op-amps i. practical op-amp -...

21
EE 323 – Op-amp 1 _____ OP-AMPS _____ I. PRACTICAL OP-AMP High gain differential amplifier, A. High input impedance, z in . Low output impedance, z out . Applications: voltage amplitude changes (amplitude and polarity), oscillators, filter circuits, and many types of instrumentation circuits. Noninverting input Inverting input Output +V CC -V EE A.v in z out Z in v in + _ v out A + _ v in Symbol Schematic

Upload: others

Post on 14-Oct-2019

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: OP-AMPS I. PRACTICAL OP-AMP - engr.usask.caengr.usask.ca/classes/EE/323/2006_slides/opamps1_slide.pdf · EE 323 – Op-amp 14 • The initial slope of a large sinusoidal signal, can

EE 323 – Op-amp 1

_____ OP-AMPS _____

I. PRACTICAL OP-AMP

• High gain differential amplifier, A. • High input impedance, zin . • Low output impedance, zout. • Applications: voltage amplitude changes (amplitude and polarity), oscillators,

filter circuits, and many types of instrumentation circuits.

Noninverting input

Inverting input

Output

+VCC

-VEE

A.vin

zout Zin

vin

+

_

vout A + _

vin

Symbol Schematic

Page 2: OP-AMPS I. PRACTICAL OP-AMP - engr.usask.caengr.usask.ca/classes/EE/323/2006_slides/opamps1_slide.pdf · EE 323 – Op-amp 14 • The initial slope of a large sinusoidal signal, can

EE 323 – Op-amp 2

• two power supplies: +VCC and –VEE, (some op-amps can operates using a single supply).

• input, vin, difference between two input voltages: non-inverting & inverting . • single-ended output. • very high input impedance, zin, (MΩΩΩΩ) • very low output impedance, zout, (less than 100ΩΩΩΩ) • very high voltage gain, A. • output voltage:

vo=Avin

CLASS B PUSH-PULL AMPLIFIER

GAIN STAGE

DIFF. AMPLIFIER

vin vout

OP-AMP

Page 3: OP-AMPS I. PRACTICAL OP-AMP - engr.usask.caengr.usask.ca/classes/EE/323/2006_slides/opamps1_slide.pdf · EE 323 – Op-amp 14 • The initial slope of a large sinusoidal signal, can

EE 323 – Op-amp 3

1. Op-Amp input characteristics

1. Input bias current

• ββββDC of each transistor is slightly different • Base currents in the differential amplifier

are slightly different. • Input bias current is defined as the

average of the DC base currents:

2II

I 2B1B)base(in

++++====

• Typical in nanoamperes (BJT) or picoampares (FET)

• Flows through the resistances between the bases and ground.

• Resistances may be discrete resistances or may be Thevenin resistances of the input sources.

Different base current

Page 4: OP-AMPS I. PRACTICAL OP-AMP - engr.usask.caengr.usask.ca/classes/EE/323/2006_slides/opamps1_slide.pdf · EE 323 – Op-amp 14 • The initial slope of a large sinusoidal signal, can

EE 323 – Op-amp 4

2. Input offset current

• Defined as the difference of the DC base currents: Iin(off) = IB1 – IB2 • Indicates how closely the transistors are matched. • Data sheet of an op-amp lists Iin(base) and Iin(off), • Base currents can cause output voltage error in precision applications. • Compensate resistor may be use to eliminate this effect.

a) Base resistor produces unwanted input voltage b) Equal base on other side reduces error voltage

Page 5: OP-AMPS I. PRACTICAL OP-AMP - engr.usask.caengr.usask.ca/classes/EE/323/2006_slides/opamps1_slide.pdf · EE 323 – Op-amp 14 • The initial slope of a large sinusoidal signal, can

EE 323 – Op-amp 5

3. Input offset voltage

More errors caused by mismatch of the differential amplifier stage: - collector resistances (RC1≠≠≠≠ RC2) and - base-emitter voltages (VBE1≠≠≠≠VBE2) .

Input offset voltage is defined as the input voltage that would produce the same output error voltage in a perfect differential amplifier.

Page 6: OP-AMPS I. PRACTICAL OP-AMP - engr.usask.caengr.usask.ca/classes/EE/323/2006_slides/opamps1_slide.pdf · EE 323 – Op-amp 14 • The initial slope of a large sinusoidal signal, can

EE 323 – Op-amp 6

AV

V error)off(in ====

Output of diff. amp includes desired signal and error voltage

Total error: Vin = v1 – v2

Vout = A(v1 – v2)

Page 7: OP-AMPS I. PRACTICAL OP-AMP - engr.usask.caengr.usask.ca/classes/EE/323/2006_slides/opamps1_slide.pdf · EE 323 – Op-amp 14 • The initial slope of a large sinusoidal signal, can

EE 323 – Op-amp 7

DC error inputs: V1err = (RB1 - RB2)Iin(bias)

V2err= (RB1 + RB2)Iin(off)/2 V3err = Vin(off) Verr = A (V1err + V2err + V3err)

