the open interest, the easier it is to get orders filled at fair prices and trade the

option with relatively small bid-ask spread (bid-ask spreads are discussed in Sec-

tion 4). Open interest is also interesting relative to the volume traded. Graham

(2012) points out that if the daily trading volume is higher than the open interest

14

Page 15: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

on a particular day, trading activity is considered exceptionally high that day.

• Liquidity ratio 1: As Franic (2008) describes it:

LR1t =Tnt|rt|

=

∑Ni=1 pi × qi|rt|

where LR1t denotes liquidity ratio over time ∆t, pi is the price, qi is the amount

traded, rt is the return (the percentage price change as the absolute value). The

liquidity ratio 1 expresses the turnover in terms of absolute price change in a

time interval. The liquidity ratio 1 is often referred to as Amivest ratio (named

after the company, which created it). Larger price changes can be absorbed if the

turnover is higher. Of course, high liquidity ratio 1 means higher liquidity. In

case the return is zero, LR1t resets to zero.

• ILLIQ: the ratio of stock return to its dollar volume, averaged over a certain time

period, introduced by Amihud (2002). Calculated daily, it describes the daily

price response associated with one dollar of trading volume, thus as Amihud

(2002) puts it, serving as a rough measure of price impact. The generally used

formula for the monthly ratio is the following:

ILLIQit =1

Daysit×Daysit∑d=1

×Rtdi

Vtdi,

where R is daily return, V is daily volatility, t denotes the time period, d refers

to days and t to months. ILLIQ is also simply the reciprocal of LR1:

ILLIQit =1

LR1t=|rt|Tnt

.

There are two versions of ILLIQ used in literature: AILLIQ or the absolute

change in daily closing price divided by the dollar volume and PILLIQ or the

percentage change in daily closing price divided by the dollar volume. Franic

(2008) argue that for options, the AILLIQ and PILLIQ measures are constructed

similarly with two important modifications. First, the daily change in option

prices is adjusted by the product of the option’s cash delta and the cash change in

the underlying stock price. This adjustment accounts for the change of the option

price solely due to the change in the underlying security price. Second, a volume

15

Page 16: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

weighted average is calculated for each measure using the trading volume of

each option.

• Probability of Informed Trading (PIN) is also used as a liquidity measure, as

trading against adverse information is often by far the most heavily-weighted

component of the bid-ask spread. Informed trading might come from illegal

insider information or better analysis of publicly available data. PIN is there-

fore widely used as a quantitative measure, based on the Poisson distribution.

PIN was introduced by Easley et al. (1996) and suggested an empirical method

that allows to estimate the probability of informed trading and that has subse-

quently been used to address a wide range of issues in market microstructure.

PIN was originally decomposed from the adverse selection component of the

bid-ask spread. As Grammig and Theissen (2003) puts it, the data needed for

estimation is the number of buyer- and seller-initiated trades.

4 Option market bid-ask spreads

In general, the price at which an investor can sell (buy) is lower (higher) than the

value of the asset. The difference between the selling price (bid price) and the buy-

ing price (ask price) constitutes a bid-ask spread, which reflects the transaction costs

of trading. It provides an approximate cost of trading, mostly for market makers and

dealers. Traders pay clearing and/or transaction fees to the option or stock exchange

and brokers, which are calculated for each individual transaction. Bid-ask spreads

also compensate dealers for providing immediacy service (the costs convenience of

trading without significant delay) and for taking the model risk (especially for out-of-

the-money options). Narrow bid-ask spreads indicate high liquidity. The most simple

version of bid-ask spread is the absolute or quoted spread, calculated as the differ-

ence between the lowest ask price and highest bid price. Absolute spreads are always

positive and their lowest value is the tick size. There are numerous types of bid-ask

spread measures such as log absolute spread, relative spread, effective spread, as in

Roll (2012).

4.1 Composition

As opposed to the three components of the bid-ask spread in the cash market (order

processing cost, inventory holding cost, and trading against adverse information), the

16

Page 17: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

bid-ask spread of traded options is determined by four main factors. As Chan and

Chung (1999), George and Longstaff (1993), and Engle and Neri (2010) explain, the

following factors directly influence the bid-ask spread:

• Order processing cost;

• Inventory holding cost;

• Model risk;

• Hedging and rebalancing cost;

The components and their impact are described below.

4.1.1 Order processing cost

The order processing cost includes the transaction costs, clearing fees, costs of market

making, infrastructure and labor expenses, costs of providing quotes at all times, as ex-

plained by Demsetz (1968). These are mainly fixed costs, although higher transaction

volumes reduce per-trade effects of these factors. Kim and Murphy (2011) explain that

the fixed transaction cost will always be incurred and additional costs will be incurred

for large trades because the supply schedule has an upward slope reflecting how large

orders climb up in the order book.

4.1.2 Inventory holding cost

Market makers have to carry an inventory of options available for trade any time. This

implies rebalancing costs to prevent imbalanced inventories, i.e. the risk-related costs

of carrying the inventory. The funds locked up in the inventory also imply opportunity

costs, which is equal to the missed returns of investments in other asset classes or

assets. Literature on inventory holding costs is extensive and considered complete

( Tinic (1972), Huang and Stoll (1997), Amihud and Mendelson (1980), Ho and Stoll

(1981)). Stoll (2012) argues that inventory holding costs increase with the opportunity

costs of holding a tradable portfolio. This implies that lower funding costs, ceteris

paribus, lead to lower inventory holding costs reflected in narrower spreads.

4.1.3 Model risk

Model risk comes from the inappropriate choice of option pricing models or the pa-

rameters of those. Higher than expected stochastic volatility or tail-events can easily

17

Page 18: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

cause inaccurate pricing of derivatives regardless of the pricing model. Scotti (2012)

performed a thorough analysis on the effect of parameter uncertainty on a stochastic

volatility model and showed that his analysis can justify endogenously the presence

of a bid-ask spread on the option prices. Important to note that this component is

particularly pronounced for OTM options, given that tail-risk influences this space in

moneyness. In case of ITM options, the uncertainty is less relevant. There is no down-

side and trading in these options is limited as the underlying can be purchased with

lower costs due to tighter bid-ask spread.

Routledge and Zin (2009) explain that the pricing model is built on limited and im-

perfect data, mostly in terms of volatility. Market makers and dealers typically stress

test their models to obtain a realistic picture of adverse outcomes and an approximate

shape of the distribution. Still, how large the tail should be and what distribution to

use remain key questions. Bid-ask spreads can be used to compensate for this un-

certainty based on the outcomes of the stress test. Routledge and Zin (2009) describe

the model risk component the following way: ”When there is ambiguity about the ap-

propriate probability distribution of future cash-flows for the underlying security, the

market maker is uncertain about the dynamic consequences of their derivatives trading.

This uncertainty increases the market-maker’s bid-ask spreads and reduces liquidity.”

Scotti (2012) proposed a method to transfer uncertainties of the option prices in a bas-

ket into the uncertainty around the calibrated parameters of market maker, which he

considered monopolist for the sake of simplicity in his analysis. First the calibration

is performed with neglecting the bid-ask spread and with fixing the option price at the

mid-price. Then an option j is fixed on the basket used to calibrate, its price is shifted

to ask price and then re-calibrated. The new calibrated parameters then represent a

stress of the previously calibrated parameters. Afterwards, Scotti (2012) calculated the

difference between the two set of parameters and interpreted it as standard deviation

of calibrated parameters, which are submitted to a stress into the price of option j. He

was then able to reconstruct the variance-covariance matrix with respect to the random

source in option j. The process was then performed for all options in the basket and,

as the final step, the global variance-covariance matrix was constructed.

18

Page 19: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

The issues and costs associated with model risk are amplified by the presence of in-

formed traders. The risks stem from trading in an environment characterized by asym-

metric information as laid out by Bagehot (1971), Glosten and Milgrom (1985), Kyle

(1985), Amihud and Mendelson (1986), Easley and O’hara (1987), Glosten and Harris

(1988), and Admati and Pfleiderer (1988). As Black (1975) discussed it, informed mar-

ket participants prefer trading in options due to higher leverage and/or lower upfront

costs, although transaction fees might be higher.

4.1.4 Hedging and rebalancing cost

On top of the three types of costs described above, the market maker in the option

market also have to face the cost of hedging and rebalancing his portfolio. Cho and

Engle (1999) show that the inventory of options in the market maker’s trading book

is essentially a derivative portfolio, which requires delta hedging with the underlying

securities. They state that the hedging cost is therefore proportional to the percentage

delta:

∆% =∂ct∂St· Stct

where ct is the option price while St is the price of the underlying security.

However, as Kaul et al. (2004) argue, that rebalancing the initial hedge incurs additional

rebalancing costs, proportional to vega (shows how much the option’s price changes

for a 1 percentage point change in the underlying’s volatility) times the spread of the

underlying security.

Other proxies to the rebalancing costs are also often used: Petrella (2006), for example,

models these costs with gamma times the variance of the underlying security:

∂2ct∂S2

t

· (dSt)2,

where the first term is gamma (Γ) and the second term corresponds to the variance of

the underlying. As Engle and Neri (2010) put it, this captures the second order term of

the options inventory value as market moves, while the first order term is captured by

the initial hedging cost, as introduced by Cho and Engle (1999).

19

Page 20: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

4.1.5 Other factors

The magnitude of the listed effects depend on various other measures, such as the

moneyness, the delta of the particular call or put, transaction and clearing costs, and

price volatility caused by new or adverse information.

Chaudhury (2011) discovered that the option volatility surface might introduce sub-

stantial bias into spread measures, thus relative percentage spreads might suggest liq-

uidity levels which are contradicting the general view and lead to false conclusions. Chaud-

hury (2011) introduced alternative measures which are scaled by implied volatility.

The first one is the Spread Relative to Dollar Volatility (SRDV):

SRDV =100 ∗DSDDV

,

where DS is the dollar spread and DDV is the daily dollar volatility of the asset. Here

DDV is derived the following way:

DDV = S × σi ×√

1/252

where S is the underlying asset price and σi is the annual implied volatility (from the

moneyness).

Chaudhury (2011) argues that the new measures do not introduce any bias in the liq-

uidity measure due to the relative levels of the option prices. However, the volatility

smile might still decrease the SRDV’s adequacy as a liquidity measure but this can

be prevented by including a multiplier in the calculation based on the ratio of average

volatility of the option bucket and the average volatility of ATM options.

The second one is the Implied Volatility Relative Spread (IVRS):

IV RS = 100 × (σiA − σiB)

σiM,

where σiA is the implied volatility of the ask price, σiB is the implied volatility of

the bid price and σiM is the implied volatility of the mid price. IVRS resembles the

conventional relative spread with the difference that the bid, ask, and mid prices are

expressed in implied volatility units.

