optimal design of engineering structures

33

Upload: others

Post on 17-Mar-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Optimal Design of Engineering Structures
Page 2: Optimal Design of Engineering Structures
Page 3: Optimal Design of Engineering Structures
Page 4: Optimal Design of Engineering Structures

Truss Topology Design

aaaaaaaaaaaa!!!!!!!!!!!!""""""""""""bbbbbbbbbbbb ���@@@�����@@@@@����������@@@@@@@@@@������������@@@@@@@@@@@@�����AAAAA@@@@@@@�������@@@���@@@@@�����!!!!!!!!!!!!!!!!!aaaaaaaaaaaaaaaaaJJJJJJJJ@@@����������������������������������

������������������

2

Page 5: Optimal Design of Engineering Structures

Minimax MSE estimator(Eldar, Ben-Tal, Nemirovski, IEEE Tran. Signal Proc. 2004)

Assumption: x is norm bounded ‖x‖T ≤ L.

The minimax MSE linear estimator minimizes the

worst case MSE across all bounded signals x, i.e.,

x̂mmx = Gy, where G is the solution to the following

optimization problem:

minG

max‖x‖T ≤L

xT (I − GH)T (I − GH)x + Tr(GCGT )︸ ︷︷ ︸

MSE

(6)

NOTICE for fixed G, the optimal value of the inner

max problem is

L2λmax(T−1/2(I −GH)T (I −GH)T−1/2) + Tr(GCGT )

so problem (6) reduces to:

35

Page 6: Optimal Design of Engineering Structures

The simplest TTD problem is

Compliance = 12fT x → min

s.t.

[m∑

i=1

tibibTi

]

︸ ︷︷ ︸

A(t)�0

x = f

m∑

i=1

ti ≤ w

t ≥ 0

• Data:

— bi ∈ Rn, n – # of nodal degrees of freedom

(for a 10 × 10 × 10 ground structure, n ≈ 3, 000)

— m – # of tentative bars (for 10 × 10 × 10

ground structure, m ≈ 500, 000)

• Design variables: t ∈ Rm, x ∈ Rn

3

Page 7: Optimal Design of Engineering Structures
Page 8: Optimal Design of Engineering Structures
Page 9: Optimal Design of Engineering Structures

−1 0 1 2 3 4 5 6 7 8−1

0

1

2

3

4

5

6

7Forces and fix points

Page 10: Optimal Design of Engineering Structures

−1 0 1 2 3 4 5 6 7 8−1

0

1

2

3

4

5

6

7Starting solution

Page 11: Optimal Design of Engineering Structures

−1 0 1 2 3 4 5 6 7 8−1

0

1

2

3

4

5

6

7

iteration number 10

Page 12: Optimal Design of Engineering Structures

−1 0 1 2 3 4 5 6 7 8−1

0

1

2

3

4

5

6

7

iteration number 20

Page 13: Optimal Design of Engineering Structures

−1 0 1 2 3 4 5 6 7 8−1

0

1

2

3

4

5

6

7

iteration number 40

Page 14: Optimal Design of Engineering Structures

−1 0 1 2 3 4 5 6 7 8−1

0

1

2

3

4

5

6

7

iteration number 60

Page 15: Optimal Design of Engineering Structures

−1 0 1 2 3 4 5 6 7 8−1

0

1

2

3

4

5

6

7

iteration number 80

Page 16: Optimal Design of Engineering Structures

−1 0 1 2 3 4 5 6 7 8−1

0

1

2

3

4

5

6

7

iteration number 100

Page 17: Optimal Design of Engineering Structures

−1 0 1 2 3 4 5 6 7 8−1

0

1

2

3

4

5

6

7

iteration number 150

Page 18: Optimal Design of Engineering Structures

−1 0 1 2 3 4 5 6 7 8−1

0

1

2

3

4

5

6

7

iteration number 200

Page 19: Optimal Design of Engineering Structures

−1 0 1 2 3 4 5 6 7 8−1

0

1

2

3

4

5

6

7

iteration number 400

Page 20: Optimal Design of Engineering Structures

−1 0 1 2 3 4 5 6 7 8−1

0

1

2

3

4

5

6

7

iteration number 600

Page 21: Optimal Design of Engineering Structures

−1 0 1 2 3 4 5 6 7 8−1

0

1

2

3

4

5

6

7

iteration number 800

Page 22: Optimal Design of Engineering Structures

−1 0 1 2 3 4 5 6 7 8−1

0

1

2

3

4

5

6

7

iteration number 1000

Page 23: Optimal Design of Engineering Structures

−1 0 1 2 3 4 5 6 7 8−1

0

1

2

3

4

5

6

7

iteration number 2000

Page 24: Optimal Design of Engineering Structures

−1 0 1 2 3 4 5 6 7 8−1

0

1

2

3

4

5

6

7

iteration number 3000

Page 25: Optimal Design of Engineering Structures

−1 0 1 2 3 4 5 6 7 8−1

0

1

2

3

4

5

6

7

iteration number 8000

Page 26: Optimal Design of Engineering Structures

Multi-Load TTD

(P) minxj ,t

maxj=1,...,k

{fTj xj}

s.t.