Table 1: Sources of Output Error Voltage

Description Cause Remedies

Input bias current Voltage across a single RB Use equal RB on other side

Input offset current Unequal current gains Data sheet nulling methods

Input offset voltage Unequal RC and VBE Data sheet nulling methods

Page 8: OP-AMPS I. PRACTICAL OP-AMP - engr.usask.caengr.usask.ca/classes/EE/323/2006_slides/opamps1_slide.pdf · EE 323 – Op-amp 14 • The initial slope of a large sinusoidal signal, can

EE 323 – Op-amp 8

2. The 741 op-amp

Page 9: OP-AMPS I. PRACTICAL OP-AMP - engr.usask.caengr.usask.ca/classes/EE/323/2006_slides/opamps1_slide.pdf · EE 323 – Op-amp 14 • The initial slope of a large sinusoidal signal, can

EE 323 – Op-amp 9

a. Final stage The quiescent output is ideally 0V Any deviation from 0V is the output error voltage. Output swing is within 1 to 2V (due to drops inside the op-amp).

b. Frequency compensation

Capacitor CC is a compensating capacitor. Miller effect causes this capacitor become a large input capacitance:

Cin = (A+1)CC A=gain of Q5 and Q6.

CC generates a cutoff frequency of 10Hz The op-amp has an ideal Bode plot.

AOL

100dB

10Hz 1MHz freq.

Page 10: OP-AMPS I. PRACTICAL OP-AMP - engr.usask.caengr.usask.ca/classes/EE/323/2006_slides/opamps1_slide.pdf · EE 323 – Op-amp 14 • The initial slope of a large sinusoidal signal, can

EE 323 – Op-amp 10

c. Bias and offsets (741C op-amp compensation and null) • RB neutralizes the effect of input bias current (80nA). • 10K potentiometer is used to null or zero the output voltage (no input

signal). • Eliminates the effect of 20nA input offset current and 2mV input offset

voltage.

Page 11: OP-AMPS I. PRACTICAL OP-AMP - engr.usask.caengr.usask.ca/classes/EE/323/2006_slides/opamps1_slide.pdf · EE 323 – Op-amp 14 • The initial slope of a large sinusoidal signal, can

EE 323 – Op-amp 11

d. CMRR

• 90dB at low frequency • Degrades at higher frequency (curve (a)).

Page 12: OP-AMPS I. PRACTICAL OP-AMP - engr.usask.caengr.usask.ca/classes/EE/323/2006_slides/opamps1_slide.pdf · EE 323 – Op-amp 14 • The initial slope of a large sinusoidal signal, can

EE 323 – Op-amp 12

e. Maximum peak-to-peak output Depends on the load resistance connected to its output (curve (b)).

f. Short circuit current Max short circuit current 25mA = Max current produced by 741.

g. Frequency response • Unity frequency of 1MHz (curve (c)). • Worthless for higher frequency applications. (Other high frequency op-

amps are available).

h. Slew rate • Compensation capacitor, CC, prevents oscillations (negative feedback)

would interfere with the desired signal. • Also creates a speed limit on how fast the output can change.

• This relates to the slew rate, defined as:

where SR is the slew rate and equals to the change in output voltage divided by the change in time.

tvS out

R ====

Page 13: OP-AMPS I. PRACTICAL OP-AMP - engr.usask.caengr.usask.ca/classes/EE/323/2006_slides/opamps1_slide.pdf · EE 323 – Op-amp 14 • The initial slope of a large sinusoidal signal, can

EE 323 – Op-amp 13

• Slew rate represents the fastest response that 741 can have (0.5V/µµµµs) (i.e., the output of a 741C can change no faster than 0.5V in a microsecond (figure (c)).

• Slew rate also affects the response

of sinusoidal signal.

• Slew rate limits the large-signal response (specifies in the data sheet.)

Page 14: OP-AMPS I. PRACTICAL OP-AMP - engr.usask.caengr.usask.ca/classes/EE/323/2006_slides/opamps1_slide.pdf · EE 323 – Op-amp 14 • The initial slope of a large sinusoidal signal, can

EE 323 – Op-amp 14

• The initial slope of a large sinusoidal signal, can be derived as: SS = 2ππππfVp

• To avoid slew-rate distortion, SS has to be less than or equal to SR • The max frequency at which the signal is on the verge of slew-rate distortion is:

p

Rmax

pSR

V2S

f

fV2SS

====

========

fmax= power bandwidth or large-signal bandwidth of the op-amp. Two bandwidths to be considered when analyzing the op-amp operation:

- The small-signal bandwidth determined by the first order response of the op-amp (by compensation capacitor)

- The large-signal or power bandwidth determined by the slew rate. Examples: 18-1 to 18-4 (page 628).

