optical spectroscopies of thin films and interfacesrote/zahn/vibrational_spectroscopies.pdf ·...

56
Dietrich R. T. Zahn Institut für Physik, Technische Universität Chemnitz, Germany Optical Spectroscopies of Thin Films and Interfaces

Upload: others

Post on 22-Mar-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Optical Spectroscopies of Thin Films and Interfacesrote/Zahn/Vibrational_Spectroscopies.pdf · Experiment Scattering Intensity Fit 100 150 200 250 77K D C B A In 2 Te 3 Scattering

Dietrich R. T. ZahnInstitut für Physik, Technische Universität Chemnitz, Germany

Optical Spectroscopies of Thin Films and Interfaces

Page 2: Optical Spectroscopies of Thin Films and Interfacesrote/Zahn/Vibrational_Spectroscopies.pdf · Experiment Scattering Intensity Fit 100 150 200 250 77K D C B A In 2 Te 3 Scattering

1. Introduction

2. Vibrational Spectroscopy, i.e. Raman

3. Spectroscopic Ellipsometry

4. Reflectance Anisotropy Spectroscopy

Page 3: Optical Spectroscopies of Thin Films and Interfacesrote/Zahn/Vibrational_Spectroscopies.pdf · Experiment Scattering Intensity Fit 100 150 200 250 77K D C B A In 2 Te 3 Scattering

Principle of Raman Scattering

Page 4: Optical Spectroscopies of Thin Films and Interfacesrote/Zahn/Vibrational_Spectroscopies.pdf · Experiment Scattering Intensity Fit 100 150 200 250 77K D C B A In 2 Te 3 Scattering

Raman SpectroscopyRaman SpectroscopyR - Rayleigh Scattering

S - Stokes Raman Scattering

ωi- ω(q)AS - Anti-Stokes

Raman Scatteringωi+ ω(q)

ωi

v=0v=1

ω(q)ω(q)

Virtual levels

qkk

qEP

i

i

S

S

rh

rh

rh

rhhh

rrrr

±=

±=

=

)(0

ωωωχε

ωi ωiωi+ ω(q)ωi- ω(q)

Inelastic scatteringInelastic scattering of the light mediated by the polarisabilitypolarisability of the medium.

ω

I

Reflected light

Incident light

Scattered light

Page 5: Optical Spectroscopies of Thin Films and Interfacesrote/Zahn/Vibrational_Spectroscopies.pdf · Experiment Scattering Intensity Fit 100 150 200 250 77K D C B A In 2 Te 3 Scattering

Raman Spectroscopy

Page 6: Optical Spectroscopies of Thin Films and Interfacesrote/Zahn/Vibrational_Spectroscopies.pdf · Experiment Scattering Intensity Fit 100 150 200 250 77K D C B A In 2 Te 3 Scattering

hωs=hωi+hΩ

200 250 300 350

ZnSe LO

Intensity / ctsmW-1s-1

GaAs LO

Raman Shift / cm-1

Raman Spectroscopy

Page 7: Optical Spectroscopies of Thin Films and Interfacesrote/Zahn/Vibrational_Spectroscopies.pdf · Experiment Scattering Intensity Fit 100 150 200 250 77K D C B A In 2 Te 3 Scattering

1,5 2,0 2,5 3,0 3,51

10

100

1000

laser lines

Info

rmat

ion

dept

h / n

m

Photon energy / eV

Information depth for GaAs= ½ of light penetration depth

Page 8: Optical Spectroscopies of Thin Films and Interfacesrote/Zahn/Vibrational_Spectroscopies.pdf · Experiment Scattering Intensity Fit 100 150 200 250 77K D C B A In 2 Te 3 Scattering

Resonance Raman excitation profiles

100 150 200 250 300Raman shift (cm-1)

100 150 200 250 300Raman shift (cm-1)

100 150 200 250 300Raman shift (cm-1)

100 150 200 250 300Raman shift (cm-1)

100 150 200 250 300Raman shift (cm-1)

1.65 1.70 1.75 1.80 1.85 1.90 1.95

Inte

nsity

(arb

. uni

ts)

