optimisation of shaft

Upload: msaravana-kumarme

Post on 02-Apr-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/27/2019 Optimisation of Shaft

    1/10

    Optimisation of hybrid high-modulus/high-strength carbon fibre

    reinforced plastic composite driveshaftsOriginal Research ArticleMaterials & Design, Volume 46,April 2013, Pages 88-100

    O. Montagnier, Ch. Hochard

    Abstract

    This study deals with the optimisation of hybrid composite drive shafts operating at subcritical or supercritical speeds,

    using a genetic algorithm. A formulation for the flexural vibrations of a composite drive shaft mounted on viscoelastic

    supports including shear effects is developed. In particular, an analytic stability criterion is developed to ensure the

    integrity of the system in the supercritical regime. Then it is shown that the torsional strength can be computed with

    the maximum stress criterion. A shell method is developed for computing drive shaft torsional buckling. The

    optimisation of a helicopter tail rotor driveline is then performed. In particular, original hybrid shafts consisting of high-

    modulus and high-strength carbon fibre reinforced epoxy plies were studied. The solutions obtained using the method

    presented here made it possible to greatly decrease the number of shafts and the weight of the driveline under

    subcritical conditions, and even more under supercritical conditions. This study yielded some general rules for

    designing an optimum composite shaft without any need for optimisation algorithms.

    Article Outline

    Nomenclature

    1.Introduction

    2.Design aspects

    o 2.1.Flexural vibration analysis

    o 2.2.Torsional vibration analysis

    o 2.3.Failure strength analysis

    o 2.4.Torsional buckling analysis

    o

    2.5.Driveline mass

    3.Shaft optimisation using a genetic algorithm

    o 3.1.Individual

    o 3.2.Constraints and fitness

    o 3.3.The genetic algorithm method

    o

    3.3.1.Initialisation

    3.3.2.Elitism

    3.3.3.Scaling, selection and crossover

    3.3.4.Mutation

    4.Case study

    o 4.1.Subcritical shaft optimisation

    o 4.2.Supercritical shaft optimisation

    5.Conclusion

    http://www.sciencedirect.com/science/article/pii/S0261306912006668http://www.sciencedirect.com/science/article/pii/S0261306912006668http://www.sciencedirect.com/science/article/pii/S0261306912006668http://www.sciencedirect.com/science/article/pii/S0261306912006668#nomen001http://www.sciencedirect.com/science/article/pii/S0261306912006668#nomen001http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec1http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec1http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec1http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec2http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec2http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec2http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec2.1http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec2.1http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec2.1http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec2.2http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec2.2http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec2.2http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec2.3http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec2.3http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec2.3http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec2.4http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec2.4http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec2.4http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec2.5http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec2.5http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec2.5http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec3http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec3http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec3http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec3.1http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec3.1http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec3.1http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec3.2http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec3.2http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec3.2http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec3.3http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec3.3http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec3.3http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec3.3.1http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec3.3.1http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec3.3.1http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec3.3.2http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec3.3.2http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec3.3.2http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec3.3.3http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec3.3.3http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec3.3.3http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec3.3.4http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec3.3.4http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec3.3.4http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec4http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec4http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec4http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec4.1http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec4.1http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec4.1http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec4.2http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec4.2http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec4.2http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec5http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec5http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec5http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec5http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec4.2http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec4.1http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec4http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec3.3.4http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec3.3.3http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec3.3.2http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec3.3.1http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec3.3http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec3.2http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec3.1http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec3http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec2.5http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec2.4http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec2.3http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec2.2http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec2.1http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec2http://www.sciencedirect.com/science/article/pii/S0261306912006668#sec1http://www.sciencedirect.com/science/article/pii/S0261306912006668#nomen001http://www.sciencedirect.com/science/article/pii/S0261306912006668http://www.sciencedirect.com/science/article/pii/S0261306912006668
  • 7/27/2019 Optimisation of Shaft

    2/10

    Appendix A.Torsional buckling equations

    References

    Bending of fibre-reinforced thermoplastic sheetsOriginal Research Article

    Composites Manufacturing, Volume 6, Issues 34, 1995, Pages 177-187

    T.A. Martin, D. Bhattacharyya, I.F. Collins

    Abstract

    When forming continuous fibre-reinforced thermoplastic (CFRT) sheets into three-dimensional components, interply

    shearing may be necessary in order to accommodate the out-of-plane bending because the fibres severely constrain

    the deformation along the fibre directions within their planes. Furthermore, thermoforming takes place at elevated

    temperatures so that the molten matrix polymer becomes fluid. These two factors are of prime importance in

    analysing any forming process with thermoplastic composite materials. This paper examines the process of forming

    unidirectional Plytron (a glass fibre-reinforced polypropylene composite, originally developed by ICI, UK) sheets into

    V-bends at a constant elevated temperature, and compares the experimental results with those predicted by an

    analytical model for plane strain bending of an incompressible Newtonian fluid reinforced with a single family of

    inextensible fibres. The shape of a strip as it is formed, the effects of temperature and forming speed on the formingloads are also investigated. A major conclusion from this study is that Plytron sheets demonstrate a viscoelastic

    response when formed within their melting range and the degree of elasticity is increased by reducing the

    temperature, which, in turn, can reduce the fibre instability. The theoretical model provides useful results for

    evaluating the effective longitudinal viscosity of the composite sheet, the effects of forming speed and punch

    geometry on the bending stresses and also highlights the limitations of a Newtonian fluid model in comparison with

    the actual material response.

