optical fiber communication deepak khadka · pdf fileoptical fiber communication deepak khadka...

35
Optical Fiber Communication Deepak Khadka 1 Chapter 2: Fiber Optics as a communication medium 2.1 Fiber Fabrication: Basically, fiber manufacturers use two methods to fabricate multimode and single mode glass fibers. One method is vapor phase oxidation, and the other method is direct-melt process. The vapor-phase oxidation process is popularly used for fabricating optical fibers. In this process, highly pure vapors of metal halides such as SiCl4 and Gecl4 react with oxygen to form a white powder of SiO2 particles (silica powder). Manufacturers call SiO 2 the soot. The SiO2 particles are collected on surface of bulk glass and then sintered (transformed to a homogeneous glass mass by heating without melting) to form a glass rod called Preform The preforms are typically 10-25 mm diameter and 60-120 cm long from which fibers are drawn. In vapor phase oxidation process , manufacturers deposit the soot on the surface of a glass substrate (mandrel) or inside a hollow tube by one of the following four methods: Outside Vapor Phase Oxidation (OVPO). Vapor Phase Axial Deposition (VAD). Modified Chemical Vapor Deposition(MCVD) Plasma- Activated Chemical Vapor Deposition(PCVD) The soot forms the core and cladding material of the preform. The refractive index of each layer of soot is changed by varying the amount of dopant material being oxidized. Figures 1, 2, and 3 ,4 illustrate the different vapor phase oxidation preform preparation methods.

Upload: dodien

Post on 03-Feb-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Optical Fiber Communication Deepak Khadka · PDF fileOptical Fiber Communication Deepak Khadka 3 ¾ The preform is feed to drawing furnace by precision feed mechanism. The preform

Optical Fiber Communication    Deepak Khadka 

 

 

Chapter 2: Fiber Optics as a communication medium

2.1 Fiber Fabrication:

Basically, fiber manufacturers use two methods to fabricate multimode and single mode glass fibers. One

method is vapor phase oxidation, and the other method is direct-melt process.

The vapor-phase oxidation process is popularly used for fabricating optical fibers. In this process,

highly pure vapors of metal halides such as SiCl4 and Gecl4 react with oxygen to form a white powder of

SiO2 particles (silica powder). Manufacturers call SiO2 the soot.

The SiO2 particles are collected on surface of bulk glass and then sintered (transformed to a homogeneous glass mass by heating without melting) to form a glass rod called Preform The preforms are typically 10-25 mm diameter and 60-120 cm long from which fibers are drawn.

In vapor phase oxidation process , manufacturers deposit the soot on the surface of a glass substrate

(mandrel) or inside a hollow tube by one of the following four methods:

• Outside Vapor Phase Oxidation (OVPO).

• Vapor Phase Axial Deposition (VAD).

• Modified Chemical Vapor Deposition(MCVD)

• Plasma- Activated Chemical Vapor Deposition(PCVD)

The soot forms the core and cladding material of the preform. The refractive index of each layer of soot is

changed by varying the amount of dopant material being oxidized. Figures 1, 2, and 3 ,4 illustrate the

different vapor phase oxidation preform preparation methods.

Page 2: Optical Fiber Communication Deepak Khadka · PDF fileOptical Fiber Communication Deepak Khadka 3 ¾ The preform is feed to drawing furnace by precision feed mechanism. The preform

Optical Fiber Communication    Deepak Khadka 

 

 

Figure 1. - OVPO preform preparation.

• The OVPO process is a lateral deposition process .During Outside vapor phase oxidation, highly pure vapors of metal halides such as SiCl4 and Gecl4 react with oxygen to form a white powder of SiO2 particles (silica powder)

• The Bait rod rotates and moves back and forth (side by side) under the burner to produce a uniform deposition of glass soot particles along the rod.

• Following deposition, the soot perform is sintered (transformed to a homogeneous glass mass by heating without melting) into a clear glass perform.

• Fiber is drawn from the glass perform . During the SiO2 deposition O2 and metal halide vapours can be controlled so the desired core-cladding diameters can be incorporated

A simple schematic of fiber drawing equipment is shown below:

The solid preform is then drawn or pulled into an optical fiber by a process called fiber drawing.

Page 3: Optical Fiber Communication Deepak Khadka · PDF fileOptical Fiber Communication Deepak Khadka 3 ¾ The preform is feed to drawing furnace by precision feed mechanism. The preform

Optical Fiber Communication    Deepak Khadka 

 

 

The preform is feed to drawing furnace by precision feed mechanism. The preform is heated up in drawing furnace so that it becomes soft and fiber can be drawn easily.