Besides the four components introduced above, there are also other market and exter-

nal factors which influence the bid-ask spread of traded options. The characteristics of

20

Page 21: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

the order book also play a large role in determining actual bid-ask spreads for particu-

lar trades. The best bid and ask prices are valid only for a certain amount of options.

In case of a large trade, a chunk of the trade will be executed at the best ask and the

second chunk will be fulfilled at a higher price, and this goes on until the whole order

is filled (if it is filled at all). This shows how large trades climb up the order book. The

mechanism is similar for the bid price. After the best bid price is hit, the seller typically

shifts the bid price lower. This process widens the bid-ask spread, although most of the

time only temporarily.

As such, the microstructure of the market has a rather large impact on the bid-ask

spreads. The tick size, the number of market makers, transaction costs, transparency

and disclosure rules all belong to these factors. There were two interesting phenomena

in recent years that serve as an example of how changes in the microstructure result in

changes of the bid-ask spread.

The first one is the decimalization of option market quotes in 2007 which reduced the

tick size of exchange traded options. As a recent International Securities Exchange

(2011) analysis explains, before 2007, options were quoted with MPVs (minimum

price variations) of $0.05 for premiums below $3.00 and $0.10 for premiums above

$3.00. In 2007, the SEC launched a pilot program on six option exchanges, called the

Penny Pilot Program. Within the framework of the program, MPVs were set to $0.01

for premiums below $3.00 and to $0.05 for premiums above $3.00. ETFs were already

traded in penny ($0.01) increments by this time. This kind of structure certainly leads

to a jump in relative bid-ask spreads for premiums close to $3.00.

Bid-ask spreads tightened after the decimalization but the quote depth decreased sig-

nificantly. According to Bangia et al. (2002), quote depth is defined as the volume of

shares available at the market maker’s quoted price. Several studies on the decimaliza-

tion concluded that in general the reduction of tick size led to higher liquidity. However,

there were also adverse effects of the penny pilot program, especially regarding insti-

tutional traders. Rhoads (2011) pointed out that the number of contracts on both sides

of the quotes decreased substantially in several cases, which proved to be an obstacle

to institutional traders executing their full orders at the bid or ask price. Rhoads (2011),

on the other hand, admits that the impact to individual traders has been positive because

21

Page 22: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

the cost of entering and exiting positions was reduced.

Another example is the steeply increasing activity of high frequency traders (HFTs),

which carve out significant shares of all trades and orders in option markets. HFTs are

(often falsely) considered beneficial from an overall liquidity perspective because by

posting thousands of orders per minute and executing larger number of trades than other

participants, they contribute to the liquidity of the market and to narrower spreads, at

least according to the general (poorly informed) view. On the other hand, a few of the

HFT strategies cause the bid-ask spread to move to the opposite direction. These HFT

strategies often involve the so-called ”front running” technique. An example for this is

presented by Arnuk and Saluzzi (2009) when they discuss the latency-arbitrage strat-

egy. HFTs subscribe to live data feeds of exchanges and thus immediately (and earlier

than others) see large orders on the tape or detect them using flash orders (if possible),

consisting of the submission and lightening-fast cancellation of orders. Important to

note that flash orders are not allowed in some exchanges any more. If the algorithm

discovers a large block order in the order book, it submits buy orders to hit all the ex-

isting quotes at the current level. Subsequently, using its infrastructural advantages, it

resubmits offers a tick or two higher and fills the order of the institutional trader. With

this, the HFT can earn up to a cent or two on every security sold, thereby making the

institutional or block trader worse off. This mechanisms effectively widens the spread

for the rest of market participants. The hidden orders and hidden spreads make it more

difficult for market makers to manage their risks in a fast-enough manner and lead to

permanently higher bid-ask spreads. As a recent Bank for International Settlements

(2011) study discusses, the size of the bid-ask spread is not the only determinant of

liquidity. The size, which determines quote depth, and the lifetime, which indicates

how long the quote stays in the market before it is cancelled, are also important factors

in overall liquidity. HFTs with certain strategies often provide relatively low bid-ask

spreads; however, the quality (mostly in terms of depth and persistence) of these are

not comparable to those of conventional market makers.

According to Engle and Neri (2010), various options markets also influence the mi-

crostructure of one another. As Mayhew (2002) argues, options listed on multiple ex-

changes trade with narrower spreads than those listed only on a single exchange. May-

22

Page 23: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

hew (2002) also observes that spreads become wider as soon as one of the multiple

exchanges delists the option.

5 Data and methods

5.1 Options data

For the analysis, Strickland & Associates’ End of Day Options Data from Strick-

net.com (2012) was used which consists of all traded options in the United States

and Canada. The daily closing data includes the type of the option, the strike price,

the maturity date, the last price, the bid price, the ask price, the volume traded, and the

open interest. The underlying for these options are exchange traded shares of US-listed

companies and exchange traded funds (ETFs). ETFs include currencies, equities, com-

modities, indices, and generally all available underlying assets. Options were available

for all maturity dates and strike prices. Important to note that the dataset only includes

the US listed options of foreign companies. Over 400,000 US-listed options are in-

cluded in the database which thus requires careful selection and filtering. Data was

obtained for the time period from 1 January 2011 to 31 July 2012. The database only

contains the maturity year of options before October 2010, the exact maturity date is

not available.

5.2 Underlying

Underlying assets include exchange traded shares of public companies and ETFs. For

each particular underlying, daily opening and closing, as well as the highest and lowest

prices and daily trading volume were available. The data includes over 30,000 US-

listed stocks and ETFs.

5.3 Examined time periods

The available data covers a particularly eventful and challenging time period for global

economies and financial markets. The time period starting on 1 January 2011 followed

a bullish period on global equity and commodity markets with major US, European

and Asian indices exhibiting large gains during the recovery process from the shock

caused by the subprime credit crisis in 2008. The escalating European sovereign debt

crisis, the slowing growth in the Asia-Pacific region, and the subdued US recovery

all posed formidable challenges for financial markets. Governments and central banks

23

Page 24: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

have played an increasingly important role through interventions and changing regula-

tion.

In the US, the Federal Reserve (Fed) launched the second round of quantitative easing,

commonly referred to as QE2 (from November 2010 to June 2011), by purchasing trea-

sury securities, which increased the monetary base. The aim of all quantitative easing

programs was to stabilize markets, boost liquidity and stimulate the economy. Quanti-

tative easing aims to inject a predetermined quantity of money into the economy. This

money is created by the central bank for this purpose. While in QE1 the Fed targeted

mortgage bonds (MBS products), this time they purchased mainly treasury securities

($600 billion), government bonds, from banks and market participants, therefore de-

creasing short-term interest rates and lowering yields, essentially steepening the yield

curve. Quantitative easing, by design, leads to higher excess reserves for banks and

higher asset prices. This certainly has an inflation-supporting impact to maintain in-

flation around or above the target level to avoid deflation. Along these lines, the Fed

also launched its Operation Twist aiming to flatten the yield curve when already low

short-term interest rates did not allow for further monetary loosening. The objective of

Operation Twist was lowering long term interest rates by purchasing long-dated and,

at the same time, selling short-dated government bonds, thus ”twisting” the yield curve.

In the UK, the Bank of England also pursued its own quantitative easing through asset

purchases, mostly UK government debt (gilts). The Monetary Policy Committee have

expanded the quantitative easing several times since the launch in 2009 and kept its

benchmark lending rate low. The Bank of Japan and several central banks undertook

the same approach.

In Europe, the European Central Bank (ECB) maintained record low interest rates

(1.5% until 9 November 2011, then1.25%until 14 December 2011 and 1% onwards un-

til the 0.25% rate cut on 11 July 2012) and performed several open market operations.

The ECB purchased covered bonds several times as well as European government debt

to expand the monetary base, boost liquidity, lower interest rates generally and also

specifically yields on certain countries’ government debt (mostly of those severely im-

pacted by the European debt crisis). The central bank also launched 12-month and

24

Page 25: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

36-month long term refinancing operations (LTROs). The LTROs provided banks with

long term loans with low interests rates backed by an extended set of collaterals (lower

rated asset backed securities and performing credit claims, i.e. bank loans, are now

accepted).

The policies and interventions described above all aimed, together with other goals, to

boost liquidity in financial markets. The vast majority of the current analysis was per-

formed on two distinct low and high liquidity time intervals. The low liquidity period

is characterized by high volatility and downward trending trading volumes, while the

high liquidity period is described by low volatility and stable, slightly increasing trad-

ing volumes. The low liquidity interval spanned from 1 August 2011 to 26 September

2011. This period started with the downgrade of the US long-term credit rating from

AAA to AA by Standard and Poor’s. The downgrade had several types of impact

from the financial markets’ perspective. Collateral requirements on derivatives and

structured products necessitate higher collateral posted in the form of US government

bonds. This reduces liquidity of widely interconnected banks trading with structured

products (often relying on US and other high-rated treasury securities as collateral).

The downgrade also triggered high uncertainty in all markets, showing a general loss of

confidence. More importantly, the Greek debt crisis escalated by this time with Greek

credit default swap (CDS) spreads reaching all time highs. CDS spreads are regarded

by markets as a way to price credit risk; rising spreads suggest increasing risk. From

end of August, Greek CDS spreads have stayed above 2000 basis points and kept rising.

The high liquidity interval taken here started on 1 February 2012 and ended on 29

March 2012. After the joint action of 8 central banks to cut US dollar borrowing

rates at the end of November, another major intervention came in December. On 21

December 2011, the ECB launched the first LTRO which succeeded in boosting liq-

uidity in global markets. Volatility started to decline, trading volumes increased, and

major indices started rising within a few weeks. Overnight deposits at the ECB and

the overnight indexed swap (OIS) rates along with LIBOR-OIS spread also decreased,

which together suggest increased interbank lending. The second LTRO was launched

on 29 February 2012 which amplified these trends supported the market rally in the

first few months of 2012. During this high liquidity period, volatility indices such as

25

Page 26: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

the VIX and the MOVE (we introduce both indices in Section 5.4) sank below thresh-

old levels regarded as the boundary for high and low liquidity (e.g. VIX sank below

20). The LTRO was supported by other macroeconomic events, such as the Greek debt

restructuring on 9 March 2012 and positive US employment data releases.

5.4 Fear indices and Liquidity proxies

In this subsection, we list fear indices and liquidity proxies used in our analysis to

calculate correlation with. These are widely regarded as relatively accurate indicators

of liquidity in the respective markets or often even globally. Correlation is calculated

between the daily return time series of the average bid-ask spreads and the daily return

time-series of the respective fear index.

5.4.1 VIX (Bloomberg: VIX Index)

The Chicago Board Option Exchange Volatility Index (VIX) is regarded as the most

important ”fear index”. Rising VIX indicates rising volatility and declining liquidity.

The VIX (Figure 1) is quoted in percentage points and reflects the market risk-neutral

expectation for the S&P 500 return volatility over the next 30 days.

