op-amps and linear integrated circuits_r. a. gayakwad_2

Upload: subbaraju

Post on 07-Aug-2018

224 views

Category:

Documents


2 download

TRANSCRIPT

  • 8/20/2019 Op-Amps and Linear Integrated Circuits_R. a. Gayakwad_2

    1/92

    Scilab Textbook Companion for

    Op-Amps And Linear Integrated Circuits

    by R. A. Gayakwad1

    Created byAmar Ds

    BEInstrumentation Engineering

    Sri Jayachamarajendra College Of EngineeringCollege Teacher

    Rathnnakara SCross-Checked by

    TechPassion

    August 10, 2013

    1Funded by a grant from the National Mission on Education through ICT,http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilabcodes written in it can be downloaded from the ”Textbook Companion Project”section at the website http://scilab.in

  • 8/20/2019 Op-Amps and Linear Integrated Circuits_R. a. Gayakwad_2

    2/92

    Book Description

    Title:   Op-Amps And Linear Integrated Circuits

    Author:  R. A. Gayakwad

    Publisher:  PHI Learning Pvt. Ltd., New Delhi

    Edition:   4

    Year:   2004

    ISBN:   978-81-203-2058-1

    1

  • 8/20/2019 Op-Amps and Linear Integrated Circuits_R. a. Gayakwad_2

    3/92

    Scilab numbering policy used in this document and the relation to theabove book.

    Exa  Example (Solved example)

    Eqn  Equation (Particular equation of the above book)

    AP  Appendix to Example(Scilab Code that is an Appednix to a particularExample of the above book)

    For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 meansa scilab code whose theory is explained in Section 2.3 of the book.

    2

  • 8/20/2019 Op-Amps and Linear Integrated Circuits_R. a. Gayakwad_2

    4/92

    Contents

    List of Scilab Codes   4

    1 Introduction to Operational Amplifier   7

    2 Interpretation of Data Sheets and Characteristics of an Opamp   11

    3 An Opamp with Negative Feedback   14

    4 The Practical Opamp   21

    5 Frequency Response of an Opamp   37

    6 General Linear Applications   40

    7 Active Filters and Oscillators   53

    8 Comparators and Converters   74

    9 Specialized IC Applications   80

    3

  • 8/20/2019 Op-Amps and Linear Integrated Circuits_R. a. Gayakwad_2

    5/92

    List of Scilab Codes

    Exa 1.1.a Collector current and dc voltage   . . . . . . . . . . . . 7Exa 1.1.b Voltage gain of the opamp . . . . . . . . . . . . . . . . 9Exa 1.1.c Input resistance of the opamp . . . . . . . . . . . . . . 9Exa 2.1.a Output voltage for Openloop differential amplifier   . . 11Exa 2.1.b Output voltage for openloop differential amplifier   . . . 12Exa 2.2.a Output voltage for inverting amplifier   . . . . . . . . . 12Exa 2.2.b Output voltage for inverting amplifier   . . . . . . . . . 13Exa 3.1 Parameters Of voltageseries feedback amplifier   . . . . 14Exa 3.2 Parameters Of voltageseries feedback amplifier   . . . . 15Exa 3.3 Parameters of Voltageshunt feedback amplifier   . . . . 16Exa 3.4 Output voltage of voltage shunt feedback amplifier   . . 17Exa 3.5.a Gain input resistance of the amplifier   . . . . . . . . . 18Exa 3.5.b Output voltage of an Opamp   . . . . . . . . . . . . . . 18

    Exa 3.6.a Voltage gain and input resistance of the Opamp . . . . 19Exa 3.6.b Output voltage of the Opamp . . . . . . . . . . . . . . 20Exa 4.1 Design of Compensating Network . . . . . . . . . . . . 21Exa 4.2 Max Output offset voltage . . . . . . . . . . . . . . . . 22Exa 4.3 Design of input offset voltage compensating network   . 22Exa 4.4.a Max Output offset voltage . . . . . . . . . . . . . . . . 23Exa 4.4.b Effect of input bias current   . . . . . . . . . . . . . . . 24Exa 4.5.a Max Output offset voltage . . . . . . . . . . . . . . . . 24Exa 4.5.b Effect of input bias current   . . . . . . . . . . . . . . . 25Exa 4.6 Max Output offset voltage . . . . . . . . . . . . . . . . 25Exa 4.7 Total Output offset voltage   . . . . . . . . . . . . . . . 26

    Exa 4.8.a Error voltage and output voltage   . . . . . . . . . . . . 27Exa 4.8.b Error voltage and output voltage   . . . . . . . . . . . . 28Exa 4.9.a Error voltage and output voltage   . . . . . . . . . . . . 29Exa 4.9.b Output waveform   . . . . . . . . . . . . . . . . . . . . 30

    4

  • 8/20/2019 Op-Amps and Linear Integrated Circuits_R. a. Gayakwad_2

    6/92

    Exa 4.10.a Error voltage and output voltage   . . . . . . . . . . . . 30

    Exa 4.10.b Error voltage and output voltage   . . . . . . . . . . . . 31Exa 4.11.a Output offset voltage   . . . . . . . . . . . . . . . . . . 32Exa 4.11.b Output offset voltage   . . . . . . . . . . . . . . . . . . 33Exa 4.12 Output ripple voltage   . . . . . . . . . . . . . . . . . . 34Exa 4.13 Change in output offset voltage  . . . . . . . . . . . . . 34Exa 4.14.a Output voltage   . . . . . . . . . . . . . . . . . . . . . . 35Exa 4.14.b Output common mode voltage   . . . . . . . . . . . . . 35Exa 5.1 Maximum gain   . . . . . . . . . . . . . . . . . . . . . . 37Exa 5.2 Gain equation and break frequencies   . . . . . . . . . . 38Exa 5.3 Stability of voltage follower   . . . . . . . . . . . . . . . 38Exa 6.1 Bandwidth of the amplifier   . . . . . . . . . . . . . . . 40

    Exa 6.2.a Bandwidth of the amplifier   . . . . . . . . . . . . . . . 41Exa 6.2.b Max output voltage swing   . . . . . . . . . . . . . . . . 42Exa 6.3 Components of peak amplifier . . . . . . . . . . . . . . 42Exa 6.4 Output voltage  . . . . . . . . . . . . . . . . . . . . . . 43Exa 6.5 Output voltage  . . . . . . . . . . . . . . . . . . . . . . 44Exa 6.6 Output voltage  . . . . . . . . . . . . . . . . . . . . . . 44Exa 6.7 Output voltage  . . . . . . . . . . . . . . . . . . . . . . 45Exa 6.8 Change in resistance in straingage   . . . . . . . . . . . 46Exa 6.9 Gain of the amplifier . . . . . . . . . . . . . . . . . . . 46Exa 6.10 Range of input voltage . . . . . . . . . . . . . . . . . . 47

    Exa 6.11 Current and voltage drop   . . . . . . . . . . . . . . . . 47Exa 6.12.a Load current   . . . . . . . . . . . . . . . . . . . . . . . 48Exa 6.12.b Output voltage   . . . . . . . . . . . . . . . . . . . . . . 48Exa 6.13 Range of output voltage   . . . . . . . . . . . . . . . . . 49Exa 6.14 Change in output voltage   . . . . . . . . . . . . . . . . 49Exa 6.15 Output voltage of an integrator   . . . . . . . . . . . . . 50Exa 6.16.a Design of differentiator   . . . . . . . . . . . . . . . . . 51Exa 6.16.b Output waveform of differentiator   . . . . . . . . . . . 52Exa 7.1 Design of low pass filter   . . . . . . . . . . . . . . . . . 53Exa 7.2 Design of low pass filter   . . . . . . . . . . . . . . . . . 54Exa 7.3 Frequency response of low pass filter   . . . . . . . . . . 54