    Damage behavior of fiber reinforced composite plates subjected to drop weight impactsOriginal Research

    Article

    Composites Science and Technology, Volume 66, Issue 1, January 2006, Pages 61-68

    Ramin Hosseinzadeh, Mahmood Mehrdad Shokrieh, Larry Lessard

    Abstract

    Fiber reinforced materials are widely used in many industrial structures including automotive, aviation, and civil due to

    their lower weights compared to metal structures. Full-composite body structures, especially in automotive and

    aviation applications, are becoming a proper replacement for current metal ones. For this reason, damage of such

    structures subjected to impact is a crucial case study in current research. The typical types of damages are mainly

    caused during production, repair, maintenance, or by particle crashes during function, and collisions between

    different structures. In this paper, four different fiber reinforced composite plates are studied after being impacted by a

    standard drop weight with different impact energies and moments. The damage zones are studied by ultra-sonic non-

    destructive inspection. Carbon fiber reinforced composite plates show the best structural behavior under low velocity

    impacts meanwhile carbon/glass fiber reinforced (hybrid) plates show suitable behavior under high impact energy.

    Finally, all the plates are modeled using ANSYS LS DYNA V6.1 under similar conditions to those of the tests. The

    damage zone shapes derived from software modeling do not show very good coincidence with those resulting from

    the tests. However, the software is able to predict the threshold of damage as it is verified well by test results.

    Article Outline

    1.Introduction

    2.Test configuration

    3.Inspection method

    http://www.sciencedirect.com/science/article/pii/S0261306912006668#appd001http://www.sciencedirect.com/science/article/pii/S0261306912006668#appd001http://www.sciencedirect.com/science/article/pii/S0261306912006668#appd001http://www.sciencedirect.com/science/article/pii/S0261306912006668#bibl001http://www.sciencedirect.com/science/article/pii/S0261306912006668#bibl001http://www.sciencedirect.com/science/article/pii/095671439595009Nhttp://www.sciencedirect.com/science/article/pii/095671439595009Nhttp://www.sciencedirect.com/science/article/pii/S0266353805002022http://www.sciencedirect.com/science/article/pii/S0266353805002022#sec1http://www.sciencedirect.com/science/article/pii/S0266353805002022#sec1http://www.sciencedirect.com/science/article/pii/S0266353805002022#sec1http://www.sciencedirect.com/science/article/pii/S0266353805002022#sec2http://www.sciencedirect.com/science/article/pii/S0266353805002022#sec2http://www.sciencedirect.com/science/article/pii/S0266353805002022#sec2http://www.sciencedirect.com/science/article/pii/S0266353805002022#sec3http://www.sciencedirect.com/science/article/pii/S0266353805002022#sec3http://www.sciencedirect.com/science/article/pii/S0266353805002022#sec3http://www.sciencedirect.com/science/article/pii/S0266353805002022#sec3http://www.sciencedirect.com/science/article/pii/S0266353805002022#sec2http://www.sciencedirect.com/science/article/pii/S0266353805002022#sec1http://www.sciencedirect.com/science/article/pii/S0266353805002022http://www.sciencedirect.com/science/article/pii/095671439595009Nhttp://www.sciencedirect.com/science/article/pii/S0261306912006668#bibl001http://www.sciencedirect.com/science/article/pii/S0261306912006668#appd001
  • 7/27/2019 Optimisation of Shaft

    3/10

    4.Glass fiber woven composites

    5.Carbon fiber reinforced composites

    6.Hybrid composites

    7.Test results

    8.Software modeling

    9.Summary

    References

    Composition of Fiber Reinforced Composites

    Common fiber reinforced composites are composed of fibers and a matrix. Fibers are the

    reinforcement and the main source of strength while the matrix 'glues' all the fibers

    together in shape and transfers stresses between the reinforcing fibers. Sometimes, fillers

    or modifiers might be added to smooth manufacturing process, impart special properties,

    and/or reduce product cost.

    Fibers of Fiber Reinforced Composites

    The primary function of the fibers is to carry the loads along their longitudinal directions.