Figure 1: VIX index

26

Page 27: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

5.4.2 Ted-Spread (Bloomberg: BASTDSP Index)

The Ted-Spread (Figure 2) is the difference between the 3-month London Interbank

Offered Rate (LIBOR) and 3-month US treasury yields in basis points (bps). The name

Ted comes from the concatenation of T-bills and EDs (the ticker for Eurodollar future

contracts represented by the LIBOR). The Ted-Spread is calculated also for other tenors

but the widely used one is the 3-month spread. Rising Ted-Spread usually suggests a

downturn in US stock markets and a dry-up of liquidity.

Figure 2: TED spread

5.4.3 US 10-year Treasury yields (Bloomberg: USGG10YR Index

US 10-year Treasury notes (Figure 3) are commonly considered one of the safest assets

available in the market due to the perceived credit quality of the United States. In

times of market turbulence or crisis, investors allocate more funds into Treasury notes

and lower the yield on those. Often they are referred to as safe haven assets, along

with certain other assets such as German (see below) and UK treasury securities, as

well as gold. Historically, relatively low yields characterized low liquidity and high

volatility regimes, while the opposite was true for high liquidity and low volatility

periods. Interestingly, the downgrade of the US long term credit rating did not change

27

Page 28: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

the T-notes’ safe haven status and yields even shrank after the downgrade. This is

commonly referred to as flight to safety. Since then, consistently low yields can be

witnessed; however, this can also partly be attributed to the Fed’s Operation Twist.

Figure 3: US 10-year Treasury yields

5.4.4 German 10-year government bond yields (Bloomberg: GDBR10 Index)

German 10-year government bonds (Figure 4) are the choice of risk averse investors

and asset managers in the Euro area or those who are seeking low-risk exposure to

the Euro zone. The German government’s credit quality is still among the few AAA-

rated ones, the highest possible. Yields on German government debt (bunds) followed

a similar trajectory to that of the US treasury yields, i.e. declining since the beginning

of the European debt crisis. Changing liquidity conditions can be observed through the

oscillations of the bund yields. Low levels appear to be persistent on a longer term but

changes and disturbances still suggest drops and spikes in market liquidity.

28

Page 29: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

Figure 4: German 10-year government bond yields

5.4.5 Italian 2-year government bond yields (Bloomberg: GBTP2YR Index)

Since 2011, when Italian budget deficit issues appeared in the forefront of Euro-zone

politics and media, Italian 2-year government bond yields (Figure 5) have been con-

sidered an accurate fear index. Rising yields usually signal declining liquidity and

deteriorating market conditions. Above 7% yields, the debt trajectory of the country

is deemed unsustainable, as indicated by Antonucci and Lin (2011). Yields on Span-

ish government bonds have behaved in a similar manner in the last two years, closely

following developments of Euro-zone rescue plans, bailout proposals and decisions (or

the lack of them) in G-8 and G-20 meetings. After preliminary analysis, we found that

Italian bond yields followed Euro-zone events more closely than Spanish bond yields.

In recent times, demand for 10-year Italian bonds collapsed to almost zero, while de-

mand for 5-year bonds dropped significantly due to the country’s mid-term prospects.

29

Page 30: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

Figure 5: Italian 2-year government bond yields

5.4.6 OTC-X Liquidity Index (Bloomberg: BNKILIQ Index)

Based on discussions with Zurich-based cash equity traders, we have included the

OTC-X Liquidity Index (Figure 6) in this thesis to account for latent or hidden liq-

uidity in OTC markets. The OTC-X Liquidity Index is an equally weighted equity

index and contains the 100 most liquid shares in the Swiss market. The index is cal-

culated using bid prices. Important to note, that the index is not directly related to the

liquidity of exchange-traded securities; it only allows to monitor changes on the OTC-

X platform. However, it might be interesting to take a look at its correlation with the

examined spreads and other liquidity proxies.

30

Page 31: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

Figure 6: OTC-X Liquidity index

5.4.7 Capital Markets Liquidity Index (Bloomberg: CPMKTL Index)

According to its fact sheet, provided by the Dorchester Capital Management Com-

pany (2008), the Capital Markets Liquidity Index is calculated from the the total return

of over 98% of the traditional investment grade U.S. liquidity markets. The compo-

nents include investment grade fixed income securities with maturity dates within one

year issued by the U.S. Treasury, U.S. federal agencies and other U.S. government-

sponsored entities, as well as U.S. corporations. The index also incorporates money

market instruments including: commercial paper, bankers’ acceptances, U.S. federal

agency discount notes and certificates of deposit. The Capital Markets Liquidity Index

can be seen in Figure 7.

31

Page 32: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

Figure 7: Capital Markets Liquidity index

5.4.8 Euro-dollar basis swap spread (Bloomberg: EUBSC Index

The euro-dollar basis swap (Figure 8) is a cross-currency basis swap agreement in

which one party borrows from the other party in one currency and at the same time

lends the same value in another currency (floating rate to floating rate). The first party

regularly (i.e. per three months) pays for the borrowed amount an agreed interest rate

plus the spread of the basis swap and receives the agreed interest rate for the funds

borrowed. At the end of the term, the difference is paid, as no principal exchange takes

place. The euro-dollar basis swap exchanges floating rate euro-denominated finan-

cial instruments for floating rate dollar-denominated financial instruments. The spread

shows the effective price for exchanging these instruments. In times of financial tur-

moil, the spread tends to increase which suggests dollar chasing or flight to safety. It

represents a funding squeeze of banks from the euro funded block relative to the dollar

funded block.

32

Page 33: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

Figure 8: EUR-USD basis swap spread

5.5 Methods5.5.1 Time series of average bid-ask spreads

Daily average bid-ask spreads were taken for the groups of high and low capitaliza-

tion companies selected from the upper 10 percentile and lower 10 percentile of the

Yahoo Finance sector classification (see Appendix A). Altogether, the analyses were

performed with 8 sectors for the above-mentioned high and low liquidity regimes (ta-

bles can be found in the Results section). This time, only call options were considered

in order to compare the same type of securities. As the put-call parity implies that

puts and calls can be used interchangeably in any delta-neutral portfolio, examining

only calls does not limit the application of findings to call options only. Note that the

put-call parity is valid for European put and call options with identical strike prices

and maturity dates but it can be rearranged into an inequality for American options to

obtain upper and lower bounds for the price, as discussed in Bemis (2006). Options

with a bid/ask price of 0 were excluded from the analysis. Tenors considered for the

analyses were also selected based on pre-defined rules. All US options are assigned

into one of three categories: January cycle, February cycle, and March cycle (the name

refers to the first expiration month in the calendar year). Each cycle has expiration

33

Page 34: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

months one quarter apart (i.e. January, April, July, October). Due to the quote and

listing conventions on US exchanges, the following group of tenors were used:

• Maturity in the current month or the following month (referred to as 1-month

options later)

• Maturity in the third or the fourth month (referred to as 3-month options later)

• Maturity in the sixth or the seventh month (referred to as 6-month options later)

Throughout the paper, relative bid-ask spreads were used which equal the absolute bid-

ask spread divided by the mid-price.

RBAS =PA − PBPM

,

where RBAS is the relative bid-ask spread, PA is the ask price, PB is the bid price

and PM is the mid price. Moneyness was calculated as the %-ratio of the current price

to the strike price of the underlying:

M% =PMPS· 100%,

where M is the moneyness and PS is the strike price.

Out-of-The-Money (OTM) options were selected at 70%, 80%, 90%, and 95% of the

strike price, while In-The-Money (ITM) options were selected at 110%, 120%, and

130% of the strike price. At-The-Money options with the current price of the under-

lying at the strike price of the option were also included in the analytical framework.

A time series is available for all possible data cuts in terms of liquidity regime, sector,

capitalization, maturity, and moneyness.

ETFs were also examined separately as they account for a significant portion of the

trading volume in options. The same rules were applied to ETFs as to single stock

options.

34

Page 35: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

5.5.2 Banks

A deep-dive approach was applied for the bank sector, as it is closely related to Euro-

zone problems and is one of the sectors most affected by financial market woes. First,

bid-ask spreads of call options on high and low capitalization banks in the United States

were compared to each other. Next, to examine differences between two different ge-

ographies, US banks were compared to European banks.

A time series was constructed from every maturity and sector, as well as subgroup in

banks, including the average volume traded and the average open interest. Results were

compared and contrasted with the behavior of liquidity indices to see whether bid-ask

spreads provide us with a picture that is consistent with other measures or proxies of

liquidity and market conditions.

5.5.3 Pinning

If the price of the underlying is close to the option’s strike price, the uncertainty around

whether the option will be exercised is large, therefore making it difficult and expensive

for the seller to accurately hedge the option. This phenomenon is called pin-risk or

pinning. In order to see how bid-ask spreads behave, individual options were followed

from 6 weeks before their expiration day until expiry. Single OTM, ATM and ITM

options were followed in order to be able to point out how the pinning phenomenon

develops in terms of moneyness, trading volume and open interest. The three options

with different moneyness were compared and contrasted for a meaningful analysis.

5.5.4 Regression model

A regression model is proposed at the end of the paper in order to create a framework,

which might be of help for future decision making, hedging, and generally risk man-

agement. An OLS multiple regression of bid-ask spreads was performed with open

interest, the VIX index, and the average days to maturity as explanatory variables. For

the regression analysis, a sample portfolio of 15 highly liquid options was used.

35

Page 36: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

6 Results

6.1 Cross-sectoral analysis6.1.1 Differences across tenors

Both Pinder (2003) and empirical analysis of bid-ask spread time series with differ-

ent maturities confirmed that options with 1-month tenor show higher sensitivity to

changes in liquidity than other maturities. Therefore in the following sub-sections only

this tenor will be examined. Below, Table 1 shows average relative bid-ask spreads

across sectors and maturities at 90% of the strike price. The columns and rows called

”Difference” show differences between the groups within a sector and between the

liquidity regimes within those groups, respectively. Figures showing correlation of

spreads or average relative bid-ask spreads without denoting moneyness, all correspond

to the OTM space at 90% of the strike price.

Table 1: Average relative bid-ask spreads of OTM options (at 90% of the strike price)across maturities and sectors

6.1.2 Cross-sectoral differences

In order to understand how option market liquidity of different sectors changes over

time and to compare them with each other, we examined eight sectors from the com-

mon sector classification for stocks (cash equities), both cyclical and non-cyclical ones

(sectors are shown in Table 1 and in Appendix A). Without the aim to cover the whole

spectrum of sectors and sub-sectors, the ones considered in this analysis are represen-

36

Page 37: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

tative of similar sectors and of general interest of traders and investors. In each sector,

three high-capitalization and three low-capitalization names were taken as the group

for which option bid-ask spreads were followed and averages calculated of those. The

companies were selected from the top 10 and bottom 10 percentiles of the Yahoo.com

(2012) database in terms of market capitalization. All the sectors were examined and

two liquidity regimes were selected:

• a low liquidity period: 1 August 2011- 26 September 2011

• a high liquidity period: 1 February 2012 - March 29 2012

If not stated otherwise, the OTM options have a 90% moneyness (as defined above).

