optimization with max-min fuzzy relational equations · sup [0,1] ( ( , ) if and only if. j jiji im...

24
NC STATE UNIVERSITY Optimization with Max-Min Fuzzy Relational Equations Shu-Cherng Fang Industrial Engineering and Operations Research North Carolina State University Raleigh, NC 27695-7906, U.S.A www.ie.ncsu.edu/fangroup October 31, 2008 ISORA’08 at Lijiang, China Co-author: Pingke Li

Upload: others

Post on 03-Oct-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Optimization with Max-Min Fuzzy Relational Equations · sup [0,1] ( ( , ) if and only if. j jiji im xx x xab a b u t a,u) b Ab ϕ ϕ φ ≤≤ = = ≡∈ ≤ Σ≠ K Theorem: For

NC STATE UNIVERSITY

Optimization with Max-Min Fuzzy Relational Equations

Shu-Cherng Fang

Industrial Engineering and Operations ResearchNorth Carolina State UniversityRaleigh, NC 27695-7906, U.S.Awww.ie.ncsu.edu/fangroup

October 31, 2008ISORA’08 at Lijiang, China

Co-author: Pingke Li

Page 2: Optimization with Max-Min Fuzzy Relational Equations · sup [0,1] ( ( , ) if and only if. j jiji im xx x xab a b u t a,u) b Ab ϕ ϕ φ ≤≤ = = ≡∈ ≤ Σ≠ K Theorem: For

NC STATE UNIVERSITY2

Problem Facing

• Problem(P)Minimize f(x)

s.t. A ∘

x = bx ∈

[0,1]n

where f: Rn →

R is a function,

“∘” is a matrix operation replacing “product” by “minimum” and “addition” by “maximum”, i.e.,

[ ]( ) 0,1 ,mnij m nA a ×= ∈

1max min( , ) , for 1, , .ij j ij n

a x b i m≤ ≤

= = K

[ ]1( ) 0,1 ,mi mb b ×= ∈

Page 3: Optimization with Max-Min Fuzzy Relational Equations · sup [0,1] ( ( , ) if and only if. j jiji im xx x xab a b u t a,u) b Ab ϕ ϕ φ ≤≤ = = ≡∈ ≤ Σ≠ K Theorem: For

NC STATE UNIVERSITY3

Examples1. Capacity Planning

aij : bandwidth in field from server j to user i

bi : bandwidth required by user i

xj : capacity of server j

1

n

j

. . .

1

m

i. . .

Multimedia server

Regional server

End Users

1

Consider

max min ( , ) , for 1, , .ij j ij n a x b i m

≤ ≤= = K

Page 4: Optimization with Max-Min Fuzzy Relational Equations · sup [0,1] ( ( , ) if and only if. j jiji im xx x xab a b u t a,u) b Ab ϕ ϕ φ ≤≤ = = ≡∈ ≤ Σ≠ K Theorem: For

NC STATE UNIVERSITY4

Examples2. Fuzzy control / diagnosis / knowledge system

aij : degree of input j relating to output i

bi : degree of output at state i (symptom)

xj : degree of input at state j (cause)

Input Output

. . .j i. . .

System

1

1

A fuzzy system is usually characterized by max ( , ) , , or

min ( , ) , ,

where " " and " " are triangular norms.

ij j ij n

ij j ij n

t a x b i

s a x b i

t s

≤ ≤

≤ ≤

= ∀

= ∀

Page 5: Optimization with Max-Min Fuzzy Relational Equations · sup [0,1] ( ( , ) if and only if. j jiji im xx x xab a b u t a,u) b Ab ϕ ϕ φ ≤≤ = = ≡∈ ≤ Σ≠ K Theorem: For

NC STATE UNIVERSITY5

Triangular Norms

t-norm:

)

) if

)

such that:[0,1] [0,1] [0,1] ( ) ( ) ( ( , )) ( ( , ), )

( ) ( , ), ( 0) 0 ( 1)

tt x, y t y,xt x,t y z t t x y z

t x, y t x z y zt x, t x, x

1

2

3

4

× →=

=≤ ≤= =

(commutative)

(associative)

(monotonically nondecreasing)

(boundary con

)

and dition).