    Common fiber reinforcing agents include

    Aluminum, Aluminum oxide, Aluminum silica

    Asbestos

    Beryllium, Beryllium carbide, Beryllium oxide

    Carbon (Graphite)

    Glass (E-glass, S-glass, D-glass)

    Molybdenum

    Polyamide (Aromatic polyamide, Aramid), e.g., Kevlar 29 and Kevlar 49

    Polyester

    Quartz (Fused silica)

    Steel

    Tantalum

    Titanium

    Tungsten, Tungsten monocarbide

    Matrix of Fiber Reinforced Composites

    http://www.sciencedirect.com/science/article/pii/S0266353805002022#sec4http://www.sciencedirect.com/science/article/pii/S0266353805002022#sec4http://www.sciencedirect.com/science/article/pii/S0266353805002022#sec4http://www.sciencedirect.com/science/article/pii/S0266353805002022#sec5http://www.sciencedirect.com/science/article/pii/S0266353805002022#sec5http://www.sciencedirect.com/science/article/pii/S0266353805002022#sec5http://www.sciencedirect.com/science/article/pii/S0266353805002022#sec6http://www.sciencedirect.com/science/article/pii/S0266353805002022#sec6http://www.sciencedirect.com/science/article/pii/S0266353805002022#sec6http://www.sciencedirect.com/science/article/pii/S0266353805002022#sec7http://www.sciencedirect.com/science/article/pii/S0266353805002022#sec7http://www.sciencedirect.com/science/article/pii/S0266353805002022#sec7http://www.sciencedirect.com/science/article/pii/S0266353805002022#sec8http://www.sciencedirect.com/science/article/pii/S0266353805002022#sec8http://www.sciencedirect.com/science/article/pii/S0266353805002022#sec8http://www.sciencedirect.com/science/article/pii/S0266353805002022#sec9http://www.sciencedirect.com/science/article/pii/S0266353805002022#sec9http://www.sciencedirect.com/science/article/pii/S0266353805002022#sec9http://www.sciencedirect.com/science/article/pii/S0266353805002022#bibl001http://www.sciencedirect.com/science/article/pii/S0266353805002022#bibl001http://www.sciencedirect.com/science/article/pii/S0266353805002022#bibl001http://www.sciencedirect.com/science/article/pii/S0266353805002022#sec9http://www.sciencedirect.com/science/article/pii/S0266353805002022#sec8http://www.sciencedirect.com/science/article/pii/S0266353805002022#sec7http://www.sciencedirect.com/science/article/pii/S0266353805002022#sec6http://www.sciencedirect.com/science/article/pii/S0266353805002022#sec5http://www.sciencedirect.com/science/article/pii/S0266353805002022#sec4
  • 7/27/2019 Optimisation of Shaft

    4/10

    The primary functions of the matrix are to transfer stresses between the reinforcing fibers

    (hold fibers together) and protect the fibers from mechanical and/or environmental

    damages. A basic requirement for a matrix material is that its strain at break must be larger

    than the fibers it is holding.

    Most matrices are made of resins for their wide variation in properties and relatively low

    cost. Common resin materials include

    Resin Matrix

    o Epoxy

    o Phenolic

    o Polyester

    o Polyurethane

    o Vinyl Ester

    Among these resin materials, polyesters are the most widely used. Epoxies, which have

    higher adhesion and less shrinkage than polyesters, come in second for their higher costs.

    Although less common, non-resin matrices (mostly metals) can still be found in applications

    requiring higher performance at elevated temperatures, especially in the defense industry.

    Metal Matrix

    o

    Aluminumo Copper

    o Lead

    o Magnesium

    o Nickel

    o Silver

    o Titanium

    Non-Metal Matrix

    o Ceramics

    Modifiers of Fiber Reinforced Composites

    The primary functions of the additives (modifiers, fillers) are to reduce cost, improve

    workability, and/or impart desired properties.

  • 7/27/2019 Optimisation of Shaft

    5/10

    Cost Reduction:

    o Low cost to weight ratio, may fill up to 40% (65% in some cases) of the total

    weight

    Workability Improvement:

    o Reduce shrinkage

    o Help air release

    o Decrease viscosity

    o Control emission

    o Reduce coefficient of friction on surfaces

    o Seal molds and/or guide resin flows

    o Initiate and/or speed up or slow down curing process

    Property Enhancement:

    o Improve electric conductivity

    o Improve fire resistance

    o Improve corrosion resistance

    o Improve ultraviolet resistance

    o Improve surface toughness

    o Stabilize heat transfer

    o Reduce tendency of static electric charge

    o Add desired colors

    Common materials used as additives include

    Filler Materials:

    o Feldspar

    o Glass microspheres

    o Glass flakes

    o Glass fibers, milled

    o Mica

    o Silica

    o Talc

    o Wollastonite

    o Other microsphere products

    Modifier Materials:

    o Organic peroxide, e.g., methylethylketone peroxide (MEKP)

    o Benzoyl peroxide

    o Tertiary butyl catechol (TBC)

  • 7/27/2019 Optimisation of Shaft

    6/10

    o Dimethylaniline (DMA)

    o Zinc stearate, waxes, silicones

    o Fumed silica, clays

    Multiphase layout optimization for fiber reinforced composites considering a damage modelOriginal Research

    Article

    Engineer ing Structures, Volume 49, Ap ril 2013, Pages 202-220

    Junji Kato, Ekkehard Ramm

    Abstract

    The present study addresses an optimization strategy for fiber reinforced composites, specifically Fiber Reinforced

    Concrete (FRC) with a complex failure mechanism resulting from material brittleness of both matrix and fibers and

    also from the nonlinear interfacial behavior between those constituents. A prominent objective for this kind of

    composite is the improvement of ductility. The entire structural response of this material strongly depends on three

    factors, (i) material layout of fiber on a small scale, (ii) fiber geometry on the macroscopic structural level, and (iii)

    material parameters of interface between matrix and fiber.