Laser Photon Energy (eV)

hωL

Page 9: Optical Spectroscopies of Thin Films and Interfacesrote/Zahn/Vibrational_Spectroscopies.pdf · Experiment Scattering Intensity Fit 100 150 200 250 77K D C B A In 2 Te 3 Scattering

Resonance Raman scattering

0ij0

I∝0 Light j j phononi i Light 0

hωL −hωphonon−Ej

hωL−Ei

ij

2

LightLight Phonon

Page 10: Optical Spectroscopies of Thin Films and Interfacesrote/Zahn/Vibrational_Spectroscopies.pdf · Experiment Scattering Intensity Fit 100 150 200 250 77K D C B A In 2 Te 3 Scattering

Sub-Monolayer Sensitivityvia Resonance Enhancement

Page 11: Optical Spectroscopies of Thin Films and Interfacesrote/Zahn/Vibrational_Spectroscopies.pdf · Experiment Scattering Intensity Fit 100 150 200 250 77K D C B A In 2 Te 3 Scattering

Growth Chamberultra-high vacuum: base pressure<1⋅10-10mbar

up to 3 Knudsen cells

LEED/Auger

Page 12: Optical Spectroscopies of Thin Films and Interfacesrote/Zahn/Vibrational_Spectroscopies.pdf · Experiment Scattering Intensity Fit 100 150 200 250 77K D C B A In 2 Te 3 Scattering

Inten

sity

/ ctsm

W -1

s-1

Raman Shift / cm-1

Inten

sity

/ ctsm

W -1

s-1

Raman Shift / cm-1

Frequency Position and Lineshape

frequency shift by

temperature ≈2cm-1/100°Cpressure ≈1cm-1/1kbar

lineshape:

asymmetric broadening and shiftoccurs as a result of latticedisturbance

Page 13: Optical Spectroscopies of Thin Films and Interfacesrote/Zahn/Vibrational_Spectroscopies.pdf · Experiment Scattering Intensity Fit 100 150 200 250 77K D C B A In 2 Te 3 Scattering

0 100 200 300 400284

286

288

290

292

+/- 10°C

+/- 0.2 cm-1

Pea

k Po

sitio

n in

/ cm

-1

Temperature / °C

Determination of Surface Temperature

Using temperature induced shift of substrate phonon peak:

cm-1/100°CInSb: 2.1InP: 2.0GaAs: 1.8Si: 2.2ZnSe: 2.4

Page 14: Optical Spectroscopies of Thin Films and Interfacesrote/Zahn/Vibrational_Spectroscopies.pdf · Experiment Scattering Intensity Fit 100 150 200 250 77K D C B A In 2 Te 3 Scattering

0.45 0.50 0.55 0.60 0.650

1

2

3

4

visi

ble

ligh

t

red

blue

(620 nm)

(414 nm)

InSb

CdTeInPSiGaAs

ZnSe CdS

ZnS

GaN

Ener

gy b

andg

ap /

eV

Lattice constant / nm

Eg vs Lattice Constant

Page 15: Optical Spectroscopies of Thin Films and Interfacesrote/Zahn/Vibrational_Spectroscopies.pdf · Experiment Scattering Intensity Fit 100 150 200 250 77K D C B A In 2 Te 3 Scattering

CdS Growth on InP(100)

substrate: ammonium sulfidepassivated InP

wafers annealed in UHV to 330°C for 10 min; TS=200°C compound source for CdS at 620°C

laser excitation:2.34 eV

Page 16: Optical Spectroscopies of Thin Films and Interfacesrote/Zahn/Vibrational_Spectroscopies.pdf · Experiment Scattering Intensity Fit 100 150 200 250 77K D C B A In 2 Te 3 Scattering

CdS Growth on InP(100)

Page 17: Optical Spectroscopies of Thin Films and Interfacesrote/Zahn/Vibrational_Spectroscopies.pdf · Experiment Scattering Intensity Fit 100 150 200 250 77K D C B A In 2 Te 3 Scattering