Manufacturers then pull the softened preform into a thin glass filament (glass fiber).

The fiber thickness monitoring decides the speed of take up drum. The fiber is then coated with elastic material to protect it from dust and water vapour.

Figure 2. - VAD preform preparation.

Page 4: Optical Fiber Communication Deepak Khadka · PDF fileOptical Fiber Communication Deepak Khadka 3 ¾ The preform is feed to drawing furnace by precision feed mechanism. The preform

Optical Fiber Communication    Deepak Khadka 

 

 

• In this method , the Sio2 particles are formed in the same was as described in the OVPO process.

• In VAD process, the SiO2 particles are deposited axially. The rod is continuously rotated and

moved upward to maintain symmetry of particle deposition.

• As the porous preform moves upward, it is transferred into a solid , transparent rod preform by

zone melting ( heating in a narrow localized zone) with the carbon furnace.

• The resulting preform can be then drawn into a fiber by heating it in another furnace ( same

fiber drawing apparatus in fig i)

The advantages of VAD process are

• Both step and graded index fibers are possible to fabricate in multimode and single mode.

• The preforms does not have the central hole.

• The performs can be fabricated in continuous length.

• Clean environment can be maintained.

Figure 3. - MCVP preform preparation.

Page 5: Optical Fiber Communication Deepak Khadka · PDF fileOptical Fiber Communication Deepak Khadka 3 ¾ The preform is feed to drawing furnace by precision feed mechanism. The preform

Optical Fiber Communication    Deepak Khadka 

 

 

• The glass vapor particles arising from the reaction of the constituents metal halide gases and

oxygen , flow through the inside of a revolving silica tube.

• As the Sio2 particles are deposited , they are sintered to a clear glass layer by an oxyhydrogen

torch which travels back and forth along the tube.

• When the desired thickness of glass has been deposited , the vapor flow is shut off and the tube is

heated strongly to cause it to collapse into a solid rod preform.

• The fiber that is subsequently drawn from this preform rod will have a core that consists of the

vapor-deposited material and cladding that consists of the origina silica tube.

Figure 4. PCVD preform preparation

• PCVD process is similar to MCVD process where the deposition occurs on silica tube.

• Non-isothermal microwave plasma at low pressure initiates the chemical reaction.

Page 6: Optical Fiber Communication Deepak Khadka · PDF fileOptical Fiber Communication Deepak Khadka 3 ¾ The preform is feed to drawing furnace by precision feed mechanism. The preform

Optical Fiber Communication    Deepak Khadka 

 

 

• With the silica tube held at temperature in the range of 1000- 1200 oC to reduce mechanical

stress on growing glass films, a moving microwave resonator operating at 2.45 GHZ generates a

plasma inside the tube to activate the chemical reaction.

• This process deposits clear glass material directly on the tube wall , there is no soot formation and

hence sintering is not required.

In the direct-melt process, multicomponent glass rods form the fiber structure. Rods of multicomponent

glass combine in a molten state to form the fiber core and cladding.

The double-crucible method is the most common direct-melt process. In double-crucible method two

different glass rods for core and Cladding are used as feedstock for two concentric crucibles. The inner

crucible contains molten core glass and outer one contains the cladding glass. The fibers can be drawn

from the molten state through orifices in the bottom of the two concentric crucible.

Fig. 1.8.7 shows double crucible method of fiber drawing.

Major advantages of double crucible method is that it is a continuous production process

Optical fibers are drawn from this molten glass using a similar fiber drawing process as in vapor phase

oxidation.

Page 7: Optical Fiber Communication Deepak Khadka · PDF fileOptical Fiber Communication Deepak Khadka 3 ¾ The preform is feed to drawing furnace by precision feed mechanism. The preform

Optical Fiber Communication    Deepak Khadka 

 

 

2.2 Advantages of Optical fiber communication:

Advantages of Optical transmission link over conventional copper systems

1. Low transmission loss and wide B.W.: Optical fibers have lower transmission losses and wider B.W.

than Copper wires. This means that with optical fiber cable systems more data can be sent over longer

distances, thereby decreasing the no of wires and reducing the no of repeaters needed for these spans.

This reduction in equipment and components decreases the system cost and complexity.

2. Small size and weight: Optical fibers have very small diameters which are often no greater than the

diameter of a human hair. Hence even when such fibers are covered with protective coating they are far

smaller and much lighter than Cu cables.