In Tables 2 to 3 and on Figures 9 to 12, one can see the daily bid-ask spreads of all

the sectors for low-capitalization and high-capitalization names in a low and a high

liquidity regime, respectively. Figures of the same capitalization groups use the same

scaling on the vertical axis for the sake of comparison. One remarkable characteristic is

the volatility of the spreads; day-to-day changes are large and tend to increase with the

average level of the bid-ask spreads specific to the various sectors. Both average lev-

els and the amplitude of day-to-day swings tend to be lower in times of high-liquidity,

as well as for the high-capitalization groups. The average annualized volatility of the

spreads is in the 200-500% range, which means very high volatility. One reason for

this might be the possibly inappropriate choice of some of the included options. The

average annualized volatility of the spreads are shown in Table 18 in Appendix A. The

downgrade of the US long term credit rating and the escalating Greek debt crisis are

clearly recognizable in the beginning of August 2011; as macroeconomic shocks, they

trigger a jump in almost all sectors.

In the high-capitalization group, services, banks, and pharmaceuticals consistently ex-

hibited lower average bid-ask spreads than other groups. Options on pharmaceuticals

and oil & gas companies performed similarly in the low-capitalization group, as did

banks and industrials during high and low liquidity periods, respectively.

37

Page 38: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

Table 2: 25th, 50th and 75th percentiles of daily sector spreads distribution in the highliquidity regime at 90% moneyness

Table 3: 25th, 50th and 75th percentiles of daily sector spreads distribution in the lowliquidity regime at 90% moneyness

38

Page 39: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

Figure 9: Low-cap cross-sectoral bid-ask spreads in a low-liquidity regime

Figure 10: Low-cap cross-sectoral bid-ask spreads in a high-liquidity regime

39

Page 40: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

Figure 11: High-cap cross-sectoral bid-ask spreads in a low-liquidity regime

Figure 12: High-cap cross-sectoral bid-ask spreads in a high-liquidity regime

40

Page 41: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

• Cyclicality

Cyclical sectors (i.e. industrials) tend to have a higher spread but surprisingly

the difference between high and low liquidity regimes are rather small compared

to other sectors. Meanwhile, banks and the oil and gas sectors, the ones most ex-

posed to financial markets, exhibit more substantial differences between the two

regimes. Interestingly, the technology sector belongs to the later group with an

8% difference in spreads. Services, internet, consumer staples, and pharmaceu-

ticals are seemingly less dependent on liquidity. Details are shown in Table 22

in Appendix B.

• Capitalization

In all sectors, except for Oil & Gas, the low capitalization group trades with

higher average spreads. This holds true across all maturities. The difference de-

creases with increasing moneyness; however, this phenomenon becomes more

pronounced when the options reach the ATM territory. The reason for the un-

usual behavior of the Oil & Gas sector might be the relatively high-cost research

and exploration activity serving as a bias for the high capitalization group. This

can possibly trigger unexpected swings in the spot prices. We note that BP is

listed in the US but is not part of the analysis (to avoid the potential bias intro-

duced by the Deepwater Horizon accident). Relatively high mergers and acqui-

sition activity might also introduce a similar bias. Pharmaceuticals have smaller

than usual difference in spreads and for the ITM territory, lower spreads for

the low-capitalization group is not unimaginable for the same reasons. As men-

tioned in the previous paragraph, Table 22 in Appendix B contains all the details.

• Spreads across moneyness

In both liquidity regimes and almost all sectors, regardless of capitalization,

spreads widen rapidly with decreasing moneyness. In some sectors, spreads

reach as high as 30-50% for the low capitalization group at 70% and 80% mon-

eyness. At 90% and 95% of the strike price, spreads start to tighten and reach

the ATM averages. These usually hover between 5-10% and decrease further

below 5% when the spot price climbs above 110% of the strike price, suggesting

higher certainty that the option will be exercised. Figures 13 and 14 show ex-

41

Page 42: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

amples from the bank and technology sectors. Complete tables are available in

Appendix B.

Figure 13: Average bid-ask spreads across various moneyness levels in the Bank andTechnology sectors in the high liquidity regime

Figure 14: Average bid-ask spreads across various moneyness levels in the Bank andTechnology sectors in the low liquidity regime

42

Page 43: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

• Correlation of spreads with liquidity indices

To provide the reader with a summary, we look at correlation of spreads in the ex-

amined sectors with the previously introduced fear and liquidity indices across

various maturities and moneyness levels. In terms on moneyness, correlation

with the most popular index, the VIX, appears to be the highest at 90% of the

strike price and the ATM, except for a few outliers. In the deep ITM space, corre-

lation drops to practically 0 in most sectors as expected, due to the disappearance

of the model risk (the largest factor in the OTM space). Details can be found in

Table 19 in Appendix B. There is are clear differences between the groups in

the low liquidity regime across the board: defensive sectors such as pharmaceu-

ticals or consumer staples exhibit positive correlation with the VIX in times of

high liquidity while sectors dependent on economic cycles and more exposed

to financial markets have a negative correlation with the same index during the

same period. Positive correlation of spreads in the banking sector with the VIX

index during a liquidity squeeze is related to the coupling between banking rev-

enues and financial market performance. This type of coupled uncertainty acts

as an upward catalyst for the model risk. Industrials, one of the most cyclical

sectors, also have a higher correlation with the VIX index in the low liquidity

regime. The high liquidity regime means normal market conditions for most of

the sectors, therefore intuitively no high correlation is expected. This intuition

is certainly reinforced by our results. The cyclical sectors show the highest cor-

relation (positive in the low and negative in the high liquidity period) with the

VIX index, especially during the aforementioned liquidity squeeze. Results also

suggest negative correlation of average sector spreads with 2-year Italian bond

yields. Although in absolute terms, the correlation is not high but this relation-

ship holds true in most sectors. There are also differences between correlation

of different maturities in the same sector. Considering options with 90% money-

ness: one-month maturities tend to have the highest correlation in most sectors,

followed by three-month and finally six-month options. As options get closer to

their maturity and are below the strike price, the model risk also drives correla-

tion with the VIX, an aggregate index of volatility.

43

Page 44: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

• Trading volume

As expected, trading volumes (only call options considered) are significantly

higher for the high capitalization group across all sectors and regardless of liq-

uidity regimes. An interesting observation is the higher average trading volume

in the low liquidity period. This holds true for almost all sectors, industrials

being the most significant exception. Important to note, that the higher average

trading volume is often driven by extreme peaks or bursts in trading activity, fol-

lowed by a longer decay. One possible explanation for the higher volume in the

low liquidity regime is that investors tend to react with a fire-sale to increasing

stress in the markets, thereby boosting trading volumes for a few days or weeks.

On the other hand, HFTs tend to react the exact opposite way: they stop trad-

ing or significantly reduce trading volumes when a vastly unexpected event or

chain of events occur. This phenomenon is discussed in Barker and Pomeranets

(2011). It is not exactly clear what the net effect of these different mechanisms is

but the fire-sale notion appears to influence the spreads to a higher extent. In the

low liquidity regime, volumes behave in a more erratic manner. For reference,

Table 22 in Appendix B also shows trading volume and open interest.

• Open interest

Open interest shows (only call options considered) a more varied picture with

the averages in the high and low liquidity regime much closer than for the trad-

ing volumes. Interestingly banks have the highest average open interest from all

sectors examined in this paper. Banks are possibly the most exposed to liquidity

squeezes in financial markets due to the way these institutions fund themselves.

Lower liquidity generally brings higher credit spreads, stricter collateral require-

ments, frequent margin calls and general mistrust in banks. The best example

is the fall of Lehman Brothers in 2008 ultimately triggered by serious liquidity

issues. These fears usually cause large and sudden swings in bank stock prices.

The open interest might as well be the result of this phenomenon.

In order to present the differences between high and low liquidity regimes as well as

different capitalizations in a more comprehensible way, we provide the reader with time

series charts from the technology sector. Figure 15 showcases how spreads for the low-

44

Page 45: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

capitalization group stay consistently higher than those of the high-capitalization group

in the technology sector, while Figure 16 exhibits the differences between a low and a

high liquidity regime. Variation of spreads across liquidity regimes and capitalization

in the technology sector is described by Figures 17 to 20. On Figures 16 and 18 to 19,

the x-axes show a day count in order to compare the relative levels and the dynamics

of the spreads, trading volume and open interest, respectively. Higher trading volumes

and open interest in times of high liquidity and for high-capitalization companies are

rather common across all sectors, as described in Table 22 in Appendix B.

Figure 15: OTM high-cap vs. low-cap bid-ask spreads in the tech sector in a lowliquidity regime

45

Page 46: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

Figure 16: OTM high-cap bid-ask spreads in the tech sector in a low vs. high liquidityregime (x-axis shows a day count for the sake of comparison)

Figure 17: Tech sector high-cap vs. low cap average trading volume in a low liquidityregime

46

Page 47: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

Figure 18: Tech sector high-cap average trading volume in a high liquidity vs. lowliquidity regime (x-axis shows a day count for the sake of comparison)

Figure 19: Tech sector high-cap average open interest in a high liquidity vs. lowliquidity regime (x-axis shows a day count for the sake of comparison)

47

Page 48: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

Figure 20: Tech sector high-cap vs. low-cap average open interest in a high liquidityregime

6.2 ETFs

Exchange traded funds (ETFs) are investment funds traded publicly on exchanges. As-

sets in the fund can be stocks, bonds, commodities, or other assets depending on the

strategy of the fund. Many of the ETFs are index trackers: they track an index by

including the components of the index with the same % shares. However, there are

increasingly more actively managed funds which can be traded on exchanges. ETFs

provide investors with a simple and low cost solution to track and trade well-known

indices, such as the S&P 500.

ETFs are the most popular exchange traded products, trading volumes are generally

higher than those of stocks, making them a very important asset class in the investment

world. They are effective means of obtaining exposure to a certain sector, asset class,

or geography without having to worry about rebalancing the portfolio. Additionally,

ETFs have cost and tax advantages over actively managed portfolios.

For our analysis, we have selected some of the most popular ETFs (highest trading vol-

umes) with various underlying based on ETFdb.com (2012) data. The same types of

analyses were performed with ETFs as with sector level equity options in the previous

subsection.

48

Page 49: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

We start with a brief comparison of results with the previously described sector spreads.