    Exa 7.4.a Design of second order low pass filter . . . . . . . . . . 56Exa 7.4.b Frequency response of second order highpass filter   . . 57Exa 7.5.a Design of highpass filter   . . . . . . . . . . . . . . . . . 58Exa 7.5.b Frequency response of highpass filter   . . . . . . . . . . 59Exa 7.6.a Determination of low cutoff frequency   . . . . . . . . . 61

    5

  • 8/20/2019 Op-Amps and Linear Integrated Circuits_R. a. Gayakwad_2

    7/92

    Exa 7.6.b Frequency response of second order highpass filter   . . 61

    Exa 7.7.a Design of wide bandpass filter . . . . . . . . . . . . . . 63Exa 7.7.b Frequency response of bandpass filter   . . . . . . . . . 64Exa 7.7.c Calculation of quality factor . . . . . . . . . . . . . . . 65Exa 7.8.a Design of narrow bandpass filter   . . . . . . . . . . . . 66Exa 7.8.b Design of narrow bandpass filter   . . . . . . . . . . . . 67Exa 7.9 Design of wide bandreject filter   . . . . . . . . . . . . . 67Exa 7.10 Design of notch filter . . . . . . . . . . . . . . . . . . . 68Exa 7.11 Phase angle   . . . . . . . . . . . . . . . . . . . . . . . . 68Exa 7.12 Design of phase shift oscillator   . . . . . . . . . . . . . 69Exa 7.13 Design of wein bridge oscillator   . . . . . . . . . . . . . 70Exa 7.14 Design of quadrature oscillator   . . . . . . . . . . . . . 70

    Exa 7.15 Design of squarewave oscillator   . . . . . . . . . . . . . 71Exa 7.16 Design of triangular wave generator   . . . . . . . . . . 71Exa 7.17.a Nominal frequency   . . . . . . . . . . . . . . . . . . . . 72Exa 7.17.b Modulation in output frequency   . . . . . . . . . . . . 73Exa 8.1 Threshold voltage   . . . . . . . . . . . . . . . . . . . . 74Exa 8.2 Output voltage swing   . . . . . . . . . . . . . . . . . . 75Exa 8.3 Output frequencies   . . . . . . . . . . . . . . . . . . . . 76Exa 8.4 Output voltage  . . . . . . . . . . . . . . . . . . . . . . 78Exa 8.5 Output voltage  . . . . . . . . . . . . . . . . . . . . . . 78Exa 9.1 Second order inverting butterworth lowpass filter   . . . 80

    Exa 9.2 Second order inverting butterworth bandpass filter   . . 81Exa 9.3 Design of notch filter . . . . . . . . . . . . . . . . . . . 82Exa 9.4 Second order butterworth lowpass filter   . . . . . . . . 83Exa 9.5 Value of capacitor   . . . . . . . . . . . . . . . . . . . . 83Exa 9.6 Value of resistor   . . . . . . . . . . . . . . . . . . . . . 84Exa 9.7 Value of tc td and f0  . . . . . . . . . . . . . . . . . . . 84Exa 9.8 Freq of free running ramp generator   . . . . . . . . . . 85Exa 9.9 Value of fout fl fc . . . . . . . . . . . . . . . . . . . . . 86Exa 9.10 Design of current source   . . . . . . . . . . . . . . . . . 86Exa 9.11 Design of voltage regulator   . . . . . . . . . . . . . . . 87Exa 9.12 Design of stepdown switching regulator   . . . . . . . . 88

    Exa 9.13 Design of stepdown switching regulator   . . . . . . . . 90

    6

  • 8/20/2019 Op-Amps and Linear Integrated Circuits_R. a. Gayakwad_2

    8/92

    Chapter 1

    Introduction to Operational

    Amplifier

    Scilab code Exa 1.1.a  Collector current and dc voltage

    1   / / C h a p t e r 12   // Page . No−4 ,3   / / E x a mp l e 1 1 a , F i g u r e . No−1.24   / / C o l l e c t o r c u r r e nt and dc v o l t a g e5   // Given :6   clear ; clc ;

    7   V c c = 6 ; V b e 5 = 0 . 7 ; V e e = 6 ; V b e 3 = 6 . 7 ; V b e 6 = 0 . 7 ; V b e 7 = 0 . 7 ;   //V ol ta ge i n v o l t s

    8   R c 1 = 6 . 7 * 1 0 ^ 3 ;   // R e s i s t a n ce i n ohms9   I c 1 = rand () ;

    10   V c 1 = V c c - R c 1 * I c 1 ;

    11   V e 4 = V c 1 - V b e 5 ;

    12   I 4 = ( V e 4 + V e e ) / ( 9 . 1 * 1 0 ^ 3 + 5 . 5 * 1 0 ^ 3 ) ;

    13   V b 3 = 5 . 5 * 1 0 ^ 3 * I 4 - V e e ;

    14   V e 3 = V b 3 - V b e 3 ;15   I e 3 = ( V e 3 + V b e 3 ) / 3 . 3 * 1 0 ^ 3 ;

    16   I c 1 = 1 . 0 8 * 1 0 ^ - 3 / 2 . 7 6 5 ;   // S i n ce I e 3 =2∗ I c 1 ,s u b s t i t u t i n g i n above e qu a ti o n a nd s i m p l i f y i n g

    17   printf ( ” \n C o l l e c t o r c u rr e n t I c 1 i s = %. 5 f A   \n” ,Ic1

    7

  • 8/20/2019 Op-Amps and Linear Integrated Circuits_R. a. Gayakwad_2

    9/92

    )   // R e su l t

    18   V c 1 = V c c - R c 1 * I c 1 ;19   printf ( ” \n V o lt ag e Vc1 i s = %. 2 f V   \n” , V c 1 )   //R e s u l t

    20   V e 4 = V c 1 - V b e 5 ;

    21   printf ( ” \n V o lt ag e Ve4 i s = %. 2 f V   \n” , V e 4 )   //R e s u l t

    22   I e 4 = ( V e 4 + V e e ) / ( 2 9 . 2 * 1 0 ^ 3 ) ;

    23   printf ( ” \n C ur re nt I e 4 i s = %. 6 f A   \n” , I e 4 )   //R e s u l t

    24   I c 5 = I e 4 ;

    25   printf ( ” \n C ur re nt I c 5 i s = %. 6 f A   \n” , I c 5 )   //

    R e s u l t26   Vc5=Vcc -3.8*10^3* Ic5;

    27   printf ( ” \n V o lt ag e Vc5 i s = %. 2 f V   \n” , V c 5 )   //R e s u l t

    28   V e 6 = V c 5 - V b e 6 ;

    29   printf ( ” \n V o lt ag e Ve6 i s = %. 2 f V   \n” , V e 6 )   //R e s u l t

    30   I e 6 = ( V e 6 + V e e ) / ( 1 5 * 1 0 ^ 3 ) ;

    31   printf ( ” \n C ur re nt I e 6 i s = %. 6 f A   \n” , I e 6 )   //R e s u l t

    32   V e 7 = V e 6 + V b e 7 ;

    33   printf ( ” \n V o lt ag e Ve7 i s = %. 2 f V   \n” , V e 7 )   //R e s u l t