The optical fibers have low weight and small (hair sized) dimension of fibers. This small size and weight

offer a distinct advantage over heavy and bulky wire cables in crowded underground city ducts or in

ceiling mounted cable trays. This is also of importance in aircrafts, satellites and ships where small light

weight cables are advantageous and in tactical military applications where large amounts of cable must be

unreeled and retrieved rapidly.

3. Immunity to interference: The dielectric nature of optical fibers provides optical wave guides with

immunity to electromagnetic interference (EMI) such as inductive pick up from signal carrying wires and

lighting. It also ensures freedom from electromagnetic pulse (EMP) effects which is of interest in military

application.

4. Electrical isolation: Since optical fibers are constructed of glass which is an electrical insulator, there is

no problem of ground loops; fiber to fiber cross talk is very low. Equipment interface problems are

simplified. This makes the use of fiber attractive in electrically hazardous environments, since fiber

creates no arcing or sparking.

5. Signal Security: The light from optical fibers does not radiate significantly and therefore they provide

high degree of signal security. A transmitted optical signal can’t be obtained from fiber in a non invasive

manner. By using an optical fiber, a high degree of data security is available, since the optical signal is

well confined within the wave guide. So, these fibers are used where information security is important

such as banking, computers networks and military systems.

6. Abundant raw material: The principle material of which optical fibers are made is silica. This raw

material is abundant and inexpensive.

Page 8: Optical Fiber Communication Deepak Khadka · PDF fileOptical Fiber Communication Deepak Khadka 3 ¾ The preform is feed to drawing furnace by precision feed mechanism. The preform

Optical Fiber Communication    Deepak Khadka 

 

 

7. No hazard of short circuits as in metal wires.

8. No problems when used in explosive environments.

9. Immunity to adverse temperature and moisture conditions.

10. No need for additional equipment to protect against grounding and voltage problems.

11. Very nominal shipping, handling and installation costs.

Disadvantages of Optical Fiber :

The disadvantages of optical fibers are as follows

1. Strength: Optical fibers have a significantly lower tensile strength than coaxial cable. This can be

improved by providing protective jacket of PVC. In addition glass fiber is much more fragile than

copper wire making fiber less attractive where hardware portability is required.

2. Optical fiber cables are more susceptible to losses introduced by bending the

cable: Electromagnetic waves propagate through an optical cable by either refraction or

reflection. Therefore bending the cable causes irregularities in the cable dimensions; resulting in a

loss of signal power. Optical fibers are more prone to manufacturing defects, as even the minor

defect can cause excessive loss of signal power.

3. Specialized tools, equipment and training: Optical fiber cables require special tools to splice and

repair cables and special test equipment to make routine measurements. Not only repairing fiber

cables is difficult and expensive but technicians working on optical cables also require special

skills and training. Sometimes it is difficult to locate faults in optical cables because there is no

electrical continuity.

2.3 Light Fresnel Reflections:

Reflection of a portion of the Light incident on a planar Interface between two homogeneous media

having different refractive indices. Fresnel reflection occurs at the air-glass interfaces at entrance and exit

ends of an optical fiber. Resultant Transmission losses (on the order of 4% per interface) can be virtually

eliminated by use of anti-reflection coatings or index matching material. The reflection that occurs at the

planar Junction of two materials having different refractive indices. Fresnel reflection is not a function of

the angle of incidence.

2.4 Basic Fiber Construction:

Page 9: Optical Fiber Communication Deepak Khadka · PDF fileOptical Fiber Communication Deepak Khadka 3 ¾ The preform is feed to drawing furnace by precision feed mechanism. The preform

Optical Fiber Communication    Deepak Khadka 

 

 

An optical fiber is a thin transparent flexible strand that consists of a core surrounded by cladding. It

confines electromagnetic energy in the form of light to within its surfaces and guides the light in a

direction parallel to its axis. The core is the portion of the fiber that carries the transmitted light. The

cladding surrounds the core. It has a lower index of refraction to keep the light in the core. An optical

fiber has an additional coating around the cladding called protective jacket. It protects the core and

cladding from shocks that might affect their optical or physical properties. It has no optical properties

affecting the propagation of light within the fiber.

2.5 Fiber Classification:

Fiber cables can also be classified as per their mode. Light rays propagate as an

electromagnetic wave along the fiber. The two components, the electric field and the

magnetic field form patterns across the fiber. These patterns are called modes of

transmission. The mode of a fiber refers to the number of paths for the light rays within

the cable. According to modes optic fibers can be classified into two types.

i) Single mode fiber ii) Multimode fiber.