[ Schweizer B. and Sklar A. (1961), “Associative functions and statistical triangle inequalities”, Mathematical Debrecen 8, 169-186.]

s-norm (t co-norm):

]1,0[]1,0[]1,0[]1,0[

,)11(1)(:

∈∀−−−=→×

yxyx,tx,yss

that such

Page 6: Optimization with Max-Min Fuzzy Relational Equations · sup [0,1] ( ( , ) if and only if. j jiji im xx x xab a b u t a,u) b Ab ϕ ϕ φ ≤≤ = = ≡∈ ≤ Σ≠ K Theorem: For

NC STATE UNIVERSITY6

Triangular Norms

min{ ( ), ( )} if max{ ( ), ( )} 1( ( ), ( ))

0, otherwise (drastic product)

max{ ( ), ( )} if min{ ( ), ( )} 0( ( ), ( ))

1, otherwise

B BA Aw BA

B BA Aw BA

x x x xt x x

x x x xs x x

μ μ μ μμ μ

μ μ μ μμ μ

=⎧= ⎨⎩

==

% % % %% %

% % % %% %

1

1

1.5

(drastic sum)

( ( ), ( )) max{0, ( ) ( ) 1} bounded difference( ( ), ( )) min{1, ( ) ( )} bounded sum

( ) ( )( ( ), ( )) Einst

2 [ ( ) ( ) ( ) ( )]

B BA A

B BA A

BABA

B BA A

t x x x xs x x x x

x xt x x

x x x x

μ μ μ μμ μ μ μ

μ μμ μ

μ μ μ μ

⎧⎨⎩

= + −= +

⋅=

− + − ⋅

% % % %

% % % %

% %% %

% % % %

1.5

ein product

( ) ( )( ( ), ( )) Einstein sum

1 ( ) ( )BA

BABA

x xs x x

x xμ μ

μ μμ μ

+=

+ ⋅% %

% %

% %

Page 7: Optimization with Max-Min Fuzzy Relational Equations · sup [0,1] ( ( , ) if and only if. j jiji im xx x xab a b u t a,u) b Ab ϕ ϕ φ ≤≤ = = ≡∈ ≤ Σ≠ K Theorem: For

NC STATE UNIVERSITY7

Triangular Norms

2

2

2.5

2.5

( ( ), ( )) ( ) ( ) algebraic product( ( ), ( )) ( ) ( ) ( ) ( ) algebraic sum

( ) ( )( ( ), ( )) Hamacher product

( ) ( ) ( ) ( )

( ( ), ( )

B BA A

B B BA A A

BABA

B BA A

BA

t x x x xs x x x x x x

x xt x x

x x x x

s x x

μ μ μ μμ μ μ μ μ μ

μ μμ μ

μ μ μ μ

μ μ

= ⋅= + − ⋅

⋅=

+ − ⋅

% % % %

% % % % % %

% %% %

% % % %

% %

3

3

1 2 3 3 2 1

( ) ( ) 2 ( ) ( )) Hamacher sum

1 ( ) ( )

( ( ), ( )) min{ ( ), ( )} minimum( ( ), ( )) max{ ( ), ( )} maximum

min max

B BA A

BA

B BA A

B BA A

w w

x x x xx x

t x x x xs x x x x

t t t t s s s s

μ μ μ μμ μ

μ μ μ μμ μ μ μ

+ − ⋅=

− ⋅

==

≤ ≤ ≤ ≤ = ≤ = ≤ ≤ ≤

% % % %

% %

% % % %

% % % %

L L L L L L

Page 8: Optimization with Max-Min Fuzzy Relational Equations · sup [0,1] ( ( , ) if and only if. j jiji im xx x xab a b u t a,u) b Ab ϕ ϕ φ ≤≤ = = ≡∈ ≤ Σ≠ K Theorem: For

NC STATE UNIVERSITY8

Fuzzy Relational Equations

1

1

1

Given

find

such that

max-t-norm composition

[0,1]

[0,1]

[0,1]

A ( ) ,

b ( , , ) , ( , , ) ( ) max (a , ) , .

m nij

mm

nn

ij j ij n

a

b b

x x xA x b

t x b i

×

≤ ≤

= ∈

= ∈

= ∈=

= ∀

K

K

o

1

min-s-norm composition ( ) min (a , ) , .