    34   I 1 = ( V c c - V e 7 ) / 4 0 0 ;

    35   printf ( ” \n C ur re nt I 1 i s = %. 6 f A   \n” , I 1 )   // R e su l t36   I e 8 = I 1 ;

    37   printf ( ” \n C ur re nt I e 8 i s = %. 6 f A   \n” , I e 8 )   //R e s u l t

    38   V e 8 = - V e e + 2 * 1 0 ^ 3 * I e 8 ;

    39   printf ( ” \n V ol ta ge Ve8 a t t he o ut p ut t e rm i na l i s = %. 2 f V   \n” , V e 8 )   // R e su l t

    8

  • 8/20/2019 Op-Amps and Linear Integrated Circuits_R. a. Gayakwad_2

    10/92

    Scilab code Exa 1.1.b  Voltage gain of the opamp

    1   / / C h a p t e r 12   // Page . No−4 ,3   / / E x a mp l e 1 1 b , F i g u r e . No−1.24   / / V o l t a g e g a i n o f t h e opamp5   // Given :6   clear ; clc ;

    7   I e 1 = 0 . 3 9 * 1 0 ^ - 3 ; I e 4 = 0 . 2 9 8 * 1 0 ^ - 3 ; I e 6 = 0 . 6 7 8 * 1 0 ^ - 3 ;   //C u rr e nt i n amps

    8   R c 1 = 6 . 7 * 1 0 ^ 3 ; R c 5 = 3 . 8 * 1 0 ^ 3 ;   // R e s i s t a n ce i n ohms9   b e t a _ a c = 1 5 0 ;

    10   r e 1 = ( 2 5 * 1 0 ^ - 3 ) / I e 1 ;11   r e 2 = r e 1 ;

    12   r e 4 = ( 2 5 * 1 0 ^ - 3 ) / I e 4 ;

    13   r e 5 = r e 4 ;

    14   r e 6 = ( 2 5 * 1 0 ^ - 3 ) / I e 6 ;

    15   k = ( R c 1 * 2 * b e t a _ a c * r e 4 ) / ( R c 1 + 2 * b e t a _ a c * r e 4 ) ;

    16   A d 1 = k / r e 1 ;

    17   printf ( ” \n V ol ta ge g ai n o f t he dual −i n p u t , b a l a n c e dout put − d i f f e r e n t i a l a m p l i f i e r i s = % . 2 f     \n” , A d 1 )

    // R e su l t18   k 1 = ( R c 5 * b e t a _ a c * ( r e 6 + 1 5 * 1 0 ^ 3 ) ) / ( R c 5 + b e t a _ a c * ( r e 6

    + 1 5 * 1 0 ^ 3 ) ) ;

    19   A d 2 = k 1 / ( 2 * r e 5 ) ;

    20   printf ( ” \n V ol ta ge g ai n o f t he dual −i n p u t , u n b a l a n c e dout put − d i f f e r e n t i a l a m p l i f i e r i s = % . 1 f     \n” ,Ad2

    )   // R e su l t21   A d = 8 2 . 5 5 * 2 2 . 6 ;   // Us ing Ad=Ad1∗Ad222   printf ( ” \n O v e r a l l g ai n o f t he o p−amp i s = %. 2 f     \n”

    , A d )   // R e su l t

    Scilab code Exa 1.1.c  Input resistance of the opamp

    9

  • 8/20/2019 Op-Amps and Linear Integrated Circuits_R. a. Gayakwad_2

    11/92

    1   / / C h a p t e r 1

    2   // Page . No−4 ,3   / / E x a m pl e 1 1 c , F i g u r e . No−1.24   // I n pu t r e s i s t a n c e o f t he opamp5   // Given :6   clear ; clc ;

    7   b e t a _ a c = 1 5 0 ;

    8   r e 1 = 6 4 . 1 ;   // R e s i s t a n ce i n ohms9   R i = 2 * b e t a _ a c * r e 1 ;

    10   printf ( ” \n I np ut r e s i s t a n c e Ri i s = %. 1 f ohm   \n” , R i )// R e su l t

    10

  • 8/20/2019 Op-Amps and Linear Integrated Circuits_R. a. Gayakwad_2

    12/92

    Chapter 2

    Interpretation of Data Sheets

    and Characteristics of an

    Opamp

    Scilab code Exa 2.1.a   Output voltage for Openloop differential amplifier

    1   / / C h a p t e r 22   // Page . No−4 5 , F i g u r e . No−2.93   / / E x a m p l e 2 1 a4   / / Output v o l t a g e f o r open−l o o p d i f f e r e n t i a l

    a m p l i f i e r5   // Given :6   clear ; clc ;

    7   v i n 1 = 5 * 1 0 ^ - 6 ; v i n 2 = - 7 * 1 0 ^ - 6 ;   // Both i n p u t v o l t a g e sa re i n v o l t s

    8   A = 2 0 0 0 0 0 ;   // V o lt ag e g a in9   v o = A * ( v i n 1 - v i n 2 ) ;   // Output v o l t a g e i n v o l t s

    10   printf ( ” \n Output v o l t a g e i s vo = %. 1 f V d c   \n” , v o )

    // R e su l t

    11

  • 8/20/2019 Op-Amps and Linear Integrated Circuits_R. a. Gayakwad_2

    13/92

    Scilab code Exa 2.1.b   Output voltage for openloop differential amplifier

    1   / / C h a p t e r 22   // Page . No−4 5 , F i g u r e . No−2.93   //EXAMPLE 2 1 b4   / / Output v o l t a g e f o r open−l o o p d i f f e r e n t i a l

    a m p l i f i e r5   // Given :6   clear ; clc ;

    7   v i n 1 = 1 0 * 1 0 ^ - 3 ; v i n 2 = 2 0 * 1 0 ^ - 3 ;   // Both i n pu t v o l t a g e sa re i n v o l t s

    8   A = 2 0 0 0 0 0 ;   // V o lt ag e g a in9   v o = A * ( v i n 1 - v i n 2 ) ;   // Output v o l t ag e i n v o l t s

    10   printf ( ” \n Output v o l t a g e i s vo = %. f V rms   \n” , v o )// R e su l t

    Scilab code Exa 2.2.a  Output voltage for inverting amplifier

    1   / / C h a p t e r 22   // Page . No−4 6 , F i g u r e . No−2.103   / / E x a m p l e 2 2 a4   // Output v o l t a g e f o r i n v e r t i n g a m p l i f i e r5   // Given :

    6   clear ; clc ;7   v i n = 2 0 * 1 0 ^ - 3 ;   // I np u t v o l t a g e i n v o l t s8   A = 2 0 0 0 0 0 ;   // V o lt ag e g a in9   v o = - ( A * v i n ) ;   // Output v o l t ag e i n v o l t s

    12

  • 8/20/2019 Op-Amps and Linear Integrated Circuits_R. a. Gayakwad_2

    14/92

    10   printf ( ” \n Output v o l t a g e i s vo = %. f V   \n” , v o )   //

    R e s u l t

    Scilab code Exa 2.2.b  Output voltage for inverting amplifier

    1   / / C h a p t e r 22   // Page . No−4 6 , F i g u r e . No−2.10

    3   / / E x a m p l e 2 2 b4   // Output v o l t a g e f o r i n v e r t i n g a m p l i f i e r5   // Given :6   clear ; clc ;

    7   v i n = - 5 0 * 1 0 ^ - 6 ;   // I np u t v o l t a g e i n v o l t s8   A = 2 0 0 0 0 0 ;   // V o lt ag e g a in9   v o = - ( A * v i n ) ;   // Output v o l t ag e i n v o l t s