Multimode fiber

Page 10: Optical Fiber Communication Deepak Khadka · PDF fileOptical Fiber Communication Deepak Khadka 3 ¾ The preform is feed to drawing furnace by precision feed mechanism. The preform

Optical Fiber Communication    Deepak Khadka 

 

10 

 

• The term multimode simply refers to the fact that numerous modes (light rays) are carried

simultaneously through the waveguide.

• Multimode fiber has a much larger diameter compared to single mode fiber, this allows large

number of modes and are used for short-distance communication links.

• Larger NA compared to single mode fiber.

Single mode fiber allows propagation to light ray by only one path.

• Single mode fibers are best at retaining the fidelity of each light pulse over longer distance also

they do not exhibit dispersion caused by multiple modes. Thus more information can be

transmitted per unit of time. This gives single mode fiber higher bandwidth compared to

multimode fiber.

• High data rate so applicable in high speed application .

• Diameter of core is very small compared to multimode.

Page 11: Optical Fiber Communication Deepak Khadka · PDF fileOptical Fiber Communication Deepak Khadka 3 ¾ The preform is feed to drawing furnace by precision feed mechanism. The preform

Optical Fiber Communication    Deepak Khadka 

 

11 

 

Some disadvantages of single mode fiber are smaller core diameter makes coupling light into

the core more difficult. Precision required for single mode connectors and splices are more

demanding.

On the basis of profile of the refractive index of the fiber, optical fiber an e categorized into two groups:

(1) Step index.

(2) Graded index.

i) Step index:

Fig a: Step Index fiber

An optical fiber with a core of constant refractive index (R.I) n1 and a cladding of slightly lower

refractive index n2 is known as the step index fiber. A term ‘step’ is given because the refractive

index profile for this type of fiber makes a step change at the core-cladding interface. All the fibers

considered so far are therefore the step index fibers.

The propagation of light wave within the core of step index fiber takes the path of meridional ray i.e.

ray follows a zig-zag path of straight line segments.

Page 12: Optical Fiber Communication Deepak Khadka · PDF fileOptical Fiber Communication Deepak Khadka 3 ¾ The preform is feed to drawing furnace by precision feed mechanism. The preform

Optical Fiber Communication    Deepak Khadka 

 

12 

 

Fig 1(a) illustrate a step index fiber and equation (1) gives the profile of the R.I.

(ii) Graded index.

Fig b: Graded index fiber

The optical fiber whose refractive index is maximum n1 at the axis of the core, and gradually

decreases with the radial distance from the axis to a constant refractive index n2 in the cladding is

known as the graded index fiber.

In graded index fiber the light waves are bent by refraction towards the core axis and they

follow the curved path down the fiber length. This results because of change in refractive

index as moved away from the center of the core. Core is made from many layer of glass.

Fig 1(b) shows a sketch of a graded index fiber and equation give the refractive index profile of the

fiber.

The profile parameter α control the profile i.e the shape of the refractive index of the core of the

fiber although an infinite numbers of profile can be obtained with different values of α only step,

the parabolic and the triangular profiles are generally considered it is shown in fig 1(b).

As shown in fig 1 (b) α = ∞ gives step profile α = 2 gives parabolic profile and triangular profile

when α = 1. 1. From experiments it is found that the distortion of signal propagating along the fiber

is least when

Page 13: Optical Fiber Communication Deepak Khadka · PDF fileOptical Fiber Communication Deepak Khadka 3 ¾ The preform is feed to drawing furnace by precision feed mechanism. The preform

Optical Fiber Communication    Deepak Khadka 

 

13 

 

Because α = 2 produces a parabolic profile. The parabolic graded index fiber is therefore regarded

as the best optical fiber when less distortion is sought.

The refractive index profile is defined as

where, r = Radial distance from fiber axis , a = Core radius , n1 = Refractive index of core, n2 =

Refractive index of cladding

2.6 Refractive Index Profile:

Depending on the refractive index profile of fiber and modes of fiber there exist three types of

optical fiber configurations. These optic-fiber configurations are -

i) Single mode step index fiber.

ii) Multimode step index fiber.

iii) Multimode graded index fiber.

Page 14: Optical Fiber Communication Deepak Khadka · PDF fileOptical Fiber Communication Deepak Khadka 3 ¾ The preform is feed to drawing furnace by precision feed mechanism. The preform

Optical Fiber Communication    Deepak Khadka 

 

14 

 

1. Step-index multimode

This fiber has an index of refraction profile that “steps” from low to high to low as measured from

cladding to core to cladding. Relatively large core diameter and numerical aperture characterize this fiber.