0 50 100 150 2000.0

0.1

0.2 calculation experiment

Inte

nsity

LO

CdS

/ co

unts

s-1

mW

-1

CdS Layer Thickness / nm

Determination of CdS Layer Thickness

Fabry-Perotinterferencescause intensitymodulation of Ramansignals

Page 18: Optical Spectroscopies of Thin Films and Interfacesrote/Zahn/Vibrational_Spectroscopies.pdf · Experiment Scattering Intensity Fit 100 150 200 250 77K D C B A In 2 Te 3 Scattering

200 300 400

∆d=4nm

Sca

tterin

g In

tens

ity

Raman Shift / cm-1

Initial Phase of CdS Depositionon InP(100) at 200°C

broad shoulderon low frequencyside of CdS LO phonon peakindicates an interfacialreaction leadingto an In-S richlayer

Page 19: Optical Spectroscopies of Thin Films and Interfacesrote/Zahn/Vibrational_Spectroscopies.pdf · Experiment Scattering Intensity Fit 100 150 200 250 77K D C B A In 2 Te 3 Scattering

CdTe Growth on InSb

substrate: cleaved n-type InSb(110) surface

CdTe deposition from single Knudsencell kept at 550°C

laser excitation: 2.41 eV

Page 20: Optical Spectroscopies of Thin Films and Interfacesrote/Zahn/Vibrational_Spectroscopies.pdf · Experiment Scattering Intensity Fit 100 150 200 250 77K D C B A In 2 Te 3 Scattering

CdTe Deposition at 300°C

no CdTe growth

strong interfacereaction

Page 21: Optical Spectroscopies of Thin Films and Interfacesrote/Zahn/Vibrational_Spectroscopies.pdf · Experiment Scattering Intensity Fit 100 150 200 250 77K D C B A In 2 Te 3 Scattering

100 150 200 250

In2Te

3

A1g

(Sb)

D

C

B

A

Experiment Fit

Sca

tterin

g In

tens

ity

100 150 200 250

77K

D

C

B

AIn

2Te

3

Scat

terin

g In

tens

ity

Raman Shift / cm-1

Interfacial Reaction Products

Reaction of Te with InSb leading to the formation of In2Te3 and liberatedSb confirmed.

Page 22: Optical Spectroscopies of Thin Films and Interfacesrote/Zahn/Vibrational_Spectroscopies.pdf · Experiment Scattering Intensity Fit 100 150 200 250 77K D C B A In 2 Te 3 Scattering

CdTe Deposition at RT

no interfacereaction

Fabry-Perotmodulation

change in InSbLO/TO ratio

Page 23: Optical Spectroscopies of Thin Films and Interfacesrote/Zahn/Vibrational_Spectroscopies.pdf · Experiment Scattering Intensity Fit 100 150 200 250 77K D C B A In 2 Te 3 Scattering

ZnSSe Growth on GaAs(100)

substrate:As capped MBE grownGaAs layer

compound sources for ZnSe and ZnS

atomic nitrogen provided by rf plasma sourcelaser excitation: 2.54 eV for doping at

TS=260°C2.66 eV for ZnSSe at

TS=250°C

Page 24: Optical Spectroscopies of Thin Films and Interfacesrote/Zahn/Vibrational_Spectroscopies.pdf · Experiment Scattering Intensity Fit 100 150 200 250 77K D C B A In 2 Te 3 Scattering

100 200 300 400 500 600 050

100150

200

0.02

0.04

0.06

0.08

0.10

Intensity / counts mW -1s -1

Thickness / nmRaman Shift / cm-1

Raman Monitoring of ZnSe Growth

Page 25: Optical Spectroscopies of Thin Films and Interfacesrote/Zahn/Vibrational_Spectroscopies.pdf · Experiment Scattering Intensity Fit 100 150 200 250 77K D C B A In 2 Te 3 Scattering

100 200 300 400 500 600 050

100150

200250

0.02

0.04

0.06

0.08

0.10

Intensity / counts mW -1s -1

Thickness / nmRaman Shift / cm -1

Raman Monitoring of ZnSe Growth: Nitrogen Doping

weak ZnSe2LO scatteringrevealschange in resonancecondition as a result of nitrogendoping

Page 26: Optical Spectroscopies of Thin Films and Interfacesrote/Zahn/Vibrational_Spectroscopies.pdf · Experiment Scattering Intensity Fit 100 150 200 250 77K D C B A In 2 Te 3 Scattering