    10   printf ( ” \n Output v o l t a g e i s vo = %. f V   \n” , v o )   //R e s u l t

    13

  • 8/20/2019 Op-Amps and Linear Integrated Circuits_R. a. Gayakwad_2

    15/92

    Chapter 3

    An Opamp with Negative

    Feedback

    Scilab code Exa 3.1  Parameters Of voltageseries feedback amplifier

    1   / / C h a pt e r32   // P age . No−7 5 , F i g u r e . No−3.23   / / E xa mp le 3 14   / / P ar am et er s o f v o lt a ge − s e r i e s f ee db ac k a m p l i f i e r5   / / G iv en6   clear ; clc ;

    7   R 1 = 1 0 0 0 ; R f = 1 0 0 0 0 ;

    8   A = 2 0 0 0 0 0 ;   // Open−l oo p v o l t ag e g ai n9   R i = 2 * 1 0 ^ 6 ;   // I np ut r e s i s t a n c e w it ho ut f ee db ac k

    10   R o = 7 5 ;   // Output r e s i s t a n c e w it ho ut f e ed b ac k11   f o = 5 ;   // B reak f r e qu e n cy o f an Op−amp12   V s a t = 1 3 ;   // S a t u r a ti o n v o l t ag e13   B = R 1 / ( R 1 + R f ) ;   // Gain o f t he f ee db ac k c i r c u i t14   A f = A / ( 1 + A * B ) ;   / / C l os e d−l oo p v o l t a g e g ai n

    15   printf ( ” \n C l os ed −l oo p v o l t ag e g ai n i s Af = %. 2 f    \n”, A f )   // R e su l t16   R i F = R i * ( 1 + A * B ) ;   // I np ut r e s i s t a n c e w i th f ee db ac k17   printf ( ” \n I np u t r e s i s t a n c e w i t h f ee db ac k i s RiF = %

    . 2 f ohms   \n” , R i F )   // R e su l t

    14

  • 8/20/2019 Op-Amps and Linear Integrated Circuits_R. a. Gayakwad_2

    16/92

    18   R o F = R o / ( 1 + A * B ) ;   // Output r e s i s t a n c e w it h f e ed b ac k

    19   printf ( ” \n O utput r e s i s t a n c e w it h f e ed b ac k i s RoF =%f ohms   \n” , R o F )   // R e su l t20   f F = f o * ( 1 + A * B ) ;   / / B an dwi dt h w i th f e e d b a c k21   printf ( ” \n B an dwidth w it h f e e d ba c k i s vo = %. 1 f Hz   \

    n” , f F )   // R e su l t22   V o o T = V s a t / ( 1 + A * B ) ;   // T ot a l o ut p u t o f f s e t v o l t a ge

    w it h f e e d ba c k23   printf ( ” \n T o ta l o ut pu t o f f s e t v o l t a g e w i th f ee db ac k

    i s VooT = % f V   \n” , V o o T )   // R e su l t

    Scilab code Exa 3.2  Parameters Of voltageseries feedback amplifier

    1   / / C h a pt e r32   // P age . No−8 3 , F i g u r e . No−3.73   / / E xa mp le 3 24   / / P ar am et er s o f v o lt a ge − s e r i e s f ee db ac k a m p l i f i e r5   / / G iv en

    6   clear ; clc ;7   R 1 = 1 0 0 0 ; R f = 1 0 0 0 0 ;

    8   A = 2 0 0 0 0 0 ;   // Open−l oo p v o l t ag e g ai n9   R i = 2 * 1 0 ^ 6 ;   // I np ut r e s i s t a n c e w it ho ut f ee db ac k

    10   R o = 7 5 ;   // Output r e s i s t a n c e w it ho ut f e ed b ac k11   f o = 5 ;   // B reak f r e qu e n cy o f an Op−amp12   V s a t = 1 3 ;   // S a t u r a ti o n v o l t ag e13   B = 1 ;   // Gain o f t h e f e ed ba ck c i r c u i t and i t i s e q ua l

    t o 1 f o r v o l t a g e f o l l o w e r14   A f = A / ( 1 + A * B ) ;   / / C l os e d−l oo p v o l t a g e g ai n

    15   printf ( ” \n C l os ed −l oo p v o l t ag e g ai n i s Af = %. f    \n” ,Af )   // R e su l t16   R i F = R i * ( 1 + A * B ) ;   // I np ut r e s i s t a n c e w i th f ee db ac k17   printf ( ” \n I np u t r e s i s t a n c e w i t h f ee db ac k i s RiF = %

    . 1 f ohms   \n” , R i F )   // R e su l t

    15

  • 8/20/2019 Op-Amps and Linear Integrated Circuits_R. a. Gayakwad_2

    17/92

    18   R o F = R o / ( 1 + A * B ) ;   // Output r e s i s t a n c e w it h f e ed b ac k

    19   printf ( ” \n O utput r e s i s t a n c e w it h f e ed b ac k i s RoF =%f ohms   \n” , R o F )   // R e su l t20   f F = f o * ( 1 + A * B ) ;   / / B an dwi dt h w i th f e e d b a c k21   printf ( ” \n B an dwidth w it h f e e d ba c k i s vo = %. 1 f Hz   \

    n” , f F )   // R e su l t22   V o o T = V s a t / ( 1 + A * B ) ;   // T ot a l o ut p u t o f f s e t v o l t a ge

    w it h f e e d ba c k23   printf ( ” \n T o ta l o ut pu t o f f s e t v o l t a g e w i th f ee db ac k

    i s VooT = % f V   \n” , V o o T )   // R e su l t

    Scilab code Exa 3.3  Parameters of Voltageshunt feedback amplifier

    1   / / C h a pt e r32   // P age . No−8 6 , F i g u r e . No−3.83   / / E xa mp le 3 34   / / P ar am et er s o f v o lt a ge −s hu nt f ee db ac k a m p l i f i e r5   / / G iv en

    6   clear ; clc ;7   R 1 = 4 7 0 ; R f = 4 . 7 * 1 0 ^ 3 ;

    8   A = 2 0 0 0 0 0 ;   // Open−l oo p v o l t ag e g ai n9   R i = 2 * 1 0 ^ 6 ; // I np ut r e s i s t a n c e w it ho ut f ee db a ck

    10   R o = 7 5 ;   // Output r e s i s t a n c e w it ho ut f e ed b ac k11   f o = 5 ;   // B reak f r e qu e n cy o f an Op−amp12   V s a t = 1 3 ;   // S a t u r a ti o n v o l t ag e13   K = R f / ( R 1 + R f ) ;   // V ol ta ge a t t en u a ti o n f a c t o r14   B = R 1 / ( R 1 + R f ) ;   // Gain o f t he f ee db ac k c i r c u i t15   A f = - ( A * K ) / ( 1 + A * B ) ;   / / C l os e d−l oo p v o l t a g e g ai n

    16   printf ( ” \n C l os ed −l oo p v o l t ag e g ai n i s Af = %. f    \n” ,Af )   // R e su l t17   X = R f / ( 1 + A ) ;