    The purpose of the present study is to improve the structural ductility of FRC by applying optimization; in the

    formulation not only the optimal material layout of fibers on the small scale but also the global fiber geometry are

    determined simultaneously. The proposed method is achieved by combining multiphase material optimization and

    material shape optimization, separately introduced by Kato et al. and Kato and Ramm , respectively.

    For the optimization problem a gradient-based optimization scheme is assumed. A method of moving asymptotes

    (MMA) is applied because of its numerically high efficiency and robustness. The performance of the proposed

    method is demonstrated by a series of numerical examples and compared with pure material shape optimization. It is

    verified that the proposed method gives more efficient results than the individual material shape optimization and that

    the structural ductility can be substantially improved.

    Article Outline

    1.Introduction

    o 1.1.Overview

    2.Applied material models

    o 2.1.Material model for constituents concrete and fiber

    o 2.2.Material model for interface

    3.Background: multiphase material and material shape optimization

    o 3.1.Multiphase material optimization

    o 3.2.Material shape optimization

    4.Multiphase layout optimization

    http://www.sciencedirect.com/science/article/pii/S0141029612005470http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec1http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec1http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec1http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec1.1http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec1.1http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec1.1http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec2http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec2http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec2http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec2.1http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec2.1http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec2.1http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec2.2http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec2.2http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec2.2http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec3http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec3http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec3http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec3.1http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec3.1http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec3.1http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec3.2http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec3.2http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec3.2http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec4http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec4http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec4http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec4http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec3.2http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec3.1http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec3http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec2.2http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec2.1http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec2http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec1.1http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec1http://www.sciencedirect.com/science/article/pii/S0141029612005470
  • 7/27/2019 Optimisation of Shaft

    7/10

    o 4.1.Basic concept

    o 4.2.Two-phase fiber

    o 4.3.Three-phase fiber

    o 4.4.Interpolation rule for interface

    5.Embedded reinforcement element

    o 5.1.Kinematical assumption for interface between concrete and fiber

    6.Finite element formulation of FRC

    o 6.1.Discretized principle virtual work

    o 6.2.Element matrices

    7.Structural optimization of FRC

    o 7.1.Optimization problem

    o 7.2.Equilibrium conditions and total derivative of design function

    8.Sensitivity analysis

    o 8.1.Overview of sensitivity analysis

    o 8.2.Gradients of constitutive equations

    o 8.3.Sensitivity for explicit term of objective function

    o 8.4.Calculation of sensitivity coefficients

    o

    8.5.Total sensitivity

    9.Numerical examples

    o 9.1.Material shape optimization vs. multiphase layout optimization

    o

    9.1.1.Deep beam

    9.1.2.Splitting plate

    o 9.2.L-shape plate

    10.Conclusions

    Acknowledgement

    Appendix A.List of symbols

    References

    Hybrid natural and glass fibers reinforced polymer composites material selection using Analytical Hierarchy

    Process for automotive brake lever designOriginal Research Article

    http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec4.1http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec4.1http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec4.1http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec4.2http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec4.2http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec4.2http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec4.3http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec4.3http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec4.3http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec4.4http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec4.4http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec4.4http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec5http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec5http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec5http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec5.1http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec5.1http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec5.1http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec6http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec6http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec6http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec6.1http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec6.1http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec6.1http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec6.2http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec6.2http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec6.2http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec7http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec7http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec7http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec7.1http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec7.1http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec7.1http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec7.2http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec7.2http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec7.2http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec8http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec8http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec8http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec8.1http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec8.1http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec8.1http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec8.2http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec8.2http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec8.2http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec8.3http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec8.3http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec8.3http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec8.4http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec8.4http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec8.4http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec8.5http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec8.5http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec8.5http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec9http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec9http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec9http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec9.1http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec9.1http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec9.1http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec9.1.1http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec9.1.1http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec9.1.1http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec9.1.2http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec9.1.2http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec9.1.2http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec9.2http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec9.2http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec9.2http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec10http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec10http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec10http://www.sciencedirect.com/science/article/pii/S0141029612005470#ack001http://www.sciencedirect.com/science/article/pii/S0141029612005470#ack001http://www.sciencedirect.com/science/article/pii/S0141029612005470#appd001http://www.sciencedirect.com/science/article/pii/S0141029612005470#appd001http://www.sciencedirect.com/science/article/pii/S0141029612005470#appd001http://www.sciencedirect.com/science/article/pii/S0141029612005470#bibl001http://www.sciencedirect.com/science/article/pii/S0141029612005470#bibl001http://www.sciencedirect.com/science/article/pii/S0261306913003956http://www.sciencedirect.com/science/article/pii/S0261306913003956http://www.sciencedirect.com/science/article/pii/S0261306913003956http://www.sciencedirect.com/science/article/pii/S0261306913003956http://www.sciencedirect.com/science/article/pii/S0261306913003956http://www.sciencedirect.com/science/article/pii/S0141029612005470#bibl001http://www.sciencedirect.com/science/article/pii/S0141029612005470#appd001http://www.sciencedirect.com/science/article/pii/S0141029612005470#ack001http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec10http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec9.2http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec9.1.2http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec9.1.1http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec9.1http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec9http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec8.5http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec8.4http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec8.3http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec8.2http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec8.1http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec8http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec7.2http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec7.1http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec7http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec6.2http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec6.1http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec6http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec5.1http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec5http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec4.4http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec4.3http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec4.2http://www.sciencedirect.com/science/article/pii/S0141029612005470#sec4.1
  • 7/27/2019 Optimisation of Shaft