In the OTM space, spreads of ETF options tend to stay below those of the previously

discussed sector spreads. Volatility of ETFs is generally lower than that of single stocks

due to their substantially lower idiosyncratic risk. This certainly drives spreads lower

as well. An opposite effect comes from the trend that most HFTs trade with ETFs,

making liquidity and the bid-ask spreads largely unpredictable. On the other hand,

another possible reason for the lower spreads is the ETF hedging activity of traders.

ETFs can be hedged through indices as a proxy, which consequently are highly liquid.

Options on the SPY (tracking the S&P 500), the ETF with the highest trading volume,

have generally the lowest spreads across all examined options. This does not come

as a surprise given the fact that the SPY is very liquid and there are no large sudden

price swings in the underlying. Options on precious metal ETFs, such as SLV (silver)

and GLD (gold), also trade with relatively low spreads. However, precious metal ETF

options have exhibited wider spreads in the high liquidity period. This unusual obser-

vation might be the consequence of the safe haven status of precious metals which are

more popular during times of liquidity squeezes, economic downturns, and bear market

periods.

The examined aggregate commodities ETF options appear to be characterized by higher

spreads compared to those mentioned above. This holds true both for UNG (United

States National Gas) and DBC (Diversified Commodities), the most-actively traded

commodity ETFs. Options on the XLF (Financial Select Sector SPDR Profile) have

somewhat wider average spreads than those on high capitalization banks or the S&P

500. On the other hand, trading volumes and open interest are high, almost reaching

those of the options on the SPY. This is consistent with the ETFdb.com (2012) data on

the underlying ETFs.

As a means to compare and contrast the financial sector with non-financials, we also

examined options on the QQQ (Nasdaq 100 Index) ETF. The QQQ includes 100 of the

largest capitalization domestic and international non-financial companies listed on the

Nasdaq exchange. Spreads of options on the QQQ proved consistently smaller than

those on the XLF. Difference in spreads between the low liquidity and high liquidity

regimes are larger than for the XLF. This is unexpected as banks are thought to be

49

Page 50: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

more vulnerable during liquidity squeezes which is also often reflected in downward

trending and volatile stock prices. The key to the above mentioned discrepancy is to

be found in the components of the XLF index. These include regional and retail banks,

with deposit taking and lending as the main activities, which are perceived as much

more stable and less risky than investment banks and bulge brackets. Figure 21 below

supports our analysis.

Figure 21: Average bid-ask spreads of options on the most popular ETFs with 1-mmaturity in the low liquidity period

Descriptions and details of the ETFs can be found in Appendix A. In summary, ETFs

yield surprising and sometimes counterintuitive results, which might be worth a closer

and more comprehensive look.

6.3 Deep dive: bank sector

Based on the previously discussed results, general interests in banks, and for the sake

of a better picture of the special characteristics of a particular sector, we take a deep

dive into the bank sector. First, a wider set of high and low capitalization US banks are

examined, followed by a comparison of US and European banks.

50

Page 51: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

6.3.1 High-capitalization vs. low-capitalization banks

In this section, we look at high-capitalization and low-capitalization banks from the US.

The rational for this is the vastly different business model of these banks. High capital-

ization banks are generally the large universal banks, involved in investment banking,

wealth management, asset management, and retail banking in some cases (Citigroup,

Bank of America, JPMorgan Chase, etc.). Low capitalization banks are typically retail

banks, some of the regional players, with a classic deposit-taking and lending activity,

along wealth management in some cases. This latter is typically considered a low-risk

business model, despite the demise of many of these banks in the sub-prime crisis due

to very high default rates on residential mortgages and credit card debt. Volatility of

the stocks in the two groups are also rather different. Stocks of the high-capitalization

group were very volatile for several reasons, including balance sheet concerns, regula-

tory pressure, and similarly volatile capital markets activity. Stocks of the low capital-

ization group were much less volatile and the market capitalization of these companies

also stayed around or above their book values. Below we discuss the most important

findings of this comparison.

• Correlation of spreads for different capitalizations

It is hard to find a pattern or trend in terms of capitalization. Neither the high

capitalization nor the low-capitalization group has a higher correlation across

maturities, fear indices, or moneyness. This certainly is not the case with the

actual averages, as we show later.

• Correlation of spreads across moneyness

We have looked at correlation with the VIX index across various moneyness lev-

els. As shown in Table 4, correlation with the VIX is generally positive in the

low liquidity period and negative in the high liquidity period. Bank stocks have

been very volatile in the last 5 years due to general mistrust in their management

teams, their quarterly reports and their role in the subprime crisis. In addition,

concerns were lingering around their very high exposure to the global economy

and markets, which were experiencing a severe downturn over this period. Large

universal banks still mostly trade below their book value due to the fact that

investors struggle to understand and believe what is behind the assets and lia-

51

Page 52: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

bilities disclosed on their balance sheet. Before and during the subprime crisis,

the mortgage backed securities were disclosed at much higher values than their

fair values. Banks were reluctant to write down losses from the value of these

assets, despite the high and increasing rate of non-performing loans packaged in

these securities. Regional banks have higher net asset value to book ratios but

do not reach averages of other sectors. In times of high liquidity or when there

is a general market euphoria, banks rally with little dependence on other risks.

This contributes to the negative correlation seen in this period. Our examined

high liquidity period falls after the first and partly after second LTRO which has

been a rather specific relief for the financial sector. This effect most certainly

amplifies the negative correlation to a large extent.

• Correlation of spreads across maturity

Spreads in the high capitalization group show a decreasing correlation with in-

creasing maturity, as seen in Table 5. This holds true both for the high and the

low liquidity regime. The decrease is expected as both trading volumes and open

interest show substantial decline as tenors are stretched. Correlation in the low

capitalization group interestingly changes sign for 6 month tenors. Significance

of the results for 6 month option is very low, therefore we dismiss these findings.

• Correlation with various fear indices and liquidity proxies

From all the fear indices we considered in Table 6, the VIX has the highest

correlation with the spreads (at 90% moneyness). Correlation behaves similarly

as seen in the cross-sector analysis discussed earlier in Section 6.1.2. However,

differences between the high- and low-capitalization groups are not consistent.

On the same page, it is important to point out that the statistical significance of

correlation these values are rather low (p-values generally above 0.2) for most

indices but the VIX, the Capital Market Liquidity index and the 10-year German

government bond yields. A summary table can be found in Appendix B.

• Average spreads

As moneyness increases from 70% up to 110%, bid-ask spreads gradually de-

crease both in the high-capitalization and the low-capitalization group. This is

shown in Table 7. These results are consistent with our view and the results ob-

tained earlier; liquidity of the options with different moneyness is well reflected.

52

Page 53: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

Due to the slightly different composition of the banks in these groups (higher

number of firms), the results also show slight differences but the overall pic-

ture remains the same. Differences between the high- and the low-capitalization

group also shrink with higher moneyness.

• Trading volume

An interesting point is the trading volume: for both groups, trading volumes are

higher in the low liquidity regime. The high trading volumes are related to down-

trending stock prices; we know from anecdotal evidence that this is related to a

fire sale in the low liquidity period due to the escalating European debt crisis and

concerns about collateral treatment of downgraded US treasuries. Average bid-

ask spreads are shown in Table 7 and time series plots can be seen on Figures 22

and 23.

Table 4: Correlation of high-cap vs. low-cap banks with the VIX index across variousmoneyness levels and with 1-month maturity

Table 5: Correlation of high-cap vs. low-cap banks with the VIX index across differentmaturities at 90% moneyness

53

Page 54: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

Table 6: Correlation of high-cap vs. low-cap banks with the various fear and liquidityindices at 90% moneyness and with 1-month maturity

Table 7: Average bid-ask spreads of high-cap vs. low-cap US banks with 1-monthmaturity

54

Page 55: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

Figure 22: Average bid-ask spreads of high-cap US banks in a high-liquidity period

Figure 23: Average bid-ask spreads of high-cap US banks in a low-liquidity period

After the analysis, we conclude that spreads of both high- and low-capitalization banks

show a low correlation with the fear indices, except for the VIX index. Correlation is

generally positive in the low liquidity and negative in the high liquidity regime. Corre-

lation (and its significance) decreases with the maturity and no clear trend can be read

across various moneyness levels. Average spreads reinforce our view that increasing

moneyness results in lower spreads.

55

Page 56: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

6.3.2 US vs. European banks

The vast differences between US and European banks make a comparison especially in-

teresting. In recent years, business models of these groups have started deviating from

each other. This has been driven mostly by the regulatory environment and economic

conditions of the two geographies. While US banks fall under a more lenient regula-

tory treatment with lower required capital ratios and reporting according to Basel I, the

European banks have seen higher required core tier 1 ratios, strict monitoring of mort-

gage risk weights, direct regulatory orders, and Basel 2 (Basel 2.5 and eventually Basel

3) reporting. This difference and the potential Basel 3 implementation in the US is dis-

cussed by Getter (2012). Capital requirements and restrictions on risk weighted assets

constrained European banks in pursuing similar business models (large-scale trading

operations globally, characterized by high risk weighted assets) as the US peers. Val-

uation of the US and European banks have also followed slightly different paths, so

did volatility of the stocks, resulting in higher model risk for European names. These

differences should also be reflected in the option bid-ask spreads.

• Spreads across moneyness

Correlation with the VIX is generally higher for ATM and ITM options in the

high liquidity period for options on European banks and lower in the low liq-

uidity regime. As a reminder, generally the opposite is true for options for US

banks. In line with the discussion above, the correlation in the high liquidity

period is generally negative, while in the low liquidity period it is positive but

lower in absolute terms. This observation can be followed in Table 8.

• Spreads across maturities

Another interesting point is the correlation of 6-month options on European

names with the VIX index. This is higher than the correlation of 1-month and

3-month options with the same index. It is worth examining this observation in

the future in a detailed manner. Important to mention that this is not coupled

with higher average spreads for 6-month options. This is shown in Table 9.

• Fear indices and liquidity proxies

Correlation with the VIX is also pronounced here in both groups. However, an

interesting point is that the correlation of spreads of options on European names

56

Page 57: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

with 2-year Italian Treasury spreads is negative. This goes against the common

logic which would expect positive correlation as the European sovereign debt

crisis affects trading volumes negatively and contributes to decline in liquidity.

Table 10 contains the relevant numbers.

• Average spreads

As seen before in this thesis, there is a striking drop in average spreads when

spreads get to the ATM, then into the ITM space (see Table 11 as well as Fig-

ures 24 and 25). Spreads of options on European banks tend to stay consistently

above those on US banks. The first reason for this comes from the nature of op-

tions on European names. Stocks of these European banks are listed on the New

York Stock Exchange but this is not their primary market, hence liquidity is sub-

stantially lower than on their primary market and also compared to US names.

However, the second reason is that European banks’ stocks have also exhibited

high volatility in the last few years, which in turn increases model risk of options

on them. This leads to higher spreads as market makers aim to be compensated

for the risk they take.