The core/cladding diameter of a typical multimode fiber used for telecommunication is 62.5/125 µ m

(about the size of a human hair). The term “multimode” refers to the fact that multiple modes or paths

through the fiber are possible. Step-index multimode fiber is used in applications that require high

bandwidth (< 1 GHz) over relatively short distances (< 3 km) such as a local area network or a campus

network backbone.

The major benefits of multimode fiber are: (1) it is relatively easy to work with; (2) because of its larger

core size, light is easily coupled to and from it; (3) it can be used with both lasers and LEDs as sources;

and (4) coupling losses are less than those of the single-mode fiber. The drawback is that because many

modes are allowed to propagate (a function of core diameter, wavelength, and numerical aperture) it

suffers from modal dispersion. The result of modal dispersion is bandwidth limitation, which translates

into lower data rates.

2. Single-mode step-index

Page 15: Optical Fiber Communication Deepak Khadka · PDF fileOptical Fiber Communication Deepak Khadka 3 ¾ The preform is feed to drawing furnace by precision feed mechanism. The preform

Optical Fiber Communication    Deepak Khadka 

 

15 

 

This type of fiber allows for only one path, or mode, for light to travel within the fiber. The core diameter

for a typical single-mode fiber is between 5 µm and 10 µm with a 125-µm cladding. Single-mode fibers

are used in applications in which low signal loss and high data rates are required, such as in long spans

where repeater/amplifier spacing must be maximized.

Because single-mode fiber allows only one mode or ray to propagate (the lowest-order mode), it does not suffer from modal dispersion like multimode fiber and therefore can be used for higher bandwidth applications. However, even though single-mode fiber is not affected by modal dispersion, at higher data rates chromatic dispersion can limit the performance. This problem can be overcome by several methods. 3) Graded-index fiber

It is a compromise between the large core diameter and N.A. of multimode fiber and the higher

bandwidth of single-mode fiber. With creation of a core whose index of refraction decreases parabolically

from the core center toward the cladding, light traveling through the center of the fiber experiences a

higher index than light traveling in the higher modes. This means that the higher-order modes travel faster

than the lower-order modes, which allows them to “catch up” to the lower-order modes, thus decreasing

the amount of modal dispersion, which increases the bandwidth of the fiber.

In a multimode step-index fiber, the number of modes M propagating can be approximated by

V 2/2

M=V2/2

Here; V is known as the normalized frequency, or the V- number , which relates the fiber size, the

refractive index, and the wavelength. Electromagnetic waves bound to an optical fiber are

describedby the fiber's normalized frequency. The normalized frequency determines how many

modes a fiber cansupport. Normalized frequency is a dimensionless quantity. Normalized

frequency is also related to thefiber's cutoff wavelength.

Page 16: Optical Fiber Communication Deepak Khadka · PDF fileOptical Fiber Communication Deepak Khadka 3 ¾ The preform is feed to drawing furnace by precision feed mechanism. The preform

Optical Fiber Communication    Deepak Khadka 

 

16 

 

Or; V can be determined as:

In either equation, a is the fiber core radius, is the operating wavelength, N.A. is the

numerical aperture, n is the core index, and is the relative refractive index difference between

core and cladding. The analysis of how the V- number is derived is beyond the scope of this module, but

it can be shown that by reducing the diameter of the fiber to a point at which the V- number is less than

2.405, higher-order modes are effectively extinguished and single-mode operation is possible.

Page 17: Optical Fiber Communication Deepak Khadka · PDF fileOptical Fiber Communication Deepak Khadka 3 ¾ The preform is feed to drawing furnace by precision feed mechanism. The preform

Optical Fiber Communication    Deepak Khadka 

 

17 

 

Numericals:

Example 1.7.2 : A fiber has normalized frequency V = 26.6 and the operating wavelength is

1300nm. If the radius of the fiber core is 25 µm. Compute the numerical aperture.

Page 18: Optical Fiber Communication Deepak Khadka · PDF fileOptical Fiber Communication Deepak Khadka 3 ¾ The preform is feed to drawing furnace by precision feed mechanism. The preform

Optical Fiber Communication    Deepak Khadka 

 

18 

 

Example 1.7.3 : A multimode step index fiber with a core diameter of 80 µm and a

relative index difference of 1.5 % is operating at a wavelength of 0.85 µm. If the core refractive

index is 1.48, estimate the normalized frequency for the fiber and number of guided modes.

