optical mems for earth observation: an efficient optical

28
Frederic Zamkotsian 8th ESA MNT Round table, Noordwijk, 15 – 18 October 2012 Frederic Zamkotsian 1 , Arnaud Liotard 2 , Patrick Lanzoni 1 , Thierry Viard 2 , Wilfried Noell 3 , Benedikt Guldimann 4 , Marco Freire 4 , Stefan Kraft 4 Laboratoire d’Astrophysique de Marseille, France Thales Alenia Space, France EPFL, Switzerland ESA / ESTEC, Netherlands Optical MEMS for Earth Observation: an efficient optical cloud removal technique 100 200 300 400 500 600 700 0.01 0.02 0.03 0.04 0.05 Spectrometer FPA Reflective slit

Upload: others

Post on 05-Jun-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Optical MEMS for Earth Observation: an efficient optical

Frederic Zamkotsian 8th ESA MNT Round table, Noordwijk, 15 – 18 October 2012

Frederic Zamkotsian1, Arnaud Liotard2, Patrick Lanzoni1, Thierry Viard2, Wilfried Noell3, Benedikt Guldimann4, Marco Freire4, Stefan Kraft4

Laboratoire d’Astrophysique de Marseille, FranceThales Alenia Space, France

EPFL, Switzerland ESA / ESTEC, Netherlands

Optical MEMS for Earth Observation: an efficient optical cloud removal technique

100 200 300 400 500 600 700

0.01

0.02

0.03

0.04

0.05

Spectrometer

FPA

Reflective slit

Page 2: Optical MEMS for Earth Observation: an efficient optical

Frederic Zamkotsian 8th ESA MNT Round table, Noordwijk, 15 – 18 October 2012

Instrumental needs using micro-opto-electro-mechanical systems (MOEMS)

Wavefront control- Deformable mirrors

Object selection- Programmable slits

Spectral domain application- Programmable gratings

Phase

Intensity

Wavelength

Instrumental needs

Page 3: Optical MEMS for Earth Observation: an efficient optical

Frederic Zamkotsian 8th ESA MNT Round table, Noordwijk, 15 – 18 October 2012

MOEMS for Earth Observation

First phase: collecting all necessary data Earth observation instruments or payloadsExisting and potential optical MEMS componentsSecond phase Pre-selection of at least 6 optical payloads following

three different philosophies - pre-selection of 2 market-pull concepts- pre-selection of 3 techno-push concepts- pre-selection of 1 concept coming from outside Earth Observation

Final selection of the 2 most promising optical payloadThird phaseDetailed design of the 2 promising conceptsSynthesis of the study

Page 4: Optical MEMS for Earth Observation: an efficient optical

Frederic Zamkotsian 8th ESA MNT Round table, Noordwijk, 15 – 18 October 2012

Tiltable micromirror arrayActive on intensityHigh contrastDigital mode only : light is switched between ON and OFF positions

Tiltable micromirror arrays

Page 5: Optical MEMS for Earth Observation: an efficient optical

Frederic Zamkotsian 8th ESA MNT Round table, Noordwijk, 15 – 18 October 2012

Single crystalline micromirror array for next generation IR multi-object spectrographCollaboration between LAM and EPFL Goal: high contrast 1500:1 Fill factor > 90 % obtainedConcept

Electrostatic actuationPrecise tilt angle (landing beams)

RealizationCombination surface and bulkmicromachiningWafer level bonding of two wafers: one for th mirrors, one for the electrodes

MIRA

Page 6: Optical MEMS for Earth Observation: an efficient optical

Frederic Zamkotsian 8th ESA MNT Round table, Noordwijk, 15 – 18 October 2012

Surface qualityOn 100µm x 200µm micromirrors: deformation < 10 nmTilt angle precision < 1 arcminActuation voltage < 100 V

Environmental testsVacuum (10-6 mbar)92K and 162 K Mirrors tiltSurface quality < 30 nm PtV in cryo