The solution set is denoted by ( , ).

ij j ij n

A x b s x b i

A b≤ ≤

== ∀

o

Page 9: Optimization with Max-Min Fuzzy Relational Equations · sup [0,1] ( ( , ) if and only if. j jiji im xx x xab a b u t a,u) b Ab ϕ ϕ φ ≤≤ = = ≡∈ ≤ Σ≠ K Theorem: For

NC STATE UNIVERSITY9

Difficulties in Solving Problem (P)

1. Algebraically, neither “maximum” nor “minimum” operations has an inverse operation.

( )( )

0.5 0.30.2 0.3 0.5 10.2

max 0.3,min 0.2, 0.5 ?

x x

x x

−+ = ⇒ = =

= ⇒ =

2. Geometrically, the solution set ∑

(A, b) is a “combinatorially” generated “non-convex” set.

Page 10: Optimization with Max-Min Fuzzy Relational Equations · sup [0,1] ( ( , ) if and only if. j jiji im xx x xab a b u t a,u) b Ab ϕ ϕ φ ≤≤ = = ≡∈ ≤ Σ≠ K Theorem: For

NC STATE UNIVERSITY10

Solution Set of Max-t Equations

1. i

2. i

3. i

ˆ ( , )ˆ, ( , ).

( , ), ( , ).

ˆ ( , )

x A bx x x A b

x A bx x x A b

x A b

∈Σ≤ ∀ ∈Σ

∈Σ≥ ∀ ∈Σ

∈Σ

Definition

Definition

Definition

: s a maximum solution

if

: s a minimum solution

if

: s a maximal solution

4.

ˆ ˆ , ( , ).( , )

, ( , ).x

x x x x x A bA b

x x x x x A b

≥ = ∀ ∈Σ∈Σ

≤ = ∀ ∈ΣDefinition

if implies

: is a minimal solution

if implies

Page 11: Optimization with Max-Min Fuzzy Relational Equations · sup [0,1] ( ( , ) if and only if. j jiji im xx x xab a b u t a,u) b Ab ϕ ϕ φ ≤≤ = = ≡∈ ≤ Σ≠ K Theorem: For

NC STATE UNIVERSITY11

Solution Set of Max-t Equations

• Theorem: For a continuous t-norm, if Σ(A, b) is nonempty, then Σ(A, b) can be completely determined by one maximum and a finite number of minimal solutions.[Czogala / Drewhiak / Pedrycz (1982), Higashi / Klir (1984), di Nola (1985)]

x3

x1 x2. . .

[Root System]

Page 12: Optimization with Max-Min Fuzzy Relational Equations · sup [0,1] ( ( , ) if and only if. j jiji im xx x xab a b u t a,u) b Ab ϕ ϕ φ ≤≤ = = ≡∈ ≤ Σ≠ K Theorem: For

NC STATE UNIVERSITY12

Characteristics of Solution Sets

(1989)] Sanchez / Pedrycz / Sessa / Nola [di

Existence•

{ }

1

1

ˆ ˆ ˆ( , , )

ˆ min ( )

sup [0,1] (

( , ) if and only if

.

j

j ij ii m

x x x

x a b

a b u t a,u) b

A b

ϕ

ϕ

φ

≤ ≤

=

=

≡ ∈ ≤

Σ ≠K

Theorem : For a continuous t - norm,

it has a maximum solution

with where

Page 13: Optimization with Max-Min Fuzzy Relational Equations · sup [0,1] ( ( , ) if and only if. j jiji im xx x xab a b u t a,u) b Ab ϕ ϕ φ ≤≤ = = ≡∈ ≤ Σ≠ K Theorem: For

NC STATE UNIVERSITY13

Characteristics of Solution Sets

• Uniqueness[Sessa S. (1989), “Finite fuzzy relation equations with a unique solution in complete Brouwerian lattices,” Fuzzy Sets and Systems 29, 103-113.]