    18   R i F = R 1 + ( X * R i ) / ( X + R i ) ;   // I np ut r e s i s t a n c e w i t hf e e d b a c k

    16

  • 8/20/2019 Op-Amps and Linear Integrated Circuits_R. a. Gayakwad_2

    18/92

    19   printf ( ” \n I np u t r e s i s t a n c e w i t h f ee db ac k i s RiF = %

    . 1 f ohms   \n” , R i F )   // R e su l t20   R o F = R o / ( 1 + A * B ) ;   // Output r e s i s t a n c e w it h f e ed b ac k21   printf ( ” \n O utput r e s i s t a n c e w it h f e ed b ac k i s RoF =

    %f ohms   \n” , R o F )   // R e su l t22   f F = f o * ( 1 + A * B ) / K ;   // B an dw id th w i th f e e d b a c k23   printf ( ” \n B an dwidth w it h f e e d ba c k i s vo = %. 2 f Hz   \

    n” , f F )   // R e su l t24   V o o T = V s a t / ( 1 + A * B ) ;   // T ot a l o ut p u t o f f s e t v o l t a ge

    w it h f e e d ba c k25   printf ( ” \n T o ta l o ut pu t o f f s e t v o l t a g e w i th f ee db ac k

    i s VooT = % f V   \n” , V o o T )   // R e su l t

    Scilab code Exa 3.4  Output voltage of voltage shunt feedback amplifier

    1   / / C h a pt e r32   // P age . No−8 6 , F i g u r e . No−3.83   / / E xa mp le 3 4

    4   / / O utput v o l t a g e o f v o lt a g e −s hu nt f e e db a c ka m p l i f i e r

    5   / / G iv en6   clear ; clc ;

    7   R 1 = 4 7 0 ; R f = 4 . 7 * 1 0 ^ 3 ;

    8   A = 2 0 0 0 0 0 ;   // Open−l oo p v o l t ag e g ai n9   v i n = 1 ;   // I np ut v o lt a g e i n v o l t s

    10   K = R f / ( R 1 + R f ) ;   // V ol ta ge a t t en u a ti o n f a c t o r11   B = R 1 / ( R 1 + R f ) ;   // Gain o f t he f ee db ac k c i r c u i t12   A f = - ( A * K ) / ( 1 + A * B ) ;   / / C l os e d−l oo p v o l t a g e g ai n

    13   v o = A f * v i n ;   / / Output v o l t a g e14   printf ( ” \n Output v o l t a g e i s vo = %. f V   \n” , v o )   //R e s u l t

    15   t = 0 : 0 . 1 : 2 * % p i ;

    16   v o = - 1 0 * sin ( t ) ;

    17

  • 8/20/2019 Op-Amps and Linear Integrated Circuits_R. a. Gayakwad_2

    19/92

    17   plot ( t , v o ) ;

    18   t i t l e ( ’ O ut pu t V o l t a g e ’ ) ;19   x l a b e l ( ’ t ’ ) ;20   y l a b e l ( ’ Vo ’ ) ;

    Scilab code Exa 3.5.a  Gain input resistance of the amplifier

    1   / / C h a pt e r32   // P age . No−9 6 , F i g u r e . No−3. 143   // E xa mp le 3 5 a4   // G ain I np ut r e s i s t a n c e o f t h e a m p l i f i e r5   / / G iv en6   clear ; clc ;

    7   R 1 = 1 0 0 0 ; R 2 = 1 0 0 0 ;

    8   R f = 1 0 * 1 0 ^ 3 ; R 3 = 1 0 * 1 0 ^ 3 ;

    9   A D = - R f / R 1 ;   // V o lt a ge g a in10   printf ( ” \n V o lt ag e g a in i s AD = %. f    \n” , A D )   //

    R e s u l t

    11   R i F x = R 1 ;   // I n p u t r e s i s t a n c e o f i n v e r t i n g a m p l i f i e r12   printf ( ” \n I np u t r e s i s t a n c e o f i n v e r t i n g a m p l i f i e r

    i s Ri Fx = % . f ohms   \n” , R i F x )   // R e su l t13   R i F y = R 2 + R 3 ;   // I np ut r e s i s t a n c e o f non−i n v e r t i n g

    a m p l i f i e r14   printf ( ” \n I n p u t r e s i s t a n c e o f non− i n v e r t i n g

    a m p l i f i e r i s RiFy = %. f ohms   \n” , R i F y )   // R e su l t

    Scilab code Exa 3.5.b  Output voltage of an Opamp

    1   / / C h a pt e r3

    18

  • 8/20/2019 Op-Amps and Linear Integrated Circuits_R. a. Gayakwad_2

    20/92

    2   // P age . No−9 6 , F i g u r e . No−3. 14

    3   // E xa mp le 3 5 b4   / / Output v o l t a g e o f an Op−amp5   / / G iv en6   clear ; clc ;

    7   v x = 2 . 7 ; v y = 3 ;   // Both i np ut v o l t a g e s a re i n v o l t s8   R f = 1 0 * 1 0 ^ 3 ; R 1 = 1 0 0 0 ;   // Both a r e i n ohms9   A D = - R f / R 1 ;   // V o lt a ge g a in

    10   v x y = v x - v y ;

    11   v o = A D * v x y ;   / / Output v o l t a g e12   printf ( ” \n Output v o l t a g e i s vo = %. f V   \n” , v o )   //

    R e s u l t

    Scilab code Exa 3.6.a  Voltage gain and input resistance of the Opamp

    1   / / C h a pt e r32   // P age . No−9 9 , F i g u r e . No−3. 163   // E xa mp le 3 6 a

    4   // V ol ta ge g ai n and i np ut r e s i s t a n c e o f Op−amp5   / / G iv en6   clear ; clc ;

    7   R 1 = 6 8 0 ; R 3 = 6 8 0 ;   // Both a r e i n ohms8   R F = 6 8 0 0 ; R 2 = 6 8 0 0 ;   // Both a r e i n ohms9   R i = 2 * 1 0 ^ 6 ;   // Open−l oo p i np ut r e s i s t a n c e o f t h e op−

    amp10   v x = - 1 . 5 ; v y = - 2 ;   // Both a re i n v o l t s11   A = 2 0 0 0 0 0 ;   // Open−l o o p Ga in12   A D = 1 + R F / R 1 ;   // V ol t ag e g a in

    13   printf ( ” \n V o lt ag e g a in i s AD = %. f    \n” , A D )   //R e s u l t14   B = R 2 / ( R 2 + R 3 ) ;

    15   R i F y = R i * ( 1 + A * B ) ;   / / I np ut r e s i s t a n c e o f f i r s t s t a gea m p l i f i e r

    19

  • 8/20/2019 Op-Amps and Linear Integrated Circuits_R. a. Gayakwad_2

    21/92

    16   printf ( ” \n I np u t r e s i s t a n c e o f f i r s t s t a g e a m p l i f i e r

    i s RiFy = %. 1 f ohms   \n” , R i F y )   // R e su l t17   B = R 1 / ( R 1 + R F ) ;18   R i F x = R i * ( 1 + A * B ) ;   // I np ut r e s i s t a n c e o f s e co nd s t a g e

    a m p l i f i e r19   printf ( ” \n I np u t r e s i s t a n c e o f s ec o nd s t a g e

    a m p l i f i e r i s RiFx = %. 1 f ohms   \n” , R i F x )   // R e su l t

    Scilab code Exa 3.6.b  Output voltage of the Opamp

    1   / / C h a pt e r32   // P age . No−9 9 , F i g u r e . No−3. 163   // E xa mp le 3 6 b4   / / Output v o l t a g e o f t he Op−amp5   / / G iv en6   clear ; clc ;

    7   R 1 = 6 8 0 ; R F = 6 8 0 0   // Both a r e i n ohms8   v x = - 1 . 5 ; v y = - 2 ;   // Both i np ut v o l t a g e s a re i n v o l t s