0 50 100 150 200 250 300284.7

285.0

285.3

285.6

285.9

286.2

286.5

286.8

ZnSe:N ZnSe undoped

Ram

an S

hift

/ cm

-1

Thickness / nm

Dependence of GaAsLO Frequency on ZnSe Doping

Nitrogeninducescompressivestrain in GaAs

Page 27: Optical Spectroscopies of Thin Films and Interfacesrote/Zahn/Vibrational_Spectroscopies.pdf · Experiment Scattering Intensity Fit 100 150 200 250 77K D C B A In 2 Te 3 Scattering

125 150 175 200 225 250 275 300 325 350 375

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

5.7 cm-1

5.7 cm-1

20.2 cm-1

13.7 cm-1

ZnSe LO

GaAs LO

ZnSe:N

ZnSeundoped

TM =260°C

Eex

= 2.54 eV (488 nm)d = 200 nm

Ram

an In

tens

ity /

coun

ts m

W-1

s-1

Raman Shift / cm-1

ZnSe with and without Nitrogen

broadeningof ZnSe LO phonon mode indicateslatticedisturbancebynitrogenincorporation

Page 28: Optical Spectroscopies of Thin Films and Interfacesrote/Zahn/Vibrational_Spectroscopies.pdf · Experiment Scattering Intensity Fit 100 150 200 250 77K D C B A In 2 Te 3 Scattering

Raman Monitoring of ZnSSe Growth

ZnS- and ZnSe-like LO phononscatteringobservableup to up to third order

Page 29: Optical Spectroscopies of Thin Films and Interfacesrote/Zahn/Vibrational_Spectroscopies.pdf · Experiment Scattering Intensity Fit 100 150 200 250 77K D C B A In 2 Te 3 Scattering

0.0 0.2 0.4 0.6 0.8 1.040

60

80

100

120

140

Theory after Hayashi et al. measured peakdifference

at nominal x

LOZn

S-LO

ZnSe

/ cm

-1

sulphur content x

Determination of S Content in ZnSxSe1-x

dependence of the relative frequency shiftof ZnS- and ZnSe-like LO modes onsulphur contentK.Hayashi et al. ,Jpn.J.Appl.Phys. 30, 501(1991)

Page 30: Optical Spectroscopies of Thin Films and Interfacesrote/Zahn/Vibrational_Spectroscopies.pdf · Experiment Scattering Intensity Fit 100 150 200 250 77K D C B A In 2 Te 3 Scattering

200 220 240 260 280 300 320 340

LO1+LO

2

LO2

Sca

tterin

g In

tens

ity

Raman Shift /cm-1

460 480 500 520 540 560 580

xnom

= 0.05

LO1: ZnSe-like

LO2: ZnS-like

LO2-LO

1

2LO1

LO1

Composition of Ternary Compounds

increasing frequencysplitting of ZnS- and ZnSe-like LO modescan be seen in LO and 2LO features

Page 31: Optical Spectroscopies of Thin Films and Interfacesrote/Zahn/Vibrational_Spectroscopies.pdf · Experiment Scattering Intensity Fit 100 150 200 250 77K D C B A In 2 Te 3 Scattering

100 200 300 400 500 600 70050

100150

2002500.1

0.2

0.3

0.4 LOZnS LOZnSe+LOZnS

2 LOZnSeLOZnSe

Intensity / counts mW -1s -1

Temperature / °CRaman Shift / cm-1

with increasingtemperaturethe bandgapof ZnS0.05Se0.95approaches thephoton energyof 2.66 eV

typical gain oftwo orders ofmagnitude

Resonance enhancement

Page 32: Optical Spectroscopies of Thin Films and Interfacesrote/Zahn/Vibrational_Spectroscopies.pdf · Experiment Scattering Intensity Fit 100 150 200 250 77K D C B A In 2 Te 3 Scattering

GaN Growth on GaAs(100)substrate:As capped MBE grown

GaAs layer

atomic nitrogen provided by rf plasma source

Ga from Knudsen cell at 870°C

laser excitation: 3.05 eV

Page 33: Optical Spectroscopies of Thin Films and Interfacesrote/Zahn/Vibrational_Spectroscopies.pdf · Experiment Scattering Intensity Fit 100 150 200 250 77K D C B A In 2 Te 3 Scattering