    8/10

    Materials & Design, Volume 51, October 2013, Pages 484-492

    M.R. Mansor, S.M. Sapuan, E.S. Zainudin, A.A. Nuraini, A. Hambali

    Abstract

    Due to recent trend and increasing awareness towards sustainable product design, natural based fiber materials are

    gaining a revival popularity to replace synthetic based fiber in the formulation of composites especially for automotive

    structural and semi structural applications. In this paper, the Analytical Hierarchy Process (AHP) method was utilized

    in the selection of the most suitable natural fiber to be hybridized with glass fiber reinforced polymer composites for

    the design of a passenger vehicle center lever parking brake component. Thirteen (13) candidate natural based fiber

    materials for the hybridization process were selected and analyzed to determine their overall scores in three (3) main

    performance indices according to the component product design specifications. Using the AHP method, the kenaf

    bast fiber yields the highest scores and was selected as the best candidate material to formulate the hybrid polymer

    composites for the automotive component construction. Sensitivity analysis was also performed and results show that

    kenaf bast fiber emerged as the best candidate material in two out of three simulated scenarios, which further

    validates the results gained through the AHP method.

    Article Outline

    1.Introduction

    2.Product design specifications

    o 2.1.Product design specification for automotive parking brake lever

    3.Material selection of hybrid natural and glass fibers reinforced polymer composites using AHP: a case study on

    automotive parking brake lever component

    o 3.1.Overall material selection methodology using AHP

    o 3.2.Development of AHP hierarchical framework

    o 3.3.Performing judgment using pair-wise comparison

    o 3.4.Synthesizing pair-wise judgments and calculating priority vectors

    o 3.5.Performing consistency analysis using consistency ratio

    o 3.6.Final AHP hybrid polymer composites material selection results

    o 3.7.Results verification using sensitivity analysis

    4.Conclusion

    Acknowledgments

    References

    Numerical investigation of the effects of drill geometry on drilling induced delamination of carbonfiber

    reinforced compositesOriginal Research Article

    Composite Structures, Volume 105, November 2013, Pages 126-133

    Ozden Isbilir, Elaheh Ghassemieh

    Abstract

    Drilling is a major process in the manufacturing of holes required for the assemblies of composite laminates in

    aerospace industry. Simulation of drilling process is an effective method in optimizing the drill geometry and process

    parameters in order to improve hole quality and to reduce the drill wear. In this research we have developed three-