    9   A D = 1 + R F / R 1 ;   // V ol t ag e g a in10   v x y = v x - v y ;

    11   v o = A D * v x y ;   / / Output v o l t a g e12   printf ( ” \n Output v o l t a g e i s vo = %. 1 f V   \n” , v o )   //

    R e s u l t

    20

  • 8/20/2019 Op-Amps and Linear Integrated Circuits_R. a. Gayakwad_2

    22/92

    Chapter 4

    The Practical Opamp

    Scilab code Exa 4.1   Design of Compensating Network

    1   / / C h a pt e r42   // P age . No−1143   / / E xa mp le 4 14   / / D e s ig n o f C om pe ns at in g N et wo rk5   / / G iv en6   clear ; clc ;

    7   V = 1 0   // S up pl y v o l t a g e8   V i o = 1 0 * 1 0 ^ - 3 ;   // I np ut o f f s e t v o l t a ge9   R c = 1 0 ;   / / A s s um p t io n

    10   R b = ( V / V i o ) * R c ;

    11   printf ( ” \n R e s i s t a n ce Rb i s = %. f ohms   \n” , R b )   //R e s u l t

    12   R a = R b / 2 . 5 ;   / / S i n ce Rb>Rmax , l e t u s c h o o s e Rb=1 0∗Rmaxwh er e Rmax=Ra/4

    13   printf ( ” \n R e s i s t a n ce Ra i s = %. f ohms   \n” , R a )   //R e s u l t

    21

  • 8/20/2019 Op-Amps and Linear Integrated Circuits_R. a. Gayakwad_2

    23/92

    This code can be downloaded from the website wwww.scilab.in

    Scilab code Exa 4.2   Max Output offset voltage

    1   / / C h a pt e r42   // P age . No−1 21 , F i g u r e . No−4.133   / / E xa mp le 4 24   // Max O utput o f f s e t v o l t a g e5   / / G iv en6   clear ; clc ;

    7   R 1 = 1 * 1 0 ^ 3 ; R f = 1 0 * 1 0 ^ 3 ;

    8   V i o = 1 0 * 1 0 ^ - 3 ;   // I np ut o f f s e t v o l t a ge9   A o o = 1 + R f / R 1 ;   / / To f i n d max v a l u e o f Voo , we r e d uc e

    i np ut v o l t a ge v in t o z er o .10   V o o = A o o * V i o ;   // Max o ut p ut o f f s e t v o l t a g e11   printf ( ” \n Max o ut p ut o f f s e t v o l t a g e i s = %. 3 f V dc

    \n” , V o o )   // R e su l t

    Scilab code Exa 4.3  Design of input offset voltage compensating network

    1   / / C h a pt e r42   // P age . No−1 21 , F i g u r e . No−4.14

    3   / / E xa mp le 4 34   // D e s ig n o f i np ut o f f s e t v ol ta ge −c o m p e n s a t i n g

    ne t w or k5   / / G iv en6   clear ; clc ;

    22

  • 8/20/2019 Op-Amps and Linear Integrated Circuits_R. a. Gayakwad_2

    24/92

    7   R 1 = 1 * 1 0 ^ 3 ; R f = 1 0 * 1 0 ^ 3 ; R c = 1 0 ;

    8   A f = 1 + R f / ( R 1 + R c ) ;   // C lo se d l oo p g ai n o f non−i n v e r t i n g a m p l i f i e r9   printf ( ” \n C lo se d l oo p g ai n o f non− i n v e r t i n g

    a m p l i f i e r i s = %. 1 f    \n” , A f )   // R e su l t

    This code can be downloaded from the website wwww.scilab.in

    Scilab code Exa 4.4.a   Max Output offset voltage

    1   / / C h a pt e r42   // P age . No−1 27 , F i g u r e . No−4.193   // E xa mp le 4 4 a4   // Max O utput o f f s e t v o l t a g e5   / / G iv en6   clear ; clc ;

    7   R 1 = 4 7 0 ; R f = 4 7 * 1 0 ^ 3 ;

    8   V i o = 6 * 1 0 ^ - 3 ;9   I b = 5 0 0 * 1 0 ^ - 9 ;

    10   V s = 1 5 ;

    11   / / Max o ut p u t o f f s e t v o l t a ge due t o i np ut o f f s e tv o l ta g e , Vio i s :

    12   V o o = ( 1 + R f / R 1 ) * V i o ;   // Max o ut pu t o f f s e t v o l t ag e13   printf ( ” \n Max o ut p ut o f f s e t v o l t a g e i s = %. 3 f V dc

    \n” , V o o )   // R e su l t14   / / Max o ut p u t o f f s e t v o l t a ge due t o i np ut o f f s e t

    v o lt ag e , I b i s :15   V o I b = R f * I b ;

      // Max o ut pu t o f f s e t v o l t ag e16   printf ( ” \n Max o ut p ut o f f s e t v o l t a g e due t o i np uto f f s e t c ur re nt , I b i s = %. 6 f V dc   \n” , V o I b )   //R e s u l t

    23

  • 8/20/2019 Op-Amps and Linear Integrated Circuits_R. a. Gayakwad_2

    25/92

    Scilab code Exa 4.4.b  Effect of input bias current

    1   / / C h a pt e r42   // P age . No−1 27 , F i g u r e . No−4.193   // E xa mp le 4 4 b4   // E f f e c t o f i np ut b i as c u r r e n t5   / / G iv en6   clear ; clc ;

    7   R 1 = 4 7 0 ; R f = 4 7 * 1 0 ^ 3 ;

    8   R O M = R 1 * R f / ( R 1 + R f ) ;   // P a r a l l e l c om bi na ti on o f R1 andRf 

    9   printf ( ” \n P a r a l l e l c o m b in a t i o n o f R1 and Rf , i . e ROMi s = %. 1 f ohm   \n” , R O M )   // A p p ro x im a t el y t h e

    v a l ue i s 47 ohm

    Scilab code Exa 4.5.a   Max Output offset voltage

    1   / / C h a pt e r42   // P age . No−1 27 , F i g u r e . No−4.193   // E xa mp le 4 5 a4   // Max O utput o f f s e t v o l t a g e5   / / G iv en6   clear ; clc ;

    7   R 1 = 1 * 1 0 ^ 3 ; R f = 1 0 0 * 1 0 ^ 3 ;8   V i o = 6 * 1 0 ^ - 3 ;

    9   I b = 5 0 0 * 1 0 ^ - 9 ;

    10   V s = 1 5 ;

    24

  • 8/20/2019 Op-Amps and Linear Integrated Circuits_R. a. Gayakwad_2

    26/92

    11   / / Max o ut p u t o f f s e t v o l t a ge due t o i np ut o f f s e t

    v o l ta g e , Vio i s :12   V o o = ( 1 + R f / R 1 ) * V i o ;   // Max o ut pu t o f f s e t v o l t ag e13   printf ( ” \n Max o ut p ut o f f s e t v o l t a g e due t o i np ut

    o f f s e t v o l ta g e , Vio i s = %. 4 f V dc   \n” , V o o )   //R e s u l t

    14   / / Max o ut p u t o f f s e t v o l t a ge due t o i np ut o f f s e tv o lt ag e , I b i s :