92K0V

92K90V

MIRA

Page 7: Optical MEMS for Earth Observation: an efficient optical

Frederic Zamkotsian 8th ESA MNT Round table, Noordwijk, 15 – 18 October 2012

Most popular MOEMS deviceMicromirrors

2048x1080 mirrors individually adressablesPitch 13,68µm Tilt angle: 12°

Numerous applications Main application: image display Design modification not possible

Spatial qualification test (ESA contract)-40°C in vacuum (10-5 mbar)Micromirrors hold in position during > 1500 sDMD fully operationalLife test during 1038h, radiations, vibrations No showstopper for space use

DMD from Texas Instruments

Page 8: Optical MEMS for Earth Observation: an efficient optical

Frederic Zamkotsian 8th ESA MNT Round table, Noordwijk, 15 – 18 October 2012

Programmable micro-diffraction gratings (PMDG)Action on phaseBased on 200µm x 4µm ribbons, with piston mouvmentDigital mode: light modulated between ON and OFF positionsAnalog mode: ribbons move in order to cancel partially the input light (“gray” scales)

PMDG

Incident lightReflected light

Incident lightReflected light

Incident lightDiffracted light

Incident lightDiffracted light

Page 9: Optical MEMS for Earth Observation: an efficient optical

Frederic Zamkotsian 8th ESA MNT Round table, Noordwijk, 15 – 18 October 2012

PMDG from Silicon Light Machines (ESA study)1086 pixels

6 ribbons (3 pairs) / pixel3 fixed ribbons / 3 piston ribbonsPixel pitch 25.5µmRibbon width / gap: 3.775µm / 0.475µmRibbon length 220µmActive area 75 x 28254 µm2

Window with visible coatngMonted on PCBHeat sink on the backVmax = 385V Coded on 1024 levels (10 bits)

PMDG from SLM

Page 10: Optical MEMS for Earth Observation: an efficient optical

Frederic Zamkotsian 8th ESA MNT Round table, Noordwijk, 15 – 18 October 2012

Ribbons images / localized sourceFiltering in Fourier plane

PMDG in operation

Page 11: Optical MEMS for Earth Observation: an efficient optical

Frederic Zamkotsian 8th ESA MNT Round table, Noordwijk, 15 – 18 October 2012

PMDG performances

Device for wavelength selectionFully programmableSteep edge filters, contrast > 30Long term stability and reproducibilityDynamical response (1 MHz)

Page 12: Optical MEMS for Earth Observation: an efficient optical

Frederic Zamkotsian 8th ESA MNT Round table, Noordwijk, 15 – 18 October 2012

Micro-deformable mirrors (MDM), action on wavefront (phase)Actuators arrayContinuous mirrorBoston Micromachines devicesUp to 4096 actuators, up to 5µm stroke.

MDM

h

l

Mirror Surface

ActuatorsSubstrate

Anchoring post

Page 13: Optical MEMS for Earth Observation: an efficient optical

Frederic Zamkotsian 8th ESA MNT Round table, Noordwijk, 15 – 18 October 2012

First promising concept based on MOEMS : Cloud remover

©ESA Source = MERIS

Page 14: Optical MEMS for Earth Observation: an efficient optical

Frederic Zamkotsian 8th ESA MNT Round table, Noordwijk, 15 – 18 October 2012

MERIS return of experience :Push-broom spectro-imager for Earth monitoring

Clouds in the field-of-view generates massive straylightSun-glint completely saturates the detector.