• Trading volume

As discussed in the previous section, the average trading volume of US banks are

higher in the low liquidity regime. The opposite is true for European banks; the

high liquidity regime has significantly higher volume. It is important to note that

the absolute average volume of the European names are much lower than that of

the US banks. This is due to the secondary listings mentioned above. However,

the relationship of the low and high liquidity regimes is consistent with the result

obtained in the cross-sector analysis.

57

Page 58: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

Table 8: Correlation of US vs. European banks with the VIX index across variousmoneyness levels with 1-month maturity

Table 9: Correlation of US vs. European banks with the VIX index across differentmaturities at 90% moneyness

Table 10: Correlation of US vs. European banks with various fear indices at 90%moneyness and with 1-month maturity

58

Page 59: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

Table 11: Average bid-ask spreads of US vs. European banks with 1-m maturity

Figure 24: Average bid-ask spreads of US banks in a high-liquidity period

59

Page 60: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

Figure 25: Average bid-ask spreads of European banks in a high-liquidity period

Our results reconfirmed our initial intuition that indeed spreads have different charac-

teristics for US and European banks. Average spreads of European banks are substan-

tially higher than those of the US banks, broadly in line with expectations. Correlation

in the high and low liquidity periods show different signs for European and US banks

in the ATM and ITM space. Also spreads of European banks show an unusual ten-

dency in terms of correlation for increasing tenors. Most of the differences stem from

the secondary listing of these option but the deviating business models (as discussed in

Section 6.3.2) and economic as well as regulatory conditions also play a notable role

in the observed behavior.

6.4 Pin risk

As described in Section 5, the uncertainty around options with the underlying close to

the strike price, and whether they will be exercised or not, is called pin risk. To illus-

trate how bid-ask spreads behave when pin risk is present, we plot the bid-ask spread

time series of an OTM (strike: 645), an ATM (strike: 585) and an ITM (540) option on

the same name, Apple Inc. (the options all have the same maturity, 31 July 2012). The

options can be found in Appendix A. The moneyness regime (OTM, ITM or ATM)

here was determined on the maturity date. Not only bid-ask spreads but also trading

volumes and open interest are shown on Figures 26 to 28. Figure 29 compares the three

time series to each other. As expected, the ATM bid-ask spread produces a large jump

60

Page 61: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

in the last few days of the examined period when the price of the underlying reaches

the strike price. The bid-ask spread of the OTM option is volatile and higher in abso-

lute terms than the others. Also, there is no significant uptick in the last few days. The

same is true for the ITM option which stays flat over the examined time period and is

lower in absolute terms than the other two.

Trading volumes also exhibit a remarkable jump in case of the ATM options and the

open interest also shows a small increase. The opposite is true for ITM options: both

trading volumes and open interest show a substantial drop towards the maturity date.

Trading volumes of the OTM option show a substantial jump close to the maturity date.

This might be the result of a similar sudden increase in moneyness.

Figure 26: Apple OTM option

61

Page 62: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

Figure 27: Apple ATM option

Figure 28: Apple ITM option

62

Page 63: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

Figure 29: Apple OTM vs. ATM vs. ITM in July

6.5 Regression model of bid-ask spreads

In order to provide the reader with an example of practical application of liquidity

research on option market bid-ask spreads, we aim to introduce an illustrative regres-

sion model. Currently, literature does not indicate that financial institutions use similar

models for quantifying liquidity risk. Informal discussions with risk managers and

practitioners also led to the conclusion that no wide-spread systematic methods are

used today to quantify liquidity risk. The benefit of such a model lies in its circle of ap-

plication, including risk control and management, hedging and decision-making. For

example, if a liquidity risk model indicated that the liquidity of securities in a portfolio

fell to a dangerously low level, alarms would indicate this to traders (who could try to

sell down part of the assets or hedge them appropriately), risk managers (who could

develop strategies to hedge the portfolio or indicate this to the risk oversight commit-

tee) and product controllers (who could adjust the current value in the books, based

on liquidity risk). These models and methods are certainly have to be tailored to the

different needs and characteristics of particular trading desks. Regulators are currently

not requiring financial institutions to account for or systematically measure liquidity

risk but this might change soon.

The regression model can be built on various exogenous and endogenous measures

used as explanatory variables. In general, exogenous variables might include com-

monly used indices (e.g., the VIX index) or proxies for market-wide liquidity (e.g.,

63

Page 64: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

Italian sovereign bond yields). Endogenous variables here mean measures related to

the examined options (e.g., moneyness, trading volume, open interest, etc.). Here, we

aim to use the observations made in the previous sections to set up realistic and sensible

models.

The modeling work and testing were performed using SPSS from IBM Corp. (2012).

We performed the regression analysis considering both the low liquidity and high liq-

uidity period introduced in Section 6.1.2. The models were built on a sample portfolio

of 15 highly liquid options with 3-month maturities (exceptions were made where the

3-month option was not an appropriate choice for availability or liquidity reasons) and

the moneyness close to 90% at the end of the examined periods (we allowed a 4% tol-

erance interval due to availability reasons). The options used in both liquidity regimes

can be found in Appendix A.

First, a linear multivariate regression model was built using OLS (ordinary least squares)

regression. The dependent variable was the relative bid-ask spread. Initially we con-

sidered the following explanatory variables: trading volume (daily), moneyness, time

to maturity, open interest and the VIX index. We chose the VIX index because the

bid-ask spreads showed the highest correlation with this index in the previous sections.

A dummy variable was also introduced for the liquidity regime (with a value of 1 for

the low liquidity regime and a value of 0 for the high liquidity regime), as the two

periods were examined together (controlling for the liquidity regime). SPSS was used

to find the model with the best fit, measured by its R2. For the analysis, an α of 0.05

was used, meaning a 95% confidence interval (this translates to an upper boundary for

significance of 0.05 for the explanatory variables’ p-value). To find the best model, the

following procedures were used: all variables included, forward selection, backward

elimination, and stepwise regression. The latter three procedures all yielded the same

model shown below. When all variables were included, the R2 was 0.03 higher but

the significance of certain explanatory variables was very low (p-value substantially

higher than 0.05). During the iteration process to the simple linear model, moneyness,

the dummy variable for the liquidity regime and the trading volume were excluded due

to their low significance (p-value substantially higher than 0.05).

The obtained simple multiple regression model is the following:

64

Page 65: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

BAS = β0 + β1int+ β2V IX + β3time+ ε,

where BAS is the bid-ask spread, β0 is the constant term (or intercept), β1 to β3 are

the coefficients, int is the open interest, V IX is the VIX index, time is the days to

maturity and ε is the independent identically distributed normal error.

The R2 of the model, denoting the goodness of fit, is 0.646. This can be considered

as a relatively good fit but not an exceptionally high one. The model summary can be

seen in Table 25 in Appendix C; under Model 3. The coefficients and their statistical

significance, measured by their p-value, are shown below in Table 12. β0 to β3 are

listed in the ”B” column under ”Unstandardized Coefficients”, in the respective order.

All the included explanatory variables show high statistical significance. So does the

overall significance of the model based on an F-test (the p-value is smaller than 0.001),

as shown in Table 13. In essence, the high significance means that there is indeed a

linear relationship between the variables in our model.

Table 12: The coefficients of the simple linear model

Table 13: The ANOVA table of the simple linear model

The graphical comparison of the actual and the fitted values is shown on Figure 30

and 31.

65

Page 66: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

Figure 30: The comparison of the actual and the predicted values for the simple linearmodel in the low liquidity period

Figure 31: The comparison of the actual and the predicted values for the simple linearmodel in the high liquidity period

Based on the graphical comparison, we can argue that the fit is not particularly good

in the high liquidity period. In order to be able to draw inferences from the model,

we have to check the assumptions, on which our linear multiple regression model was

built. Without this, the t-tests of the coefficients are not meaningful.

The assumptions are the following: the response variables have to be normally dis-

tributed, independent, and their variance has to be constant. In addition we also have to

examine whether there is multicollinearity present (high correlation or covariance be-

tween the explanatory variables) in the model. To test whether the model violates these

66

Page 67: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

assumptions, we have to examine the standardized residuals of the model. The normal-

ity is examined using the standard Kolmogorov-Smirnov and Shapiro-Wilk tests. The

results are shown in Table 14.

Table 14: The normality test of the simple linear model

The p-value of the Kolmogorov-Smirnov test is 0.051, which suggests that normality

assumption might be violated. The Shapiro-Wilk test yielded a statistical significance

smaller than 0.001, measured by the p-value, indicating that normality is indeed a prob-

lem here.

The multicollinearity is already tested and the variance influence factors (VIF) are

shown in Table 12. The VIFs of all the coefficients are substantially lower than 5, the

commonly considered threshold for multicollinearity issues, as suggested by O’brien

(2007). This means that we do not have a multicollinearity problem with this model.

The autocorrelation of the residuals was also already tested with the Durbin-Watson

test and the result is shown in Table 25. The Durbin-Watson statistics here is 1.137,

indicating that the autocorrelation is not prevalent. According to Wang and Jain (2003),

for small sample sizes, the rule of thumb is that if the Durbin-Watson statistics is be-

tween 1 and 2.5, the lack of autocorrelation should be accepted.

The constant variance, or homoscedasticity, is tested with the Breusch-Pagan test. Our

H0 hypothesis for the test is homoscedasticity. The test resulted in a significance of

0.000, which means we reject the H0 hypothesis and conclude that the residuals are

heteroscedastic. The output of the test is shown on Figure 34 in Appendix C.

The results suggest that the OLS estimates can not be strictly considered the best unbi-

ased linear estimates (BLUE) due to heteroscedasticity. The linear relationship and the

unbiased nature of the variables have been shown before and the zero mean condition

67

Page 68: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

of the BLUE was also met (0 mean for the residuals). The latter is shown in Table 26

in Appendix C. However, the homoscedasticity and the normality conditions were not

fulfilled. Normality is not a condition of BLUE but required for meaningful t-test re-

sults. In order to find a model which fulfills all the requirements, and therefore can be

used to make inferences from it, we have to modify our model introduced above by

transforming some of the variables.

Using the curve fitting function of SPSS and running a Box-Cox analysis led to the

appropriate transformation of our variables. Important to note that after the transfor-

mations, the model is still linear and the OLS method can be applied. On the bid-ask

spreads, we applied a Box-Cox transformation (to normalize the data) with a λ = −3

due to the non-normality of the residuals. The Box-Cox transformation is described

by Sakia (1992) the following way:

y(λ)i =

{yλi −1λ , ifλ 6= 0,

log(yi), ifλ = 0,

where y is the transformed variable and λ is the parameter. The explanatory vari-

ables were also transformed: int3, V IX2 and time2 proved to yield the best results.

The new model was tested the same way as the simple linear model described above.