m∑

i=1

tiAixj = fj

m∑

i=1

ti = v

ti = 0 , i = 1, . . . , m

xj ∈ IRn, j = 1, . . . , k

minxj ,...,xk

λ∈Rk

k∑

j=1

fTj xj + v · max

i=1,...,m

K∑

j=1

xTj Aixj

λj

s.t.k∑

j=1

λj = 1, λ ≥ 0 .

6

Page 27: Optimal Design of Engineering Structures

CONVEX PROGRAM

min

x1,...,xk

λ∈IRk

τ∈IR

{∑

fTj xj + vτ

}

λj = 1, λ ≥ 0

dual var.t∗j

⇒∑

j

(

xTj Ajxj

λj

)

≤ τ

︸ ︷︷ ︸

a conic quadratic constraint

∀ i

7

Page 28: Optimal Design of Engineering Structures

04-115

Example: Assume we are designing a planar truss { acantilever; the 9� 9 nodal structure and the only loadof interest f� are as shown on the picture:

9� 9 ground structure and the load of interest

The optimal single-load design yields a nice truss asfollows:

aaaaaaaaaaaa

!!!!

!!!!

!!!!

""""""""""""

bbbbbbbbbbbb

���

@@@

�����@

@@@@

����������

@@@@@@@@@@

������������

@@@@@@@@@@@@

�����

AAAAA

@@@@@@@

�������

@@@

���

@@@@@�

����

!!!!

!!!!

!!!!

!!!!!

aaaaaaaaaaaaaaaaa

JJJJJJJJ

@@@

���

�������������������������������������������������

Optimal cantilever (single-load design)the compliance is 1.000

Page 29: Optimal Design of Engineering Structures

04-116

aaaaaaaaaaaa

!!!!

!!!!

!!!!

""""""""""""

bbbbbbbbbbbb

���

@@@

�����@

@@@@

����������

@@@@@@@@@@

������������

@@@@@@@@@@@@

�����

AAAAA

@@@@@@@

�������

@@@

���

@@@@@�

����

!!!!

!!!!

!!!!

!!!!!

aaaaaaaaaaaaaaaaa

JJJJJJJJ

@@@

���

�������������������������������������������������

@f

Optimal cantilever (single-load design)the compliance is 1.000

� It turns out that when the \load of interest" f � isreplaced with the small (k f k= 0:005 k f� k) \badlyplaced" occasional load f , the compliance jumps from1.000 to 8.4 (!)

� In order to improve the stability of the design, let usreplace the single load of interest f� by the ellipsoidcontaining this load and all loads f of magnitude k f knot exceeding 10% of the magnitude of f �:

F = ff = u1f� + u2f2 + f3u3 + ::: + u20f20 j uTu � 1g;

where f2; :::; f20 are of the norm 0:1 k f� k and f �; f2; :::; f20is an orthogonal basis in V = R20.

Page 30: Optimal Design of Engineering Structures

04-117

� Passing from the single-load to the robust design, wemodify the result as follows:

aaaaaaaaaaaa

!!!!

!!!!

!!!!

""""""""""""

bbbbbbbbbbbb

���

@@@

�����@

@@@@

����������

@@@@@@@@@@

������������

@@@@@@@@@@@@

�����

AAAAA

@@@@@@@

�������

@@@

���

@@@@@�

����

!!!!

!!!!

!!!!

!!!!!

aaaaaaaaaaaaaaaaa

JJJJJJJJ

@@@

���

�������������������������������������������������

Optimal cantilever (single-load design)

+aaaaaaaaaaaa

!!!!

!!!!

!!!!

HHHHH

����

"""

"""""""""

bbbbbbbbb

bbb

���

@@@

�����@

@@@@

������������

@@@@@@@@@@@@

�������

@@@@@@@

�����

AAAAA

@@@

���

������������

TTTTTTTTTTTTHHHHH

����

�������������������������������������������������

\Robust" cantilever

Compliances DesignSingle-load Robust

Compliance w.r.t. f � 1.000 1.0024

max compliance w.r.t. 32000 1.03loads f : k f k� 0:1 k f � k

Page 31: Optimal Design of Engineering Structures
Page 32: Optimal Design of Engineering Structures