    15   V o I b = R f * I b ;   // Max o ut pu t o f f s e t v o l t ag e16   printf ( ” \n Max o ut p ut o f f s e t v o l t a g e due t o i np ut

    o f f s e t c ur re nt , I b i s = %. 4 f V dc   \n” , V o I b )   //R e s u l t

    Scilab code Exa 4.5.b  Effect of input bias current

    1   / / C h a pt e r42   // P age . No−1 27 , F i g u r e . No−4.193   // E xa mp le 4 4 b

    4   // E f f e c t o f i np ut b i as c u r r e n t5   / / G iv en6   clear ; clc ;

    7   R 1 = 1 * 1 0 ^ 3 ; R f = 1 0 0 * 1 0 ^ 3 ;

    8   R O M = R 1 * R f / ( R 1 + R f ) ;   // P a r a l l e l c om bi na ti on o f R1 andRf 

    9   printf ( ” \n P a r a l l e l c o m b in a t i o n o f R1 and Rf , i . e ROMi s = % . f ohm   \n” , R O M )

    Scilab code Exa 4.6   Max Output offset voltage

    25

  • 8/20/2019 Op-Amps and Linear Integrated Circuits_R. a. Gayakwad_2

    27/92

    1   / / C h a pt e r4

    2   // P age . No−1 30 , F i g u r e . No−4.213   / / E xa mp le 4 64   // Max O utput o f f s e t v o l t a g e5   / / G iv en6   clear ; clc ;

    7   I i o = 2 0 0 * 1 0 ^ - 9 ;   // I np u t o f f s e t c u r r en t8   R f = 1 0 0 * 1 0 ^ 3 ;

    9   V o I i o = R f * I i o ;   // Max o ut pu t o f f s e t v o l t a g e10   printf ( ” \n Max o ut p ut o f f s e t v o l t a g e due t o i np ut

    o f f s e t c ur re nt , I b i s = %. 4 f V dc   \n” , V o I i o )   //R e s u l t

    Scilab code Exa 4.7  Total Output offset voltage

    1   / / C h a pt e r42   // P age . No−1 32 , F i g u r e . No −4 . 2 2 ( a )3   / / E xa mp le 4 7

    4   / / T ot al Output o f f s e t v o l t ag e5   / / G iv en6   clear ; clc ;

    7   R 1 = 1 * 1 0 ^ 3 ; R f = 1 0 * 1 0 ^ 3 ;

    8   V i o = 7 . 5 * 1 0 ^ - 3 ;   // Max i n p ut o f f s e t v o l t ag e9   I i o = 5 0 * 1 0 ^ - 9 ;   // Max i n p ut o f f s e t c u r r e nt

    10   I b = 2 5 0 * 1 0 ^ - 9 ;   // Max i n pu t b i a s c u r r e nt11   // For f i g u r e 4 . 2 2( a )12   V o o T = ( 1 + R f / R 1 ) * V i o + ( R f * I b ) ;   // S i nc e t he c u r re n t

    g en e r at ed o u t p ut o f f s e t v o l t a ge i s due t o i np ut

    b i as c u r r e n t I b13   printf ( ” \n Max t o t a l o ut p u t o f f s e t v o l t a ge due t oi np ut o f f s e t c ur re nt , I b i s = %. 4 f V   \n” , V o o T )   //

    R e s u l t14

    26

  • 8/20/2019 Op-Amps and Linear Integrated Circuits_R. a. Gayakwad_2

    28/92

    15   // F or f i g u r e 4 . 2 2( b )

    16   V o o T = ( 1 + R f / R 1 ) * V i o + ( R f * I i o ) ;   // S i nc e t he c u r r e ntg en e r at ed o u t p ut o f f s e t v o l t a ge i s due t o i np uto f f s e t c ur r e nt I b

    17   printf ( ” \n Max t o t a l o ut p u t o f f s e t v o l t a ge due t oi np ut o f f s e t c ur re nt , I b i s = %. 4 f V   \n” , V o o T )   //

    R e s u l t

    Scilab code Exa 4.8.a  Error voltage and output voltage

    1   / / C h a pt e r42   // P age . No−1 36 , F i g u r e . No−4.243   // E xa mp le 4 8 a4   / / E rr or v o l t a g e and o ut pu t v o l t ag e5   / / G iv en6   clear ; clc ;

    7   d e l t a _ V i o = ( 3 0 * 1 0 ^ - 6 ) ;   // Change i n i np ut o f f s e tv o l t a g e

    8   d e l t a _ T = 1 ;   // U ni t c ha ng e i n t e mp e ra t u re9   d e l t a _ I i o = ( 3 0 0 * 1 0 ^ - 1 2 ) ;   // Change i n i np ut o f f s e t

    c u r r e n t10   V s = 1 5 ;

    11   R 1 = 1 * 1 0 ^ 3 ; R f = 1 0 0 * 1 0 ^ 3 ; R l = 1 0 * 1 0 ^ 3 ;

    12   V i n = 1 * 1 0 ^ - 3 ;   // I np ut v o l t a g e13   k = 2 5 ;   // A mp l i f i e r i s n u l l e d a t 25 deg14   T = 3 5 - k ;   // Chang e i n t e m p e r a tu r e15   E v = ( 1+ R f / R 1 ) * ( d e l t a_ V i o / d e l ta _ T ) * T + R f * ( d e l ta _ I io /

    d e l t a _ T ) * T ;   // E rr or v o l t ag e

    16   printf ( ” \n E rr or v o l t a ge i s = %. 4 f V   \n” , E v )   //R e s u l t17   V o = - ( R f / R 1 ) * V i n + E v ;   / / Output v o l t a g e18   printf ( ” \n Output v o l t a g e i s = %. 4 f V   \n” , V o )   //

    R e s u l t

    27

  • 8/20/2019 Op-Amps and Linear Integrated Circuits_R. a. Gayakwad_2

    29/92

    19   // (OR)

    20   V o = - ( R f / R 1 ) * V i n - E v ;   / / Output v o l t a g e21   printf ( ” \n Output v o l t a g e i s = %. 4 f V   \n” , V o )   //R e s u l t

    Scilab code Exa 4.8.b   Error voltage and output voltage

    1   / / C h a pt e r42   // P age . No−1 36 , F i g u r e . No−4.243   // E xa mp le 4 8 b4   / / E rr or v o l t a g e and o ut pu t v o l t ag e5   / / G iv en6   clear ; clc ;

    7   d e l t a _ V i o = ( 3 0 * 1 0 ^ - 6 ) ;   // Change i n i np ut o f f s e tv o l t a g e

    8   d e l t a _ T = 1 ;   // U ni t c ha ng e i n t e mp e ra t u re9   d e l t a _ I i o = ( 3 0 0 * 1 0 ^ - 1 2 ) ;   // Change i n i np ut o f f s e t

    c u r r e n t

    10   V s = 1 5 ;11   R 1 = 1 * 1 0 ^ 3 ; R f = 1 0 0 * 1 0 ^ 3 ; R l = 1 0 * 1 0 ^ 3 ;

    12   V i n = 1 0 * 1 0 ^ - 3 ;   // I np ut v o l t ag e13   k = 2 5 ;   // A mp l i f i e r i s n u l l e d a t 25 deg14   T = 3 5 - k ;   // Chang e i n t e m p e r a tu r e15   E v = ( 1+ R f / R 1 ) * ( d e l t a_ V i o / d e l ta _ T ) * T + R f * ( d e l ta _ I io /

    d e l t a _ T ) * T ;   // E rr or v o l t ag e16   printf ( ” \n E rr or v o l t a ge i s = %. 4 f V   \n” , E v )   //