All conditions were met, except homoscedasticity. In general, there are two ways to

correct the model for homoscedasticity. First, the OLS regression can be used with

heteroscedasticity-robust standard errors, which does not require assumptions on the

nature of heteroscedasticity. Second, a weighted least squares (WLS) regression can

be used if we know the nature of heteroscedasticity. Here, we do not have informa-

tion on the nature of heteroscedasticity, thus we use the first solution. To estimate

heteroscedasticity-robust standard errors and to test the new model, we used the SPSS

macros written by Hayes (2007).

The model summary is shown in Table 15. The Durbin-Watson statistics indicates that

there is no autocorrelation.

Table 15: The model summary of the final model

68

Page 69: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

The coefficients and the standard errors are shown below in Table 16. The p-values

show that all coefficients are statistically significant. The variance influence factors

are substantially lower than the threshold, as discussed earlier, which means multi-

collinearity is not a problem in this model.

Table 16: The coefficients of the final model

The normality condition is now met, as shown in Table 17 below.

Table 17: The normality test of the final model

The problem with heteroscedasticity is avoided by using heteroscedasticity-robust stan-

dard errors. The transformed spreads and the predicted values are shown on Figures 32

and 33. The predicted values certainly fit the data to a higher extent than before. This

can also be seen from the R2 of 0.834 and the Adjusted R2 of 0.827 as shown in Ta-

ble 15. This means that 83% of the variance in the data can be accounted for by the

explanatory variables; this can be considered sufficiently high. The final OLS model

now fulfills all conditions and thus can be used to make inferences based on the t-tests

of the variables.

The obtained final multiple regression model is the following:

TBAS = β0 + β1int3 + β2V IX

2 + β3time2 + εr,

where TBAS is the Box-Cox transformed relative bid-ask spread. The estimators are

still not regarded as best but they remain unbiased and linear, in addition to the fulfilled

normality condition and heteroscedasticity robustness. For the purpose of our current

analysis, this is already sufficient.

69

Page 70: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

Figure 32: The comparison of the transformed spread and the predicted values for thefinal model in the low liquidity period

Figure 33: The comparison of the transformed spread and the predicted values for thefinal model in the high liquidity period

7 Conclusions

In this thesis, several aspects of option market liquidity were examined with a special

focus on bid-ask spreads of call options (as call and put options are regarded as sub-

70

Page 71: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

stitutes). We started with the review of existing literature both on the broadly and nar-

rowly defined topic in order to give an overview of results and research trends. There

is a sufficient number of published papers on the components and main determinants

of bid-ask spreads: order processing cost, inventory holding cost, model risk, as well

as hedging and rebalancing cost. Literature on option market bid-ask spreads proved to

be thin and certainly not comprehensive. Available information on characteristics and

behavior of bid-ask spread time series were even harder to find.

After discussing the advantages and disadvantages of various liquidity measures, we

concluded that relative bid-ask spreads are adequate for the purpose of our analysis:

examining differences between bid-ask spreads across sectors, maturities, liquidity

regimes and underlying securities.

After providing a macroeconomic backdrop, we went on to perform the above men-

tioned set of analysis, always considering a high and a low liquidity regime along

with a high and low capitalization group across maturities. Our results show that high

liquidity and high capitalization indeed lead to tighter spreads, as expected. The pic-

ture is mixed when it comes to differences between sectors. Cyclical sectors tend to

have higher spreads then non-cyclicals but the difference in spreads between high and

low liquidity regimes are not as large as in other sectors. Interestingly, the volatility

of option bid-ask spreads are rather substantial in almost all sectors. Examining the

correlation with well-known liquidity and fear indices also yielded surprising results:

correlation changes sign for some sectors (i.e. the banking sector) between the two liq-

uidity regimes. The absolute values of correlation also vary between liquidity regimes

with low liquidity meaning higher correlation. We also showed visual examples from

the technology sector to improve the understanding of dynamic changes and differ-

ences implied by liquidity and capitalization.

We have also looked at options on the most popular (in terms of trading volume) ETFs

and concluded that they generally exhibit significantly lower spreads then options on

stocks. Options on the S&P 500 and precious metals traded with the lowest spreads,

while commodities and financials ETFs had somewhat higher spreads.

After the cross-sectoral analysis, we performed a deep-dive in the bank sector as this

71

Page 72: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

one is the most exposed to liquidity squeezes and generally to changes in liquidity (as

also shown in the correlation table). Both the high capitalization group and the group

consisting of US universal banks exhibited substantially lower spreads than the low

capitalization group and the one composed of European names, respectively.

Finally, we examined a phenomenon specific to the option market: the pin risk. Results

show that bid-ask spreads of ATM options widen rapidly and steeply when the maturity

is only a few days away. This is consistent with the increased risk and therefore the

decreased willingness of market makers to provide liquidity in these stocks. The same

behavior is, as expected, not witnessed for ITM and OTM options, which supports our

ideas of how liquidity affects bid-ask spreads.

Based on the differences in spreads and their behavior over time, we have set up two il-

lustrative multiple regression models for a sample portfolio of options. The first model

is a simple linear model, which serves as an introduction to the more sophisticated

second one. The final OLS model uses the cubic function of open interest, along with

the square functions of the VIX index and the average days to maturity as explanatory

variables. The dependent variable is the Box-Cox transformed relative bid-ask spread.

The model fulfills all assumptions required to use the results of t-tests and therefore

suitable for further analysis or customization for practical use. Extended versions of

this model can be used for purposes of risk management and hedging as well as fair

value adjustments based on liquidity risk.

8 Outlook

As discussed in the introduction, the current thesis does not intend to serve as com-

prehensive guide to liquidity in option markets but aims to examine the characteristics

of bid-ask spreads and how they behave for various groups and liquidity regimes. In

addition, it tries to grasp to what extent can bid-ask spreads be considered a good proxy

measure of liquidity.

As a follow up to the current work, the next step would be an extended set of groups

across all sectors with a more granular breakdown of moneyness. Time intervals could

also be extended and pre-crisis years could be examined to see whether the tighten-

72

Page 73: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

ing spreads and then the sudden dry-up of liquidity were indeed reflected in bid-ask

spreads. Given options data is available, a larger-scale analysis on the differences be-

tween options with US and European stocks as underlying is desirable.

Finally, the regression model needs to be calibrated to real-life portfolios to serve as

a practical tool. Other available explanatory variables may also be considered. Nev-

ertheless, the models need to be readjusted after a certain period of time to reflect the

liquidity regime, the changes in components of the portfolio, as well as the changes in

the above discussed components of the bid-ask spreads. This would lead to a practical

way to account for changes in liquidity and would help to quantify the related risk in

option markets.

References

Admati, A. and Pfleiderer, P. (1988). A theory of intraday patterns: Volume and price

variability. Review of Financial Studies, 1(1):3–40.

Amihud, Y. (2002). Illiquidity and stock returns: cross-section and time-series effects.

Journal of Financial Markets, 5(1):31–56.

Amihud, Y. and Mendelson, H. (1980). Dealership market: Market-making with in-

ventory. Journal of Financial Economics, 8(1):31–53.

Amihud, Y. and Mendelson, H. (1986). Asset pricing and the bid-ask spread. Journal

of financial Economics, 17(2):223–249.

Antonucci, D. and Lin, E. (2011). Italian government debt: How sustainable? Morgan

Stanley Research Europe.

Arnuk, S. and Saluzzi, J. (2009). Latency arbitrage: The real power behind predatory

high frequency trading. Themis Trading White Paper.

Bagehot, W. (1971). The only game in town. Financial Analysts Journal, 27(2):12–14.

Bangia, A., Diebold, F., Schuermann, T., and Stroughair, J. (2002). Modeling liquidity

risk, with implications for traditional market risk measurement and management.

Risk Management: The State of the Art, pages 3–13.

73

Page 74: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

Bank for International Settlements (2011). High-frequency trading in the foreign ex-

change market. Technical report, Bank for International Settlements.

Barker, W. and Pomeranets, A. (2011). The growth of high-frequency trading: Impli-

cations for financial stability. Bank of Canada - Financial System Review, pages 47–

52.

Basel Committee on Banking Supervision (2011). Basel III: A global regulatory frame-

work for more resilient banks and banking systems - revised version June 2011.

Technical report, Bank for International Settlements.

Bemis, C. (2006). Put-call parity. ETH Zurich Lecture Materials.

Black, F. (1975). Fact and fantasy in the use of options. Financial Analysts Journal,

pages 36–72.

Bouchaud, J.-P., Gefen, Y., Potters, M., and Wyart, M. (2004). Fluctuations and re-

sponse in financial markets: the subtle nature of ‘random’ price changes. Quantita-

tive Finance, 4(2):176–190.

Cao, M. and Wei, J. Z. (2010). Option market liquidity: Commonality and other char-

acteristics. Journal of Financial Markets, 13(1):20–48.

Chacko, G., Das, S., and Fan, R. (2010). An index-based measure of liquidity.

Technical report, Working Paper (August). Available via the Internet: www. scu.

edu/business/economics/upload/Chacko2010. pdf.

Chan, K. and Chung, Y. (1999). Asymmetric price distribution and bid-ask quotes in

the stock options market. FINA Working Papers.

Chaudhury, M. (2011). Option bid-ask spread and liquidity. Available at SSRN

1769126.

Cho, Y. and Engle, R. (1999). Modeling the impacts of market activity on bid-ask

spreads in the option market. Technical report, National Bureau of Economic Re-

search.

Demsetz, H. (1968). The cost of transacting. The Quarterly Journal of Economics,

82(1):33–53.

74

Page 75: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

Dorchester Capital Management Company (2008). CPMKTL The Capital Markets

Liquidity Index.

Easley, D., Kiefer, N. M., O’Hara, M., and Paperman, J. B. (1996). Liquidity, informa-

tion, and infrequently traded stocks. The Journal of Finance, 51(4):pp. 1405–1436.

Easley, D. and O’hara, M. (1987). Price, trade size, and information in securities

markets. Journal of Financial economics, 19(1):69–90.

Engle, R. and Neri, B. (2010). The impact of hedging costs on the bid and ask spread

in the options market. Technical report, Working Paper, New York University, New

York.

ETFdb.com (2012). Etfdb. This is an electronic document. Date of publication: [Date

unavailable]. Date retrieved: November 21, 2012. Date last modified: [Date unavail-

able].

Franic, I. (2008). Stock market liquidity: Comparative analysis of croatian and regional

markets. Financial Theory and Practice, 32(4):477–498.

George, T. and Longstaff, F. (1993). Bid-ask spreads and trading activity in the S & P

100 index options market. Journal of Financial and Quantitative Analysis, 28(3).

Getter, D. E. (2012). U.S. Implementation of the Basel Capital Regulatory Framework.

Congressional Research Service.

Glosten, L. and Harris, L. (1988). Estimating the components of the bid/ask spread.

Journal of financial Economics, 21(1):123–142.