    http://www.sciencedirect.com/science/article/pii/S0261306913003956#sec1http://www.sciencedirect.com/science/article/pii/S0261306913003956#sec1http://www.sciencedirect.com/science/article/pii/S0261306913003956#sec1http://www.sciencedirect.com/science/article/pii/S0261306913003956#sec2http://www.sciencedirect.com/science/article/pii/S0261306913003956#sec2http://www.sciencedirect.com/science/article/pii/S0261306913003956#sec2http://www.sciencedirect.com/science/article/pii/S0261306913003956#sec2.1http://www.sciencedirect.com/science/article/pii/S0261306913003956#sec2.1http://www.sciencedirect.com/science/article/pii/S0261306913003956#sec2.1http://www.sciencedirect.com/science/article/pii/S0261306913003956#sec3http://www.sciencedirect.com/science/article/pii/S0261306913003956#sec3http://www.sciencedirect.com/science/article/pii/S0261306913003956#sec3http://www.sciencedirect.com/science/article/pii/S0261306913003956#sec3http://www.sciencedirect.com/science/article/pii/S0261306913003956#sec3.1http://www.sciencedirect.com/science/article/pii/S0261306913003956#sec3.1http://www.sciencedirect.com/science/article/pii/S0261306913003956#sec3.1http://www.sciencedirect.com/science/article/pii/S0261306913003956#sec3.2http://www.sciencedirect.com/science/article/pii/S0261306913003956#sec3.2http://www.sciencedirect.com/science/article/pii/S0261306913003956#sec3.2http://www.sciencedirect.com/science/article/pii/S0261306913003956#sec3.3http://www.sciencedirect.com/science/article/pii/S0261306913003956#sec3.3http://www.sciencedirect.com/science/article/pii/S0261306913003956#sec3.3http://www.sciencedirect.com/science/article/pii/S0261306913003956#sec3.4http://www.sciencedirect.com/science/article/pii/S0261306913003956#sec3.4http://www.sciencedirect.com/science/article/pii/S0261306913003956#sec3.4http://www.sciencedirect.com/science/article/pii/S0261306913003956#sec3.5http://www.sciencedirect.com/science/article/pii/S0261306913003956#sec3.5http://www.sciencedirect.com/science/article/pii/S0261306913003956#sec3.5http://www.sciencedirect.com/science/article/pii/S0261306913003956#sec3.6http://www.sciencedirect.com/science/article/pii/S0261306913003956#sec3.6http://www.sciencedirect.com/science/article/pii/S0261306913003956#sec3.6http://www.sciencedirect.com/science/article/pii/S0261306913003956#sec3.7http://www.sciencedirect.com/science/article/pii/S0261306913003956#sec3.7http://www.sciencedirect.com/science/article/pii/S0261306913003956#sec3.7http://www.sciencedirect.com/science/article/pii/S0261306913003956#sec4http://www.sciencedirect.com/science/article/pii/S0261306913003956#sec4http://www.sciencedirect.com/science/article/pii/S0261306913003956#sec4http://www.sciencedirect.com/science/article/pii/S0261306913003956#ack001http://www.sciencedirect.com/science/article/pii/S0261306913003956#ack001http://www.sciencedirect.com/science/article/pii/S0261306913003956#bibl001http://www.sciencedirect.com/science/article/pii/S0261306913003956#bibl001http://www.sciencedirect.com/science/article/pii/S0263822313001785http://www.sciencedirect.com/science/article/pii/S0263822313001785http://www.sciencedirect.com/science/article/pii/S0263822313001785http://www.sciencedirect.com/science/article/pii/S0263822313001785http://www.sciencedirect.com/science/article/pii/S0263822313001785http://www.sciencedirect.com/science/article/pii/S0261306913003956#bibl001http://www.sciencedirect.com/science/article/pii/S0261306913003956#ack001http://www.sciencedirect.com/science/article/pii/S0261306913003956#sec4http://www.sciencedirect.com/science/article/pii/S0261306913003956#sec3.7http://www.sciencedirect.com/science/article/pii/S0261306913003956#sec3.6http://www.sciencedirect.com/science/article/pii/S0261306913003956#sec3.5http://www.sciencedirect.com/science/article/pii/S0261306913003956#sec3.4http://www.sciencedirect.com/science/article/pii/S0261306913003956#sec3.3http://www.sciencedirect.com/science/article/pii/S0261306913003956#sec3.2http://www.sciencedirect.com/science/article/pii/S0261306913003956#sec3.1http://www.sciencedirect.com/science/article/pii/S0261306913003956#sec3http://www.sciencedirect.com/science/article/pii/S0261306913003956#sec3http://www.sciencedirect.com/science/article/pii/S0261306913003956#sec2.1http://www.sciencedirect.com/science/article/pii/S0261306913003956#sec2http://www.sciencedirect.com/science/article/pii/S0261306913003956#sec1
  • 7/27/2019 Optimisation of Shaft

    9/10

    dimensional (3D) FE model for drilling CFRP. A 3D progressive intra-laminar failure model based on the Hashins

    theory is considered. Also an inter-laminar delamination model which includes the onset and growth of delamination

    by using cohesive contact zone is developed. The developed model with inclusion of the improved delamination

    model and real drill geometry is used to make comparison between the step drill of different stage ratio and twist drill.

    Thrust force, torque and work piece stress distributions are estimated to decrease by the use of step drill with high

    stage ratio. The model indicates that delamination and other workpiece defects could be controlled by selection ofsuitable step drill geometry. Hence the 3D model could be used as a design tool for drill geometry for minimization of

    delamination in CFRP drilling.

    Article Outline

    1.Introduction

    2.Numerical procedures

    o 2.1.Stress model

    o 2.2.Progressive failure model (intra-laminar failure)

    o 2.3.Progressive delamination model (inter-laminar failure)o 2.4.Finite element model of drilling

    3.Experimental procedure

    4.Results and discussion

    o 4.1.Verification of force and torque

    o 4.2.Verification of delamination prediction

    o 4.3.Effects of geometry on thrust force and torque

    o 4.4.Effects of geometry on damage and delamination

    o 4.5.Stress distribution

    5.Conclusions

    Acknowledgements

    References

    Design of newly fabricated tribological machine for wear and frictional experiments under dry/wet

    conditionOriginal Research Article

    Materials & Design, Volume 48, June 2013, Pages 2-13

    B.F. Yousif

    Abstract

    Nowadays, there is demand to evaluate tribological performance of new engineering materials using different

    techniques. Various laboratory tribo-machines have been designed and fabricated such as Pin-on-Disc (POD), ASTM

    G99, Block-on-Ring (BOR), ASTM G77 or G137-953, Dry Sand Rubber Wheel (DSRW), ASTM G655, Wet Sand

    Rubber Wheel (WSRW), ASTM G105, and sand/steel wheel test under wet/dry conditions (ASTM B611). A concept

    of integrating more than one tribo-technique at different contact mechanisms (line or area) working simultaneously

    under same test condition against same material is introduced in a current designed machine. Different wear modes