Raman Monitoring of GaN Growth on GaAs(100) at 600°C

resonanceenhancement of scattering in thecubic modification:

Eex=3.05eV≈Eg,cub

at 600°C

Page 34: Optical Spectroscopies of Thin Films and Interfacesrote/Zahn/Vibrational_Spectroscopies.pdf · Experiment Scattering Intensity Fit 100 150 200 250 77K D C B A In 2 Te 3 Scattering

200 400 600 800 1000

T=600°C

E2

GaAs LO

GaN

E2

A1+LO

dGaN

=

230nm

30nm

clean GaAs

Sca

tterin

g In

tens

ity

Raman Shift / cm-1

GaN Growth on GaAs(100)

high sensitivityachieved for GaNdetection at elevatedtemperatures

Page 35: Optical Spectroscopies of Thin Films and Interfacesrote/Zahn/Vibrational_Spectroscopies.pdf · Experiment Scattering Intensity Fit 100 150 200 250 77K D C B A In 2 Te 3 Scattering

Substrate strain and GaN crystalquality

0 50 100 150 200 250

34

36

38

40

42 A1+LO GaN

FWH

M /

cm-1

GaN layer thickness / nm

281

282

283

284

LO GaAsPos

ition

/ cm

-1

shift of GaAs LO phonon again revealsthe evolution of compressive strain in the substrate

evolution of FWHM is related to thecompetitive growth of cubic and hexagonal GaN

Page 36: Optical Spectroscopies of Thin Films and Interfacesrote/Zahn/Vibrational_Spectroscopies.pdf · Experiment Scattering Intensity Fit 100 150 200 250 77K D C B A In 2 Te 3 Scattering

Raman Spectroscopy and OMBD

Dilor XY 800 SpectrometerMonochromatic light source: Ar+ Laser (2.54eV), Detector: CCD • resonance condition with the absorption band of the organic material.• resolution: ~ 3.5 cm-1.

1.5 2.0 2.5 3.0 3.5 4.0

0

2

4

6

Abso

rbtio

n co

effic

ient

*10

5

S0-S2 transition

S0-S1 transition

DiMe-PTCDI

PTCDA

Energy / eV

800 700 600 500 400

0

2

4

Wavelength / nm

Ar+ line

Page 37: Optical Spectroscopies of Thin Films and Interfacesrote/Zahn/Vibrational_Spectroscopies.pdf · Experiment Scattering Intensity Fit 100 150 200 250 77K D C B A In 2 Te 3 Scattering

PTCDA DiMe-PTCDI

Symmetry D2hRaman active: 19Ag+18B1g+10B2g+7B3g

IR active: +10B1u+18B2u+18B3u

Silent: + 8Au108 internal vibrations

Molecular Vibrational Properties

CC2424HH88OO66

• DiMe-PTCDI: Cambridge Structural Database.

• PTCDA: α- and β-phases: S. R. Forrest, Chem. Rev. 97 (1997), 1793.

Monoclinic crystallographic system in thin films:

CC2626HH1414OO44NN22

C2h44Ag+22Bg

+23Au+43Bu

+ 8Au132 internal vibrations

Page 38: Optical Spectroscopies of Thin Films and Interfacesrote/Zahn/Vibrational_Spectroscopies.pdf · Experiment Scattering Intensity Fit 100 150 200 250 77K D C B A In 2 Te 3 Scattering

2-fold

DavydovSplitting

internal molecular modes: external molecular modes (phonons):

200 300 400 500 600 700

1200 1300 1400 1500 1600 1700

Inte

nsity

/ a.

u.

x2

Raman shift / cm-1

CC--OOBBgg

CC--HH CC--CC

CC--CC

SymmetrySymmetry: : DD2h2h CC2h2h (monoclinic)(monoclinic)

25 50 75 100 125 Raman shift / cm-1

Inte

nsity

/ a.