Page 19: Optical Fiber Communication Deepak Khadka · PDF fileOptical Fiber Communication Deepak Khadka 3 ¾ The preform is feed to drawing furnace by precision feed mechanism. The preform

Optical Fiber Communication    Deepak Khadka 

 

19 

 

Example 1.7.4 : A step index multimode fiber with a numerical aperture of a 0.20 supports

approximately 1000 modes at an 850 nm wavelength.

i) What is the diameter of its core?

Page 20: Optical Fiber Communication Deepak Khadka · PDF fileOptical Fiber Communication Deepak Khadka 3 ¾ The preform is feed to drawing furnace by precision feed mechanism. The preform

Optical Fiber Communication    Deepak Khadka 

 

20 

 

ii) How many modes does the fiber support at 1320 nm?

iii) How many modes does the fiber support at 1550 nm?

Solution : i) Number of modes is given by,

Example 1.8.1 : A multimode step index optical fiber with relative refractive index difference

1.5% and core refractive index 1.48 is to be used for single mode operation. If the operating

wavelength is 0.85µm calculate the maximum core diameter.

Solution : Given : n1 = 1.48

Page 21: Optical Fiber Communication Deepak Khadka · PDF fileOptical Fiber Communication Deepak Khadka 3 ¾ The preform is feed to drawing furnace by precision feed mechanism. The preform

Optical Fiber Communication    Deepak Khadka 

 

21 

 

∆ = 1.5 % = 0.015

Page 22: Optical Fiber Communication Deepak Khadka · PDF fileOptical Fiber Communication Deepak Khadka 3 ¾ The preform is feed to drawing furnace by precision feed mechanism. The preform

Optical Fiber Communication    Deepak Khadka 

 

22 

 

Page 23: Optical Fiber Communication Deepak Khadka · PDF fileOptical Fiber Communication Deepak Khadka 3 ¾ The preform is feed to drawing furnace by precision feed mechanism. The preform

Optical Fiber Communication    Deepak Khadka 

 

23 

 

2.8 Losses in Optical Fiber

Attenuation or fiber losses:

Signal attenuation is a major factor in design of any communication system. All receiver requires that

their input power be above some minimum level so a transmission losses limit the total length of the path.

There are several points in an optic system where losses occur. These are at the channel input coupler,

splices and connectors and within the fiber itself. The attenuation within the fiber is less than 5db per km.

Attenuation is a measure of decay of signal strength or loss of light power that occurs as light pulses

propagate through the length of the fiber. Attenuation loss is measured in dB/km. The attenuation or the

losses in optic fiber is categorized as follows:

1. Absorption loss.

2. Scattering loss.

Page 24: Optical Fiber Communication Deepak Khadka · PDF fileOptical Fiber Communication Deepak Khadka 3 ¾ The preform is feed to drawing furnace by precision feed mechanism. The preform

Optical Fiber Communication    Deepak Khadka 

 

24 

 

3. Bending loss.

1. Absorption loss.

Depending the upon the composition and impurities present in the material of which the fiber is made of ,

some of the light is absorbed within the fiber and is dissipated as heat.

Absorption is caused by three different mechanisms.

a) Absorption by atomtic defects in glass composition.

b) Extrinsic absorption by impurity atoms in glass matts.

c) Intrinsic absorption by basic constituent atom of fiber

a) Absorption by atomtic defects:

Atomic defects are imperfections in the atomic structure of the fiber materials such as missing

molecules, high density clusters of atom groups. These absorption losses are negligible compared

with intrinsic and extrinsic losses.

b) Extrinsic absorption:

The extrinsic material absorption loss occurs mainly because of absorption of light by metal impurities

and hydroxyl (OH) ions mixed with the fiber materials during fabrication. These impurities can be reduce

to acceptable level by choosing proper refining techniques such as vapor-phase oxidation. Using the

drying agents such as gases chloride may minimize the absorption of light by OH ions. The absorption

peaks occurs at 1400, 950 and 750 nm. These are first, second and third overtones respectively.

c) Intrinsic absorption:

This loss is occurred solely due to the composition of materials and is therefore present even in the pure

fiber materials.

when the wavelength of light decreases starting form around 1.2 µm the material starts to absorb the

light. The frequency increases as the wavelength decreases and the photon energy [ E = hf] increases

accordingly, which results in the excitation of the electrons from low level to high level energy bands.

Thus, light is absorbed by the electrons present in the materials.