    (adhesive, two-body-abrasive, three-body-abrasive, under dry, lubricated, or slurry conditions) can be conducted on

    the same machine. Results of adhesive wear, friction and interface temperature of glass fibre reinforced polyester

    http://www.sciencedirect.com/science/article/pii/S0263822313001785#sec1http://www.sciencedirect.com/science/article/pii/S0263822313001785#sec1http://www.sciencedirect.com/science/article/pii/S0263822313001785#sec1http://www.sciencedirect.com/science/article/pii/S0263822313001785#sec2http://www.sciencedirect.com/science/article/pii/S0263822313001785#sec2http://www.sciencedirect.com/science/article/pii/S0263822313001785#sec2http://www.sciencedirect.com/science/article/pii/S0263822313001785#sec2.1http://www.sciencedirect.com/science/article/pii/S0263822313001785#sec2.1http://www.sciencedirect.com/science/article/pii/S0263822313001785#sec2.1http://www.sciencedirect.com/science/article/pii/S0263822313001785#sec2.2http://www.sciencedirect.com/science/article/pii/S0263822313001785#sec2.2http://www.sciencedirect.com/science/article/pii/S0263822313001785#sec2.2http://www.sciencedirect.com/science/article/pii/S0263822313001785#sec2.3http://www.sciencedirect.com/science/article/pii/S0263822313001785#sec2.3http://www.sciencedirect.com/science/article/pii/S0263822313001785#sec2.3http://www.sciencedirect.com/science/article/pii/S0263822313001785#sec2.4http://www.sciencedirect.com/science/article/pii/S0263822313001785#sec2.4http://www.sciencedirect.com/science/article/pii/S0263822313001785#sec2.4http://www.sciencedirect.com/science/article/pii/S0263822313001785#sec3http://www.sciencedirect.com/science/article/pii/S0263822313001785#sec3http://www.sciencedirect.com/science/article/pii/S0263822313001785#sec3http://www.sciencedirect.com/science/article/pii/S0263822313001785#sec4http://www.sciencedirect.com/science/article/pii/S0263822313001785#sec4http://www.sciencedirect.com/science/article/pii/S0263822313001785#sec4http://www.sciencedirect.com/science/article/pii/S0263822313001785#sec4.1http://www.sciencedirect.com/science/article/pii/S0263822313001785#sec4.1http://www.sciencedirect.com/science/article/pii/S0263822313001785#sec4.1http://www.sciencedirect.com/science/article/pii/S0263822313001785#sec4.2http://www.sciencedirect.com/science/article/pii/S0263822313001785#sec4.2http://www.sciencedirect.com/science/article/pii/S0263822313001785#sec4.2http://www.sciencedirect.com/science/article/pii/S0263822313001785#sec4.3http://www.sciencedirect.com/science/article/pii/S0263822313001785#sec4.3http://www.sciencedirect.com/science/article/pii/S0263822313001785#sec4.3http://www.sciencedirect.com/science/article/pii/S0263822313001785#sec4.4http://www.sciencedirect.com/science/article/pii/S0263822313001785#sec4.4http://www.sciencedirect.com/science/article/pii/S0263822313001785#sec4.4http://www.sciencedirect.com/science/article/pii/S0263822313001785#sec4.5http://www.sciencedirect.com/science/article/pii/S0263822313001785#sec4.5http://www.sciencedirect.com/science/article/pii/S0263822313001785#sec4.5http://www.sciencedirect.com/science/article/pii/S0263822313001785#sec5http://www.sciencedirect.com/science/article/pii/S0263822313001785#sec5http://www.sciencedirect.com/science/article/pii/S0263822313001785#sec5http://www.sciencedirect.com/science/article/pii/S0263822313001785#ack001http://www.sciencedirect.com/science/article/pii/S0263822313001785#ack001http://www.sciencedirect.com/science/article/pii/S0263822313001785#bibl001http://www.sciencedirect.com/science/article/pii/S0263822313001785#bibl001http://www.sciencedirect.com/science/article/pii/S0261306912004335http://www.sciencedirect.com/science/article/pii/S0261306912004335http://www.sciencedirect.com/science/article/pii/S0261306912004335http://www.sciencedirect.com/science/article/pii/S0261306912004335http://www.sciencedirect.com/science/article/pii/S0261306912004335http://www.sciencedirect.com/science/article/pii/S0263822313001785#bibl001http://www.sciencedirect.com/science/article/pii/S0263822313001785#ack001http://www.sciencedirect.com/science/article/pii/S0263822313001785#sec5http://www.sciencedirect.com/science/article/pii/S0263822313001785#sec4.5http://www.sciencedirect.com/science/article/pii/S0263822313001785#sec4.4http://www.sciencedirect.com/science/article/pii/S0263822313001785#sec4.3http://www.sciencedirect.com/science/article/pii/S0263822313001785#sec4.2http://www.sciencedirect.com/science/article/pii/S0263822313001785#sec4.1http://www.sciencedirect.com/science/article/pii/S0263822313001785#sec4http://www.sciencedirect.com/science/article/pii/S0263822313001785#sec3http://www.sciencedirect.com/science/article/pii/S0263822313001785#sec2.4http://www.sciencedirect.com/science/article/pii/S0263822313001785#sec2.3http://www.sciencedirect.com/science/article/pii/S0263822313001785#sec2.2http://www.sciencedirect.com/science/article/pii/S0263822313001785#sec2.1http://www.sciencedirect.com/science/article/pii/S0263822313001785#sec2http://www.sciencedirect.com/science/article/pii/S0263822313001785#sec1
  • 7/27/2019 Optimisation of Shaft