• Complexity[Wang / Sessa/ di Nola/ Pedrycz (1984), “How many lower solutions does a fuzzy relation have?,” BUSEFAL 18, 67-74.]

upper bound = nm

Page 14: Optimization with Max-Min Fuzzy Relational Equations · sup [0,1] ( ( , ) if and only if. j jiji im xx x xab a b u t a,u) b Ab ϕ ϕ φ ≤≤ = = ≡∈ ≤ Σ≠ K Theorem: For

NC STATE UNIVERSITY14

Characteristics of Solution Sets

• Theorem: For a continuous s-norm, if Σ(A, b) is nonempty, then Σ(A, b) is completely determined by one minimum and a finite number of maximal solutions.

1̂x

x

[Crown System]

2x̂ 3x̂

Page 15: Optimization with Max-Min Fuzzy Relational Equations · sup [0,1] ( ( , ) if and only if. j jiji im xx x xab a b u t a,u) b Ab ϕ ϕ φ ≤≤ = = ≡∈ ≤ Σ≠ K Theorem: For

NC STATE UNIVERSITY15

Problem Facing

• Problem(P)Minimize f(x)

s.t. A ∘

x = bx ∈

[0,1]m

A nonconvex optimization problem over a region defined by a combinatorial number of vertices.

Page 16: Optimization with Max-Min Fuzzy Relational Equations · sup [0,1] ( ( , ) if and only if. j jiji im xx x xab a b u t a,u) b Ab ϕ ϕ φ ≤≤ = = ≡∈ ≤ Σ≠ K Theorem: For

NC STATE UNIVERSITY16

Optimization with Fuzzy Relation Equations

f (x)=cTx linear function[Fang / Li (1999), “Solving fuzzy relation equations with a linear objective function, Fuzzy Sets and Systems 103, 107-113.]

ˆ 0 ,

0 ,

j

j

c j x

c j

Lemma1

Lemma2

: If for all then is an

optimal solution.

: If for all then one of the

minimal solutions is an optimal solution.

Page 17: Optimization with Max-Min Fuzzy Relational Equations · sup [0,1] ( ( , ) if and only if. j jiji im xx x xab a b u t a,u) b Ab ϕ ϕ φ ≤≤ = = ≡∈ ≤ Σ≠ K Theorem: For

NC STATE UNIVERSITY17

Optimization with Fuzzy Relation Equations

0-1 integer programming with a branch-and-bound solution technique.

solution. optimal an is * then)( withproblem the solves * where

xxc'xfx T ,)(=

0 0

0 0 0

ˆ ,j j j j

jj j j

xc if c x if c

c 'if c x if c

∗≥ ⎧ ≥⎧⎪ ⎪= =⎨ ⎨< <⎪ ⎪⎩ ⎩

Theorem : Let

and *

Page 18: Optimization with Max-Min Fuzzy Relational Equations · sup [0,1] ( ( , ) if and only if. j jiji im xx x xab a b u t a,u) b Ab ϕ ϕ φ ≤≤ = = ≡∈ ≤ Σ≠ K Theorem: For

NC STATE UNIVERSITY18

Optimization with Fuzzy Relational Equations

• Extensions1. Objective function f(x)

- linear fractional- geometric- general nonlinear- vector-valued- “max-t” or “min-s” operated

2. Constraints- interval-valued- “max-t” or “min-s” operated

3. Latticized optimization on the unit interval.

Page 19: Optimization with Max-Min Fuzzy Relational Equations · sup [0,1] ( ( , ) if and only if. j jiji im xx x xab a b u t a,u) b Ab ϕ ϕ φ ≤≤ = = ≡∈ ≤ Σ≠ K Theorem: For

NC STATE UNIVERSITY19

Theorem 1: Let A∘x = b be a consistent system of max-min (max-t) equations with a maximum solution .