Cloud remover

Page 15: Optical MEMS for Earth Observation: an efficient optical

Frederic Zamkotsian 8th ESA MNT Round table, Noordwijk, 15 – 18 October 2012

Spectrometer characteristics (spectrum : 400 nm -> 1020 nm)

Classical design : slit dimensions17mm x 20 microns740 columns

New design : dynamical reflective slitBased on a micro-mirror arrayEnable to reject bright sources

Towards spectrometer

Towards light trap

Cloud remover

Page 16: Optical MEMS for Earth Observation: an efficient optical

Frederic Zamkotsian 8th ESA MNT Round table, Noordwijk, 15 – 18 October 2012

Spectrometer characteristics (spectrum : 400 nm -> 1020 nm)Classical design : transmissive slitNew design : reflective slit

Compliant with the opto-mechanicaldesignEnable to reject bright sources

Spectrometer

FPA

Reflective slit

Cloud remover

Page 17: Optical MEMS for Earth Observation: an efficient optical

Frederic Zamkotsian 8th ESA MNT Round table, Noordwijk, 15 – 18 October 2012

Straylight analysisComplete simulations with ASAPSpectrometer nominal designStraylight ratio :

Straylight level / useful signal

Slit 74x10pLMAX LREF

Pixel 740 Pixel 1

X

Z

YX

Z

YLmaxLref

-0,1

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0 100 200 300 400 500 600 700 800

Pixels

Stra

ylig

ht r

atio Oa1

Oa5Oa12Oa19Oa21

60 %

Straylight without bright sources remover

-0,01

0

0,01

0,02

0,03

0,04

0,05

0,06

0 100 200 300 400 500 600 700 800

Pixels

Stra

ylig

ht r

atio Oa1

Oa5Oa12Oa19Oa21

Straylight with bright sources remover

6 %

Cloud remover

Page 18: Optical MEMS for Earth Observation: an efficient optical

Frederic Zamkotsian 8th ESA MNT Round table, Noordwijk, 15 – 18 October 2012

CAD view

Focal plane

Catadioptric objective

Concave grating MEMS / entrance slit

MIRA board

Cloud remover

Page 19: Optical MEMS for Earth Observation: an efficient optical

Frederic Zamkotsian 8th ESA MNT Round table, Noordwijk, 15 – 18 October 2012

Neutral density plates

FOV = clouds + scene

Straylight simulator

L4

Output pupil

CCD camera

White source

DMD

L1

L2

L3

Input pupil

Slit 74x10pLMAX LREF

T6

Slit 74x10p LMAX LREFT6B (X=10)

T6C (X=20)

T6D (X=30)

X times 10p (upon a total de 74)

Pixel 740 Pixel 1

Pixel 740 Pixel 1

X

Z

YX

Z

Y

X

Z

YX

Z

Y

Slit 74x10p LMAX LREFT6Y (X=-38 – out-of-field)

T6Z (X=-30)

X times 10p (upon a total de 74)

Pixel 740 Pixel 1

X

Z

YX

Z

Y

Cloud Ground

Spectrograph simulator

FOV simulator

Cloud remover: demonstration @ LAM

Page 20: Optical MEMS for Earth Observation: an efficient optical

Frederic Zamkotsian 8th ESA MNT Round table, Noordwijk, 15 – 18 October 2012

Bright sources remover experiment results

Profile of the field-of-viewScene @ Lref (left part)Bright source @ Lmax (right part)

green curve: programmable slit is all ONblue curve: the micro-mirrors located on the bright area are switched OFF

Close-up view of the transition areaLight blue curve: perfect scene without the bright source

0 200 400 600 8000

0.2

0.4

0.6

0.8

1

Camera pixels

Nor

mal

ized

inte

nsity

S l i t 7 4 x 1 0 pL M A X L R E F

P i x e l 7 4 0 P i x e l 1

X

Z

YX

Z

YLmaxLref

Cloud remover: demonstration @ LAM

Page 21: Optical MEMS for Earth Observation: an efficient optical

Frederic Zamkotsian 8th ESA MNT Round table, Noordwijk, 15 – 18 October 2012

Bright sources remover experiment results

Profile of the field-of-viewScene @ Lref (left part)Bright source @ Lmax (right part)

green curve: programmable slit is all ONblue curve: the micro-mirrors located on the bright area are switched OFF

Close-up view of the transition areaLight blue curve: perfect scene without the bright source