u. 6 rotationalvibrations:3Ag+3Bg

19Ag+18B1g+10B2g+7B3g

BBgg

AAgg

AAgg

BBgg

AAgg

RamanRaman--active vibrations of active vibrations of PTCDA PTCDA ((CC2424HH88OO66))::Effect of crystal formation Effect of crystal formation

Page 39: Optical Spectroscopies of Thin Films and Interfacesrote/Zahn/Vibrational_Spectroscopies.pdf · Experiment Scattering Intensity Fit 100 150 200 250 77K D C B A In 2 Te 3 Scattering

200 400 600 1200 1350 1500 1650

Inte

nsity

/ ar

b. u

nits

Raman shift / cm-1

Raman Spectra of a PTCDA Crystal

• assignment of modes and their relative atomic contribution using Gaussian `98 (B3LYP, 3-21G).

x0.1

Page 40: Optical Spectroscopies of Thin Films and Interfacesrote/Zahn/Vibrational_Spectroscopies.pdf · Experiment Scattering Intensity Fit 100 150 200 250 77K D C B A In 2 Te 3 Scattering

external molecular modes (phonons): 6 rotational vibrations: 3Ag+3Bg

SymmetrySymmetry: : CC2h2h (monoclinic)(monoclinic)

25 50 75 100 125 Raman shift / cm-1

Inte

nsity

/ a.

u.Phonons in PTCDA:

BBgg

AAgg

BBgg

Page 41: Optical Spectroscopies of Thin Films and Interfacesrote/Zahn/Vibrational_Spectroscopies.pdf · Experiment Scattering Intensity Fit 100 150 200 250 77K D C B A In 2 Te 3 Scattering

200 400 600 12

Inte

nsity

/ ar

b. u

nits

Raman sh

Raman Spectra of a Raman Spectra of a PTCDAPTCDA CrystalCrystal

• assignment of modes and their relative atomic contribution using Gaussian `98 (B3LYP:3-21G).

Raman shift /cm-1

and a and a DiMeDiMe--PTCDIPTCDI

DiMe-PTCDI PTCDA

PTCDA DiMe-PTCDI

DiMe-PTCDI

PTCDA experimental

ω m= =0.97ω m

ω 221= =0.95ω 233

Page 42: Optical Spectroscopies of Thin Films and Interfacesrote/Zahn/Vibrational_Spectroscopies.pdf · Experiment Scattering Intensity Fit 100 150 200 250 77K D C B A In 2 Te 3 Scattering

• Molecules remaining at the surface:NPTCDAPTCDA(0.04nm) ~ 1013 cm-2

NddSiSi ~ 1012 cm-2

Strong interaction between PTCDAPTCDA molecules and defectsdefects mainlymainly due to SiSi at the GaAsGaAs surface.

Interaction of Interaction of PTCDAPTCDA with the with the SS--GaAs(100):2x1 GaAs(100):2x1 SurfaceSurface

Annealing of a 14 nm thick film at 623 K for 30 min:

1300 1400 1500 1600

Inte

nsity

/ ct

s m

W-1 s

-1

Raman shift / cm-1

0.00

2

40 nmx 0.01

0.45 nm(x 0.6)

0.18 nm

ann.x 4.4

Page 43: Optical Spectroscopies of Thin Films and Interfacesrote/Zahn/Vibrational_Spectroscopies.pdf · Experiment Scattering Intensity Fit 100 150 200 250 77K D C B A In 2 Te 3 Scattering

300 600 9000

10

20

30

1200 1400 16000

500

1000

1500

Inte

nsity

/ A

4 am

u-1

Raman shift / cm-1

Calculated Vibrational Properties:PTCDA

1340 1350

2.7 cm-1

• calculations with Gaussian `98 (B3LYP:3-21G).

Page 44: Optical Spectroscopies of Thin Films and Interfacesrote/Zahn/Vibrational_Spectroscopies.pdf · Experiment Scattering Intensity Fit 100 150 200 250 77K D C B A In 2 Te 3 Scattering

Raman Monitoring ofRaman Monitoring of PTCDAPTCDA Growth on Growth on SS--GaAs(100):2x1GaAs(100):2x1

Page 45: Optical Spectroscopies of Thin Films and Interfacesrote/Zahn/Vibrational_Spectroscopies.pdf · Experiment Scattering Intensity Fit 100 150 200 250 77K D C B A In 2 Te 3 Scattering

200 250 300 350 400

LO Ω−

Nd = 2.7 *1018 cm-3

Ram

an in

teni

sty

/ a. u

.