Page 25: Optical Fiber Communication Deepak Khadka · PDF fileOptical Fiber Communication Deepak Khadka 3 ¾ The preform is feed to drawing furnace by precision feed mechanism. The preform

Optical Fiber Communication    Deepak Khadka 

 

25 

 

The peak absorption occurs some where in the ultraviolet region and is therefore this type of absorption is

called UV absorption. Because the optical wavelengths use for communication fall between 0.8 to 0.7

µm, therefore the fibers suffer from this type of loss.

On the other hand when the wavelength increase from 1.5 µm, material also starts to absorb light.

Because low frequencies (i.e longer wave lengths) , the photon energy is not sufficient to excite the

electrons. However, it is enough to vibrate the chemical bonds binding the atoms of the material. Thus

light is absorbed by the material. The peak absorption occurs somewhere in the far-infrared region and is

therefore this type of absorption is called IR absorption. The fibers also suffers from IR absorption

because, the optical wavelength used for communication fall between 0.8 – 1.7 µm.

2. Scattering loss.

Scattering losses exists in optical fibers because of microscopic variations in the material density and

composition. As glass is composed by randomly connected network of molecules and several

oxides (e.g. SiO2, GeO2 and P2O5), these are the major cause of compositional structure

fluctuation. These two effects results to variation in refractive index and Rayleigh type scattering of

light.

Rayleigh scattering of light is due to small localized changes in the refractive index of the core

and cladding material.

There are two causes during the manufacturing of fiber.

• The first is due to slight fluctuation in mixing of ingredients.

• The other cause is slight change in density as the silica cools and solidifies.When light

ray strikes such zones it gets scattered in all directions. Highest frequency suffers most scattering.

Rayleigh scattering is inversely proportional to forth power of wavelength.

Page 26: Optical Fiber Communication Deepak Khadka · PDF fileOptical Fiber Communication Deepak Khadka 3 ¾ The preform is feed to drawing furnace by precision feed mechanism. The preform

Optical Fiber Communication    Deepak Khadka 

 

26 

 

3. Bending loss.

Losses due to curvature and losses caused by an abrupt change in radius of curvature are referred to as

‗bending losses.The sharp bend of a fiber causes significant radiative losses and there is also

possibility of mechanical failure.

As the core bends the normal will follow it and the ray will now find itself on the wrong side of critical

angle and will escape. The sharp bends are therefore avoided.

There are two categories of bending loss.

1. Microbending loss.

2. Macrobending loss.

1. Microbending:

The microbends may present in the fiber due to imperfect mechanism involved in the fiber fabrication. To

prevent microbands after fabrication the whole cable may be shielded with compressible jacket as show

Page 27: Optical Fiber Communication Deepak Khadka · PDF fileOptical Fiber Communication Deepak Khadka 3 ¾ The preform is feed to drawing furnace by precision feed mechanism. The preform

Optical Fiber Communication    Deepak Khadka 

 

27 

 

in figure (1) to offset the external forces which might cause the microbands. Microbending is a loss due

to small bending or distortions.This small microbending is not visible.

2. Macrobending:

The loss that arises from the bents having radii that are larger compare to the fiber diameter. For example,

when a cable turns a corner during instillation process, is termed as macrobending loss.

No light is coupled back into the core from the cladding as can happen in the case of microbends. It is

cause by large scale bending of fiber. The losses are eliminated when the bends are straightened.

The losses can be minimized by not exceeding the long term bend radii.

Attenuation Units :

Or

As attenuation leads to a loss of power along the fiber, the output power is significantly less than the

couples power. Let the couples optical power is p(0) i.e. at origin (z = 0).

Page 28: Optical Fiber Communication Deepak Khadka · PDF fileOptical Fiber Communication Deepak Khadka 3 ¾ The preform is feed to drawing furnace by precision feed mechanism. The preform

Optical Fiber Communication    Deepak Khadka 

 

28 

 

Optical fiber exhibits minimum loses at around 1310nm and 1550 which are called second and third

window respectively. First window is 850 nm.

Example 2.1.1 : A low loss fiber has average loss of 3 dB/km at 900 nm. Compute the

length over which – a) Power decreases by 50 % b) Power decreases by 75 %.

Page 29: Optical Fiber Communication Deepak Khadka · PDF fileOptical Fiber Communication Deepak Khadka 3 ¾ The preform is feed to drawing furnace by precision feed mechanism. The preform

Optical Fiber Communication    Deepak Khadka 

 

29 

 

Page 30: Optical Fiber Communication Deepak Khadka · PDF fileOptical Fiber Communication Deepak Khadka 3 ¾ The preform is feed to drawing furnace by precision feed mechanism. The preform

Optical Fiber Communication    Deepak Khadka 

 

30 

 

Example 2.1.6 : The input power to an optical fiber is 2 mW while the power measured at the

output end is 2 µW. If the fiber attenuation is 0.5 dB/km, calculate the length of the fiber.