Glosten, L. and Milgrom, P. (1985). Bid, ask and transaction prices in a special-

ist market with heterogeneously informed traders. Journal of financial economics,

14(1):71–100.

Gorton, G. and Metrick, A. (2011). Securitized banking and the run on repo. Journal

of Financial Economics.

Graham, J. (2012). Options trading volume and open interest. http://www.nasdaq.com/.

75

Page 76: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

Grammig, J. and Theissen, E. (2003). Estimating the probability of informed trading

- does trade misclassification matter? University of St. Gallen Department of Eco-

nomics working paper series 2003 2003-01, Department of Economics, University

of St. Gallen.

Hayes, A. F. Cai, L. (2007). Using heteroscedasticity-consistent standard error esti-

mators in ols regression: An introduction and software implementation. Behavior

Research Methods, 39:709–722.

Ho, T. and Stoll, H. (1981). Optimal dealer pricing under transactions and return un-

certainty. Journal of Financial economics, 9(1):47–73.

Huang, R. and Stoll, H. (1997). The components of the bid-ask spread: a general

approach. Review of Financial Studies, 10(4):995–1034.

IBM Corp. (2012). Spss software.

International Securities Exchange (2011). Penny pilot analysis. http://www.ise.com -

Penny Report.

Kalodera, I. and Schlag, C. (2004). An empirical analysis of the relation between

option market liquidity and stock market activity. University of Frankfurt, Working

Paper.

Kaul, G., Nimalendran, M., and Zhang, D. (2004). Informed trading and option

spreads. Available at SSRN 547462.

Kim, S. and Murphy, D. (2011). The impact of high-frequency trading on stock market

liquidity measures. Technical report, Working Paper, Kellogg School of Manage-

ment at Northwestern University.

Kyle, A. (1985). Continuous auctions and insider trading. Econometrica: Journal of

the Econometric Society, pages 1315–1335.

Lauricella, T. (2010). How a trading algorithm went awry. The Wall Street Journal,

(October 2, 2010).

Mayhew, S. (2002). Competition, market structure, and bid-ask spreads in stock option

markets. The Journal of Finance, 57(2):931–958.

76

Page 77: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

Mayhew, S., Sarin, A., and Shastri, K. (1999). What drives option liquidity? University

of Pittsburgh.

O’brien, R. (2007). A caution regarding rules of thumb for variance inflation factors.

Quality & Quantity, 41(5):673–690.

Petrella, G. (2006). Option bid-ask spread and scalping risk: Evidence from a covered

warrants market. Journal of Futures Markets, 26(9):843–867.

Pinder, S. (2003). An empirical examination of the impact of market microstructure

changes on the determinants of option bid–ask spreads. International Review of

Financial Analysis, 12(5):563–577.

Rhoads, R. (2011). Trading VIX Derivatives: Trading and Hedging Strategies Using

VIX Futures, Options, and Exchange Traded Notes, volume 503. Wiley.

Roll, R. (2012). A simple implicit measure of the effective bid-ask spread in an efficient

market. The Journal of Finance, 39(4):1127–1139.

Routledge, B. and Zin, S. (2009). Model uncertainty and liquidity. Review of Economic

Dynamics, 12(4):543–566.

Sakia, R. (1992). The box-cox transformation technique: a review. The Statistician,

pages 169–178.

Sarr, A. and Lybek, T. (2002). Measuring liquidity in financial markets. IMF Working

Paper.

Scotti, S. (2012). Asset pricing under uncertainty. arXiv preprint arXiv:1203.5664.

Stoll, H. (2012). The supply of dealer services in securities markets. The Journal of

Finance, 33(4):1133–1151.

Stricknet.com (2012). End of day options data. Copyright 1997-2012.

The Technical Committee of the International Organization of Securities Commissions

(2011). Regulatory issues raised by the impact of technological changes on market

integrity and efficiency. Technical report, International Organization of Securities

Commissions.

77

Page 78: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

Tinic, S. (1972). The economics of liquidity services. The Quarterly Journal of Eco-

nomics, pages 79–93.

Wang, G. and Jain, C. (2003). Regression analysis: modeling & forecasting. Graceway

Publishing Company.

Wei, J. and Zheng, J. (2010). Trading activity and bid–ask spreads of individual equity

options. Journal of Banking & Finance, 34(12):2897–2916.

Yahoo.com (2012). Yahoo finance industry browser - sector list. This is an electronic

document. Date of publication: [Date unavailable]. Date retrieved: November 18,

2012. Date last modified: [Date unavailable].

A Appendix A

Sector quotes:

Banks high-cap: JPM, BAC, C (JPMorgan Chase, Bank of America, Citigroup)

Banks low-cap: STI, KEY, ZION (Suntrust Banks, Keycorp, Zions Bancorporation)

Energy & Oil high-cap: XOM, PTR, RDS.A (ExxonMobil, Petrochina, Royal Dutch

Shell)

Energy & Oil low-cap: MPC, HES, MUR (Marathon Petroleum, Hess, Murphy Oil)

Consumer staples high-cap: KFT, GIS, KO (Kraft Foods, General Mills, Coca Cola)

Consumer staples low-cap: DMND, CPB, DF (Diamond Foods, Campbell Soup, Dean

Foods)

Industrials high-cap: GE, SI, ETN (General Electric, Siemens, Eaton)

Industrials low-cap: ABAT, FSIN, XIDE (Advanced Battery, Fushi Copperweld, Exide

Technologies)

Healthcare high-cap: MRK, PFE, JNJ (Merck, Pfizer, Johnson & Johnson)

Healthcare low-cap: ABT, VTUS, IPXL (Abott Laboratories, Astex Pharmaceuticals,

78

Page 79: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

Vetrus, Impax Laboratories)

Internet high-cap: AOL, GOOG, YHOO (AOL, Google, Yahoo)

Internet low-cap: HSTM, WWW, TZOO (Healthstream, Web.com Group, Travelzoo)

Utilities high-cap: SO, DUK, EXC (Southern Company, Duke Energy, Excelon)

Utilities low-cap: EDE, ORA, BKH (Empire District Electric, Ormat Technologies,

Black Hills Coporation)

Services high-cap: WMT, TGT, COST (Wal-Mart, Target, Costco)

Services low-cap: PSMT, FDO, DLTR (PriceSmart, Family Dollar Stores, Dollar Tree)

Technology high-cap: AAPL, DELL, HPQ (Apple, Dell, HP)

Technology low-cap: LXK, SSYS, OMCL (Lexmark, Stratasys, Omnicell)

ETFs 1:

SPX: SPDR S&P Profile S&P 500 index

The S&P 500 index measures the performance of the large capitalization sector of the

U.S. equity market.

IWM: Russell 2000 Index Fund Profile

The Russell 2000 Index measures the performance of the small-cap segment of the U.S.

equity universe and is comprised of the smallest 2000 companies in the Russell 3000

Index, representing approximately 10% of the total market capitalization of that Index.

It includes approximately 2000 of the smallest securities based on a combination of

their market cap and current index membership.

SLV: Silver Trust Profile

This ETF is designed to track the spot price of silver bullion.

GLD: SPDR Gold Trust Profile1Descriptions from http://www.etfdb.com

79

Page 80: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

This ETF is designed to track the spot price of gold bullion.

UNG: United States Natural Gas Fund LP Profile

The underlying assets of the fund consist of natural gas futures contracts.

DBC: DB Commodity Index Tracking Fund Profile

The DBIQ Optimum Yield Diversified Commodity Index Excess Return is a rules-

based index composed of futures contracts on 14 of the most heavily-traded and im-

portant physical commodities in the world.

XLF: Financial Select Sector SPDR Profile

The index includes companies from the following industries: diversified financial ser-

vices; insurance; commercial banks; capital markets; real estate investment trusts; thrift

& mortgage finance; consumer finance; and real estate management & development.

QQQ: QQQ Profile

The index includes 100 of the largest domestic and international non-financial compa-

nies listed on the Nasdaq Stock Market based on market capitalization.

High-cap vs. low-cap banks:

Bank high-cap: JPM, BAC, GS, MS, WFC (JPMorgan Chase, Bank of America, Gold-

man Sachs, Morgan Stanley, Wells Fargo)

Banks low-cap: RF, STI, CMA, ZION, PBCT (Regions Financial Corp, Suntrust Banks,

Comerica Inc., Zions Bancorp, People’s United Financial Inc.)

US vs. European banks:

US banks: JPM, BAC, GS, MS, WFC (JPMorgan Chase, Bank of America, Goldman

Sachs, Morgan Stanley, Wells Fargo)

European banks: UBS, CSGKF, DB, BNP, HBC (UBS, Credit Suisse, Deutsche Bank,

BNP Paribas, HSBC)

80

Page 81: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

Pin-risk quotes:

OTM: AAPL 120317C00645000

ATM: AAPL 120317C00585000

ITM: AAPL 120317C00540000

Options used in the regression analysis

Low liquidity period:

JPM 111022C00033000, GS 111022C00110000, MS 111022C00016000, C 111022C00033000,

BAC 111022C00008000, AAPL 111022C00410000, JNJ 111022C00070000, GE 111022C00019000,

GOOG 111217C00555000, WMT 111217C00055000, KO 111119C00072500, XOM

111022C00080000, DELL 111119C00016000, HPQ 111119C00025000, SO 111119C00045000,

YHOO 111022C00017000

High liquidity period:

JPM 120616C00047000, GS 120421C00130000, MS 120421C00022000, C 120519C00040000,

BAC 120519C00011000, AAPL 120421C00610000, JNJ 120421C00070000, GE 120421C00022000,

GOOG 120616P00670000, WMT 120616C00065000, KO 120519C00077500, XOM

120421C00095000, DELL 120818C00018000, HPQ 120519C00025000, SO 120519C00047000,

YHOO 120519C00017000

B Appendix B

Table 18: Average annualized volatility of OTM (at 90% of the strike price) bid-askspreads across sectors

81

Page 82: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

Table 19: Cross-moneyness correlation with the VIX index

Table 20: Cross-index correlation of OTM (at 90% of the strike price) bid-ask spreads

Table 21: Cross-maturity correlation with the VIX index at 90% moneyness

82

Page 83: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

Table 22: Average bid-ask spread, trading volume and open interest across sectors

83

Page 84: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

Table 22: cont.

84

Page 85: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

Table 23: Statistical significance of correlation coefficients of the bank sector (p-values)

85

Page 86: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

Table 24: Average bid-ask spread of options on the most popular ETFs with 1-m matu-rity

86

Page 87: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

C Appendix C

Results of the multiple regressions:

Table 25: Model summary of the simple linear model

Figure 34: The output of the Breusch-Pagan test for the simple linear model

87

Page 88: Option Market Liquidity - An empirical study of option ... · In this thesis we review existing literature on option market liquidity and give an overview of the current state of

Table 26: The residual statistics of the simple linear model

88