Raman shift / cm-1

0 2 4 60.00.20.40.60.81.01.21.4

Raman PES

S-GaA

s

Ban

d B

endi

ng /

eV

Film Thickness / nm

PTCDA/S-GaAs

Electronic Properties at Electronic Properties at PTCDAPTCDA//SS--GaAsGaAs

• Relative intensities of GaAs LO and PLP (Ω-) bands:

Band bending within the substrate: minor changes upon PTCDA adsorption.

Good agreement with photoemission (PES) studies: S. Park, D.R.T. Zahn, et al. Appl. Phys. Lett. 76 (2000) 3200.

J. Geurts, Surf. Sci.

Rep. 18 (1993), 1.

4882

( 0)

GaAsn

nmdLO

n s

I eI

V z

δ

δ

−Ω

∝ =

Page 46: Optical Spectroscopies of Thin Films and Interfacesrote/Zahn/Vibrational_Spectroscopies.pdf · Experiment Scattering Intensity Fit 100 150 200 250 77K D C B A In 2 Te 3 Scattering

Determination of Molecular Orientation:Determination of Molecular Orientation:DiMeDiMe--PTCDIPTCDI

Azimuthal rotation of a 120 nm thick film; normal incidence.Periodic variation of signal in crossed and parallel polarization.

M. Friedrich, G. Salvan, D. Zahn et al., J. Phys. Cond. Mater. submitted.

γ=0°: x II [011]GaAs

γ=90°:x II [0-11]

γ

phononsphonons phononsphonons

Page 47: Optical Spectroscopies of Thin Films and Interfacesrote/Zahn/Vibrational_Spectroscopies.pdf · Experiment Scattering Intensity Fit 100 150 200 250 77K D C B A In 2 Te 3 Scattering

Determination of Molecular Orientation:Determination of Molecular Orientation:DiMeDiMe--PTCDIPTCDI

yx

xx

IDep =

I

56 4 ;,

θψ ϕ

= ° ± °

( ) ( )θ ψ ϕ θ ψγ ϕ γ⋅ ⋅g

-1g

m= R , ,A ,A, R , , Good agreement with IR and NEXAFS results

( )s igAI = e e⋅ ⋅r r

0 60 120 180 240 300 3600.0

0.5

1.0

1.5

2.0

2.5

Dep

olar

izat

ion

Rat

io/ a

.u.

Experimental angle (γ)/°

BreathingBreathing mode at 221 cmmode at 221 cm--11

Page 48: Optical Spectroscopies of Thin Films and Interfacesrote/Zahn/Vibrational_Spectroscopies.pdf · Experiment Scattering Intensity Fit 100 150 200 250 77K D C B A In 2 Te 3 Scattering

200 400 600 1200 1350 1500 1650

Inte

nsity

/ ar

b. u

nits

Raman shift / cm-1

x0.1

Ag Raman Modes of PTCDAwith In

Page 49: Optical Spectroscopies of Thin Films and Interfacesrote/Zahn/Vibrational_Spectroscopies.pdf · Experiment Scattering Intensity Fit 100 150 200 250 77K D C B A In 2 Te 3 Scattering

200 400 600 1200 1350 1500 1650

Inte

nsity

/ ar

b. u

nits

Raman shift / cm-1

x0.1

Ag Raman Modes of In4PTCDA

Page 50: Optical Spectroscopies of Thin Films and Interfacesrote/Zahn/Vibrational_Spectroscopies.pdf · Experiment Scattering Intensity Fit 100 150 200 250 77K D C B A In 2 Te 3 Scattering

In Situ Raman: Monitoring of IndiumDeposition onto PTCDA (15 nm)