Page 15: OP-AMPS I. PRACTICAL OP-AMP - engr.usask.caengr.usask.ca/classes/EE/323/2006_slides/opamps1_slide.pdf · EE 323 – Op-amp 14 • The initial slope of a large sinusoidal signal, can

EE 323 – Op-amp 15

II. IDEAL OP-AMP

Ideal op-amps are used to simplify the op-amp circuit analyzing.

. Gain A≡≡≡≡∞∞∞∞ . zin=∞∞∞∞

. zout=0 . input currents I+=0

. input current I_=0 . va=v+ - v-=0

vo=Ava ⇔⇔⇔⇔ va=vo/A=vo/∞∞∞∞

Operation depends on external connection

Output

+VCC

-VEE

Avin

zout=0 zin=∞∞∞∞

va=0

I+=0

I_=0

Page 16: OP-AMPS I. PRACTICAL OP-AMP - engr.usask.caengr.usask.ca/classes/EE/323/2006_slides/opamps1_slide.pdf · EE 323 – Op-amp 14 • The initial slope of a large sinusoidal signal, can

EE 323 – Op-amp 16

1. INVERTING AMPLIFIER:

• Inverting amplifier uses negative feedback to stabilize the overall voltage gain of the amplifier.

• Gain of the op-amp is too high and unstable to be used without some forms of feedback.

I+=I_=0, va=0 (ideal op-amp):

CL

unity)CL(2

)CL(in

)CL(

ino

in1Ro

inin1R

inina

A

ff

2Rz2R1RA:Gain

2R1Rvv

2R1Rv1Riv

2Rv

ii0_II

2Rv

i0v

====

====

−−−−====

−−−−====

−−−−====−−−−====

================

========

++++

RL

R1

vo vin

R2

iin _ +

iR2

~ va

Page 17: OP-AMPS I. PRACTICAL OP-AMP - engr.usask.caengr.usask.ca/classes/EE/323/2006_slides/opamps1_slide.pdf · EE 323 – Op-amp 14 • The initial slope of a large sinusoidal signal, can

EE 323 – Op-amp 17

• Open loop configuration: 1. Open loop gain, A(OL), 2. Open loop cutoff frequency f2(OL).

• Feedback configuration: 1. Close loop gain, A(CL), 2. Close loop frequency f2(CL). 3. Gain = 0dB (i.e., gain=1=unity) f(unity).

Example: 18-7

Gain A(dB)

A(OL)

A(CL)

f2(CL) f2(OL) funity frequency

Page 18: OP-AMPS I. PRACTICAL OP-AMP - engr.usask.caengr.usask.ca/classes/EE/323/2006_slides/opamps1_slide.pdf · EE 323 – Op-amp 14 • The initial slope of a large sinusoidal signal, can

EE 323 – Op-amp 18

2. NON-INVERTING AMPLIFIER:

Feedback amplifier provides an output voltage in phase with the input voltage.

Example: 18.10

1R2R1A:Gain

)2R1R1(vv

1R2R

vv1Rivv

ii0I2R

vi

)CL(

ino

inin2Rino

2R1R

in2R

++++====∴∴∴∴

++++====

++++====++++====

========

====

−−−−

R1

vo vin

R2

+ _

iR2

~ va=0

Page 19: OP-AMPS I. PRACTICAL OP-AMP - engr.usask.caengr.usask.ca/classes/EE/323/2006_slides/opamps1_slide.pdf · EE 323 – Op-amp 14 • The initial slope of a large sinusoidal signal, can

EE 323 – Op-amp 19

3. SUMMING AMPLIFIER:

(multiple voltage sources: using superposition)

Example: 18-12 Problem: 18-22, 18-26 Try: 18-9, 18-11,18-13,18-21,18-23,18-27

R3

vo v2

R2 _ + ~

)2v2R3R

1v1R3R

(vo +−=

v1

R1

~

Page 20: OP-AMPS I. PRACTICAL OP-AMP - engr.usask.caengr.usask.ca/classes/EE/323/2006_slides/opamps1_slide.pdf · EE 323 – Op-amp 14 • The initial slope of a large sinusoidal signal, can

EE 323 – Op-amp 20

4.THE INTEGRATOR

Output is proportional to the integral over time of the input signal (example, a constant input vi yields a ramp output).

−−−−==== dtvRC

1v io

5.THE DIFFERENTIATOR

Output is proportional to the differential over time of the input signal (example, a ramp input vi yields a constant output).

dtdv

RCv io −−−−====

vi

R _ +

~ vo

C

vi

R

_ +

~ vo

C

Page 21: OP-AMPS I. PRACTICAL OP-AMP - engr.usask.caengr.usask.ca/classes/EE/323/2006_slides/opamps1_slide.pdf · EE 323 – Op-amp 14 • The initial slope of a large sinusoidal signal, can

EE 323 – Op-amp 21

6. THE INSTRUMENTATION AMPLIFIER

Very High Input Impedance

ca

dabRR

R)RR2(A

++++====

------ DO ASSIGNMENT #1 (posted in the class website) -----

+ _

+ _

_ +

vb

va

Ra Rb

Rc Rd

Rc Rd

Rb

vo