    10/10

    composite under wet/dry contact condition are reported at 50 N load for different sliding speeds (2.87.8 m/s) using

    the new machine. Weight loss and friction coefficient of the composite were substantially influenced by introducing

    water as lubricant. Additionally, the contact condition has the high influence key on the wear and frictional

    performance of the composite.

    Article Outline

    1.Introduction

    2.New tribological apparatus configurations

    3.Material preparation and experimental procedure

    o 3.1.Preparation of samples

    o

    3.1.1.Dry adhesive tests

    3.1.2.Wet adhesive tests

    4.Results and discussion

    o 4.1.Dry contact condition

    o 4.2.Wet contact condition

    o 4.3.Surface observations

    5.Conclusion

    References

    http://www.sciencedirect.com/science/article/pii/S0261306912004335#sec1http://www.sciencedirect.com/science/article/pii/S0261306912004335#sec1http://www.sciencedirect.com/science/article/pii/S0261306912004335#sec1http://www.sciencedirect.com/science/article/pii/S0261306912004335#sec2http://www.sciencedirect.com/science/article/pii/S0261306912004335#sec2http://www.sciencedirect.com/science/article/pii/S0261306912004335#sec2http://www.sciencedirect.com/science/article/pii/S0261306912004335#sec3http://www.sciencedirect.com/science/article/pii/S0261306912004335#sec3http://www.sciencedirect.com/science/article/pii/S0261306912004335#sec3http://www.sciencedirect.com/science/article/pii/S0261306912004335#sec3.1http://www.sciencedirect.com/science/article/pii/S0261306912004335#sec3.1http://www.sciencedirect.com/science/article/pii/S0261306912004335#sec3.1http://www.sciencedirect.com/science/article/pii/S0261306912004335#sec3.1.1http://www.sciencedirect.com/science/article/pii/S0261306912004335#sec3.1.1http://www.sciencedirect.com/science/article/pii/S0261306912004335#sec3.1.1http://www.sciencedirect.com/science/article/pii/S0261306912004335#sec3.1.2http://www.sciencedirect.com/science/article/pii/S0261306912004335#sec3.1.2http://www.sciencedirect.com/science/article/pii/S0261306912004335#sec3.1.2http://www.sciencedirect.com/science/article/pii/S0261306912004335#sec4http://www.sciencedirect.com/science/article/pii/S0261306912004335#sec4http://www.sciencedirect.com/science/article/pii/S0261306912004335#sec4http://www.sciencedirect.com/science/article/pii/S0261306912004335#sec4.1http://www.sciencedirect.com/science/article/pii/S0261306912004335#sec4.1http://www.sciencedirect.com/science/article/pii/S0261306912004335#sec4.1http://www.sciencedirect.com/science/article/pii/S0261306912004335#sec4.2http://www.sciencedirect.com/science/article/pii/S0261306912004335#sec4.2http://www.sciencedirect.com/science/article/pii/S0261306912004335#sec4.2http://www.sciencedirect.com/science/article/pii/S0261306912004335#sec4.3http://www.sciencedirect.com/science/article/pii/S0261306912004335#sec4.3http://www.sciencedirect.com/science/article/pii/S0261306912004335#sec4.3http://www.sciencedirect.com/science/article/pii/S0261306912004335#sec5http://www.sciencedirect.com/science/article/pii/S0261306912004335#sec5http://www.sciencedirect.com/science/article/pii/S0261306912004335#sec5http://www.sciencedirect.com/science/article/pii/S0261306912004335#bibl001http://www.sciencedirect.com/science/article/pii/S0261306912004335#bibl001http://www.sciencedirect.com/science/article/pii/S0261306912004335#bibl001http://www.sciencedirect.com/science/article/pii/S0261306912004335#sec5http://www.sciencedirect.com/science/article/pii/S0261306912004335#sec4.3http://www.sciencedirect.com/science/article/pii/S0261306912004335#sec4.2http://www.sciencedirect.com/science/article/pii/S0261306912004335#sec4.1http://www.sciencedirect.com/science/article/pii/S0261306912004335#sec4http://www.sciencedirect.com/science/article/pii/S0261306912004335#sec3.1.2http://www.sciencedirect.com/science/article/pii/S0261306912004335#sec3.1.1http://www.sciencedirect.com/science/article/pii/S0261306912004335#sec3.1http://www.sciencedirect.com/science/article/pii/S0261306912004335#sec3http://www.sciencedirect.com/science/article/pii/S0261306912004335#sec2http://www.sciencedirect.com/science/article/pii/S0261306912004335#sec1