1200 1400 1600

0.05

Raman shift / cm-1200 400 600

Inte

nsity

/ ct

s m

W-1s-1

0.005

43/5

In thickness / nm

00.4/0.71.1/1.52.8/135.0/288.0/3315.0/5826.0/10

Page 51: Optical Spectroscopies of Thin Films and Interfacesrote/Zahn/Vibrational_Spectroscopies.pdf · Experiment Scattering Intensity Fit 100 150 200 250 77K D C B A In 2 Te 3 Scattering

Influence of Indium on VibrationalSpectra of PTCDA

1200 1400 1600

0.0025

+ InB3g

B1u

Ag

Ag

B3g

B2u

Ag

B3g

(B3g)B1u

B3gAg

Raman shift / cm-1

PTCDA

200 400 600

B2uAg

B3g

Ag

Ag

In15 nm

Inte

nsity

/cts

mW

-1s-1

0.0025Ag

B2g

GaAs

Page 52: Optical Spectroscopies of Thin Films and Interfacesrote/Zahn/Vibrational_Spectroscopies.pdf · Experiment Scattering Intensity Fit 100 150 200 250 77K D C B A In 2 Te 3 Scattering

• Thin PTCDAPTCDA film: “first layer” SERS effect: molecules in contact with AgAg

• 15 nm PTCDAPTCDA film: mainly long range SERS:no AgAg diffusion into PTCDAPTCDA

S-GaAs(100)

AgAg//PTCDA:PTCDA: Evidence for Abrupt InterfaceEvidence for Abrupt InterfaceSimilar interface formation for AgAg//DiMeDiMe--PTCDIPTCDI

1350 1500 1650

Inte

nsity

/ ct

s m

W-1s-1

0.03

PTCDA(0.4 nm)

Raman shift / cm-11200 1350 1500

PTCDA(15 nm)

0.001

S-GaAs(100)

Ag:1.6 nm/minAg:5.5 nm/min

2.2 nm Ag

11 nm Ag

/ 30

/ 5

Page 53: Optical Spectroscopies of Thin Films and Interfacesrote/Zahn/Vibrational_Spectroscopies.pdf · Experiment Scattering Intensity Fit 100 150 200 250 77K D C B A In 2 Te 3 Scattering

Indium/PTCDA: Evidence for Strong Indiffusion

1200 1350 1500 1650

Inte

nsity

/ ct

s m

W-1s-1 0.03

PTCDA

PTCDA(15 nm)

Raman shift / cm-11350 1500 1650

PTCDA(0.4 nm)

0.001

x 0.017+ Inx0.045

In: 0 →100 nm

In: 1 nm/min

PTCDA~0.4 nm(~1 ML) S-GaAs(100)

~15 nm(~50ML)

PTCDA

S-GaAs(100)

Page 54: Optical Spectroscopies of Thin Films and Interfacesrote/Zahn/Vibrational_Spectroscopies.pdf · Experiment Scattering Intensity Fit 100 150 200 250 77K D C B A In 2 Te 3 Scattering

200 300 400 500 600 1300 1400 1500 1600

Inte

nsity

Raman shift / cm-1

5x10- 2

cts.mW- 1S - 1

5x10-3

cts mW-1s-1

+ Mg

DiMe-PTCDI

+ In

+ Ag

Comparison of In, Ag and Mg deposition on DiMePTCDI

Page 55: Optical Spectroscopies of Thin Films and Interfacesrote/Zahn/Vibrational_Spectroscopies.pdf · Experiment Scattering Intensity Fit 100 150 200 250 77K D C B A In 2 Te 3 Scattering

Raman Spectroscopy

Page 56: Optical Spectroscopies of Thin Films and Interfacesrote/Zahn/Vibrational_Spectroscopies.pdf · Experiment Scattering Intensity Fit 100 150 200 250 77K D C B A In 2 Te 3 Scattering

STM tip-enhanced Raman spectroscopyA new approach, tip-enhanced Raman spectroscopy (TERS), is explored that combines Raman spectroscopy at smooth surfaces with a local electromagneticfield enhancement provided by an optically active Ag STM or AFM tip. This optical activity is achieved by exciting local surface plasmon modes by focussing the laser light through a thin metal film onon a glass slide onto the tip apex. The local enhancement of the Raman scattering cross section in the vicinity of the tip opens promising avenues towards single molecule Raman spectroscopy.