0 200 400 600 8000

0.2

0.4

0.6

0.8

1

100 200 300 400 500 600 700

0.01

0.02

0.03

0.04

0.05

Camera pixels

Nor

mal

ized

inte

nsity

S l i t 7 4 x 1 0 pL M A X L R E F

P i x e l 7 4 0 P i x e l 1

X

Z

YX

Z

YLmaxLref

Cloud remover: demonstration @ LAM

Page 22: Optical MEMS for Earth Observation: an efficient optical

Frederic Zamkotsian 8th ESA MNT Round table, Noordwijk, 15 – 18 October 2012

Bright sources remover experiment results

Profile of the field-of-viewScene @ Lref (left part)Bright source @ Lmax (right part)

green curve: programmable slit is all ONblue curve: the micro-mirrors located on the bright area are switched OFF

Close-up view of the transition areaLight blue curve: perfect scene without the bright source

0 200 400 600 8000

0.2

0.4

0.6

0.8

1

100 200 300 400 500 600 700

0.01

0.02

0.03

0.04

0.05

Camera pixels

Nor

mal

ized

inte

nsity

MIRA

Cloud remover: demonstration @ LAM

Page 23: Optical MEMS for Earth Observation: an efficient optical

Frederic Zamkotsian 8th ESA MNT Round table, Noordwijk, 15 – 18 October 2012

Second promising concept based on MOEMS : Tuneable spectrometer with field of view

©ESA Source = MERIS

V sat

Page 24: Optical MEMS for Earth Observation: an efficient optical

Frederic Zamkotsian 8th ESA MNT Round table, Noordwijk, 15 – 18 October 2012

Spectrometer concept for push broom acquisitionUse of a micro mirrors array

One dimension for the FOVOne dimension for the spectral dispersion

Entrance slit

Linear detectorarray

Identical gratings

DMD

DMD for spectral tailoring with FOV

Page 25: Optical MEMS for Earth Observation: an efficient optical

Frederic Zamkotsian 8th ESA MNT Round table, Noordwijk, 15 – 18 October 2012

Entrance slit

Linear detectorarray

Identical gratings

DMD

DMD for spectral tailoring with FOV

Page 26: Optical MEMS for Earth Observation: an efficient optical

Frederic Zamkotsian 8th ESA MNT Round table, Noordwijk, 15 – 18 October 2012

MOEMS (DMD) characteristicsMicro mirror dimension around 15 µm x 15 µmNumber of micro mirrors in spectral direction around 1000Number of micro mirrors in spatial direction around 2000

Design parameters (other operating points are possible)Spatial resolution = 5 m (for altitude = 700 Km)Total field = 10 Km (2000 pixels)Total bandwidth = 200 nm (ex : from 400 nm to 600 nm)Theoretical spectral resolution can be tuned from 0,2 nm to 200 nm

Instrument characteristics (for here above operating point)Entrance pupil dimension ΦPE = 270 mm Afocal magnification ratio G around 5 (grating size = 54 mm)Focusing focal length fFOC = 380 mm (F-number 7.6)Grating period around 300 lines/mm for visible range

DMD for spectral tailoring with FOV

Page 27: Optical MEMS for Earth Observation: an efficient optical

Frederic Zamkotsian 8th ESA MNT Round table, Noordwijk, 15 – 18 October 2012

VolumeX :669 Y : 480 Z : 568.

DMD for spectral tailoring with FOV

Bench demonstrator will be developed within a CNES study

Page 28: Optical MEMS for Earth Observation: an efficient optical

Frederic Zamkotsian 8th ESA MNT Round table, Noordwijk, 15 – 18 October 2012

Space optical payloads can benefit from MOEMS technology

Optical MOEMS can bring new services/functionalities in Earth ObservationTwo promising concepts have been proposed and studied:- Cloud removal based on Digital Micro-mirror Array- Tunable spectrometer with field-of-view based on TI’s DMD

[email protected]

MOEMS for Earth Observation

100 200 300 400 500 600 700

0.01

0.02

0.03

0.04

0.05

Spectrometer

FPA

Reflective slit