2.9 Dispersion in Optical Fiber :

Dispersion, expressed in terms of the symbol t, is defined as pulse spreading in an optical

fiber. As a pulse of light propagates through a fiber, elements such as numerical aperture, core

diameter, refractive index profile, wavelength, and laser linewidth cause the pulse to broaden.

The overall effect of dispersion on the performance of a fiber optic system is known as

intersymbol interference.

Page 31: Optical Fiber Communication Deepak Khadka · PDF fileOptical Fiber Communication Deepak Khadka 3 ¾ The preform is feed to drawing furnace by precision feed mechanism. The preform

Optical Fiber Communication    Deepak Khadka 

 

31 

 

Intersymbol interference occurs when the pulse spreading caused by dispersion causes the output pulses

of a system to overlap, rendering them undetectable. If an input pulse is caused to spread such that the

rate of change of the input exceeds the dispersion limit of the fiber, the output data will become

indiscernible.

Dispersion is generally divided into two categories: modal dispersion and chromatic dispersion

Page 32: Optical Fiber Communication Deepak Khadka · PDF fileOptical Fiber Communication Deepak Khadka 3 ¾ The preform is feed to drawing furnace by precision feed mechanism. The preform

Optical Fiber Communication    Deepak Khadka 

 

32 

 

Modal dispersion is defined as pulse spreading caused by the time delay between lower-order

modes (modes or rays propagating straight through the fiber close to the optical axis) and

higher-order modes (modes propagating at steeper angles). This is shown in Figure 8-5. Modal

dispersion is problematic in multimode fiber, causing bandwidth limitation, but it is not a

problem in single-mode fiber where only one mode is allowed to propagate.

Chromatic dispersion is pulse spreading due to the fact that different wavelengths of light propagate at

slightly different velocities through the fiber. All light sources, whether laser or

LED, have finite linewidths, which means they emit more than one wavelength. Because the

index of refraction of glass fiber is a wavelength-dependent quantity, different wavelengths

propagate at different velocities. Chromatic dispersion is typically expressed in units of

nanoseconds or picoseconds per

(kmnm).

Material dispersion is due to the wavelength dependency on the index of refraction of glass.

Waveguide dispersion is due to the physical structure of the waveguide. In a simple step-index-

profile fiber, waveguide dispersion is not a major factor, but in fibers with more complex index

profiles, waveguide dispersion can be more significant. Material dispersion and waveguide

dispersion can have opposite signs depending on the transmission wavelength. In the case of a

step-index single-mode fiber, these two effectively cancel each other at 1310 nm, yielding zero-

dispersion. This makes very high-bandwidth communication possible at this wavelength.

Page 33: Optical Fiber Communication Deepak Khadka · PDF fileOptical Fiber Communication Deepak Khadka 3 ¾ The preform is feed to drawing furnace by precision feed mechanism. The preform

Optical Fiber Communication    Deepak Khadka 

 

33 

 

However, the drawback is that, even though dispersion is minimized at 1310 nm, attenuation is

not. Glass fiber exhibits minimum attenuation at 1550 nm. Coupling that with the fact that

erbium-doped fiber amplifiers (EDFA) operate in the 1550-nm range makes it obvious that, if

the zero-dispersion property of 1310 nm could be shifted to coincide with the 1550-nm

transmission window, high-bandwidth long-distance communication would be possible. With

this in mind , zero-dispersion-shifted fiber was developed.

Page 34: Optical Fiber Communication Deepak Khadka · PDF fileOptical Fiber Communication Deepak Khadka 3 ¾ The preform is feed to drawing furnace by precision feed mechanism. The preform

Optical Fiber Communication    Deepak Khadka 

 

34 

 

Page 35: Optical Fiber Communication Deepak Khadka · PDF fileOptical Fiber Communication Deepak Khadka 3 ¾ The preform is feed to drawing furnace by precision feed mechanism. The preform

Optical Fiber Communication    Deepak Khadka 

 

35 

 

Lecture Note by: Deepak Khadka, Reference:

• Optical fiber communication by Gerd Keiser • Optical fiber communications by John M Senior • Jayaram.com.np • Prabal Dhaubhadel doc. • And the web