The Problem (P) can be reduced to

Major Results

{ }

Minimize ( ) s. t. (MIP)

ˆ

0,1where is -by-

m

n

r

f xQu eGu eVu x x

uQ m r

≤≤ ≤

, is -by- , is -by- ,, are vectors of all ones, and is an integer

(up to ).

m n

G n r V n re e r

m n×

Page 20: Optimization with Max-Min Fuzzy Relational Equations · sup [0,1] ( ( , ) if and only if. j jiji im xx x xab a b u t a,u) b Ab ϕ ϕ φ ≤≤ = = ≡∈ ≤ Σ≠ K Theorem: For

NC STATE UNIVERSITY20

Major Results

Theorem 2: As in Theorem 1, if f(x) is linear, fractional linear, or monotone in each variable, then the Problem (P) can be further reduced to a 0-1 integer programming problem.

In particular, when the t-norm is Archimedean and f(x) is separable and monotone in each variable, then Problem (P) is equivalent to a “set covering problem”:

{ }

ˆ Minimize ( ) (0)

(SCP) s. t.

0,1 .

j j j jj

m

n

f x f u

Qu e

u

⎡ ⎤−⎣ ⎦

Page 21: Optimization with Max-Min Fuzzy Relational Equations · sup [0,1] ( ( , ) if and only if. j jiji im xx x xab a b u t a,u) b Ab ϕ ϕ φ ≤≤ = = ≡∈ ≤ Σ≠ K Theorem: For

NC STATE UNIVERSITY21

Major Results

When the t-norm is non-Archimedean, then Problem (P) is equivalent to a “constrained set covering problem”.

Corollary: Problem (P) is in general NP-hard.

Theorem 3: In case with fj ( ) being continuous and monotone for each j, then Problem (P) can be solved in polynomial time.

( ) max ( )j jj Nf x f x

∈=

Page 22: Optimization with Max-Min Fuzzy Relational Equations · sup [0,1] ( ( , ) if and only if. j jiji im xx x xab a b u t a,u) b Ab ϕ ϕ φ ≤≤ = = ≡∈ ≤ Σ≠ K Theorem: For

NC STATE UNIVERSITY22

Challenges Remain

• Efficient solution procedures to generate ∑(A, b).

• Efficient algorithms for optimization problems with relational equation constraints.

• Efficient algorithms to generate an approximate solution of ∑(A, b), i.e.,

( )[ ]

Minimize ,

s. t. 0,1 .n

dist A x b

x∈

o

Page 23: Optimization with Max-Min Fuzzy Relational Equations · sup [0,1] ( ( , ) if and only if. j jiji im xx x xab a b u t a,u) b Ab ϕ ϕ φ ≤≤ = = ≡∈ ≤ Σ≠ K Theorem: For

NC STATE UNIVERSITY23

References

1. Li, P., Fang, S.-C., On the resolution and optimization of a system of fuzzy relational equations with sup-T composition, Fuzzy Optimization and Decision Making, 7 (2008) 169-214.

2. Li, P., Fang, S.-C., Minimizing a linear fractional function subject to a system of sup-T equation with a continuous Archimedean triangular norm, to appear in Journal of Systems Science and Complexity.

3. Li, P., Fang, S.-C., A survey on fuzzy relational equations, Part I: Classification and solvability, to appear in Fuzzy Optimization and Decision Making.

4. Li, P., Fang, S.-C., Latticized linear optimization on the unit interval, submitted to IEEE Transactions on Fuzzy System.

Page 24: Optimization with Max-Min Fuzzy Relational Equations · sup [0,1] ( ( , ) if and only if. j jiji im xx x xab a b u t a,u) b Ab ϕ ϕ φ ≤≤ = = ≡∈ ≤ Σ≠ K Theorem: For

NC STATE UNIVERSITY24

Thank you! Questions?

<www.ise.ncsu.edu/fangroup><[email protected]>