    R e s u l t17   V o = - ( R f / R 1 ) * V i n + E v ;   / / Output v o l t a g e

    18   printf ( ” \n Output v o l t a g e i s = %. 4 f V   \n” , V o )   //R e s u l t19   // (OR)20   V o = - ( R f / R 1 ) * V i n - E v ;   / / Output v o l t a g e21   printf ( ” \n Output v o l t a g e i s = %. 4 f V   \n” , V o )   //

    28

  • 8/20/2019 Op-Amps and Linear Integrated Circuits_R. a. Gayakwad_2

    30/92

    R e s u l t

    Scilab code Exa 4.9.a  Error voltage and output voltage

    1   / / C h a pt e r42   // P age . No−1 36 , F i g u r e . No−4.243   // E xa mp le 4 9 a

    4   / / E rr or v o l t a g e and o ut pu t v o l t ag e5   / / G iv en6   clear ; clc ;

    7   d e l t a _ V i o = ( 3 0 * 1 0 ^ - 6 ) ;   // Change i n i np ut o f f s e tv o l t a g e

    8   d e l t a _ T = 1 ;   // U ni t c ha ng e i n t e mp e ra t u re9   d e l t a _ I i o = ( 3 0 0 * 1 0 ^ - 1 2 ) ;   // Change i n i np ut o f f s e t

    c u r r e n t10   V s = 1 5 ;

    11   R 1 = 1 * 1 0 ^ 3 ; R f = 1 0 0 * 1 0 ^ 3 ; R l = 1 0 * 1 0 ^ 3 ;

    12   V i n = 1 0 * 1 0 ^ - 3 ;   // I np ut v o l t ag e

    13   k = 2 5 ;   // A mp l i f i e r i s n u l l e d a t 25 deg14   T = 5 5 - k ;   // Chang e i n t e m p e r a tu r e15   E v = ( 1+ R f / R 1 ) * ( d e l t a_ V i o / d e l ta _ T ) * T + R f * ( d e l ta _ I io /

    d e l t a _ T ) * T ;   // E rr or v o l t ag e16   printf ( ” \n E rr or v o l t a ge i s = %. 4 f V d c   \n” , E v )   //

    R e s u l t17   V o = - ( R f / R 1 ) * V i n + E v ;   / / Output v o l t a g e18   printf ( ” \n Output v o l t a g e i s = %. 4 f V   \n” , V o )   //

    R e s u l t19   // (OR)

    20   V o = - ( R f / R 1 ) * V i n - E v ;   / / Output v o l t a g e21   printf ( ” \n Output v o l t a g e i s = %. 4 f V   \n” , V o )   //R e s u l t

    29

  • 8/20/2019 Op-Amps and Linear Integrated Circuits_R. a. Gayakwad_2

    31/92

    Scilab code Exa 4.9.b   Output waveform

    1   / / C h a pt e r42   // P age . No−1 36 , F i g u r e . No−4.243   // E xa mp le 4 9 b4   / / O ut pu t w a ve fo r m5   / / G iv en6   clear ; clc ;

    7   t = 0 : 0. 1 : 2* % pi ;

    8   y = - 10 00 * sin ( t ) + 9 1 . 8 ;

    9   a =   gca () ;

    10   a . x _ l a b el . t e x t =   ’ Time ’ ;11   a . y _ l a b el . t e x t =   ’ V ol t ag e ’ ;12   a . t it le . t e xt =   ’ O utput w av ef or m ’ ;13   plot2d ( t , y ) ;

    14   t 1 = 0 : 0 . 1 : 2 * % p i ;

    15   y 1 = 9 1 . 8 * ( t 1 > = 0 ) ;

    16   b = gca () ;17   b . l i n e _ s t y l e = 3 ;

    18   plot2d ( t 1 , y 1 ) ;

    Scilab code Exa 4.10.a   Error voltage and output voltage

    1   / / C h a pt e r42   // P age . No−1 41 , F i g u r e . No−4.26

    3   // E xa mp le 4 1 0 a4   / / E rr or v o l t a g e and o ut pu t v o l t ag e5   / / G iv en6   clear ; clc ;

    30

  • 8/20/2019 Op-Amps and Linear Integrated Circuits_R. a. Gayakwad_2

    32/92

    7   d e l t a _ V i o = ( 3 0 * 1 0 ^ - 6 ) ;   // Change i n i np ut o f f s e t

    v o l t a g e8   d e l t a _ T = 1 ;   // U ni t c ha ng e i n t e mp e ra t u re9   d e l t a _ I i o = ( 3 0 0 * 1 0 ^ - 1 2 ) ;   // Change i n i np ut o f f s e t

    c u r r e n t10   V s = 1 5 ;

    11   R 1 = 1 * 1 0 ^ 3 ; R f = 1 0 0 * 1 0 ^ 3 ;

    12   V i n = 1 * 1 0 ^ - 3 ;   // I np ut v o l t a g e13   k = 2 5 ;   // A mp l i f i e r i s n u l l e d a t 25 deg14   T = 3 5 - k ;   // Chang e i n t e m p e r a tu r e15   E v = ( 1+ R f / R 1 ) * ( d e l t a_ V i o / d e l ta _ T ) * T + R f * ( d e l ta _ I io /

    d e l t a _ T ) * T ;   // E rr or v o l t ag e

    16   printf ( ” \n E rr or v o l t a ge i s = %. 4 f V d c   \n” , E v )   //R e s u l t

    17   V o = ( 1 + R f / R 1 ) * V i n + E v ;   / / Output v o l t a g e18   printf ( ” \n Output v o l t a g e i s = %. 4 f V   \n” , V o )   //

    R e s u l t19   // (OR)20   V o = ( 1 + R f / R 1 ) * V i n - E v ;   / / Output v o l t a g e21   printf ( ” \n Output v o l t a g e i s = %. 4 f V   \n” , V o )   //

    R e s u l t

    Scilab code Exa 4.10.b  Error voltage and output voltage

    1   / / C h a pt e r42   // P age . No−1 41 , F i g u r e . No−4.263   // E xa mp le 4 1 0 b4   / / E rr or v o l t a g e and o ut pu t v o l t ag e

    5   / / G iv en6   clear ; clc ;7   d e l t a _ V i o = ( 3 0 * 1 0 ^ - 6 ) ;   // Change i n i np ut o f f s e t

    v o l t a g e8   d e l t a _ T = 1 ;   // U ni t c ha ng e i n t e mp e ra t u re

    31

  • 8/20/2019 Op-Amps and Linear Integrated Circuits_R. a. Gayakwad_2

    33/92

    9   d e l t a _ I i o = ( 3 0 0 * 1 0 ^ - 1 2 ) ;   // Change i n i np ut o f f s e t

    c u r r e n t10   V s = 1 5 ;11   R 1 = 1 * 1 0 ^ 3 ; R f = 1 0 0 * 1 0 ^ 3 ; R l = 1 0 * 1 0 ^ 3 ;

    12   V i n = 1 0 * 1 0 ^ - 3 ;   // I np ut v o l t ag e13   k = 2 5 ;   // A mp l i f i e r i s n u l l e d a t 25 deg14   T = 3 5 - k ;   // Chang e i n t e m p e r a tu r e15   E v = ( 1+ R f / R 1 ) * ( d e l t a_ V i o / d e l ta _ T ) * T + R f * ( d e l ta _ I io /

    d e l t a _ T ) * T ;   // E rr or v o l t ag e16   printf ( ” \n E rr or v o l t a ge i s = %. 4 f V d c   \n” , E v )   //

    R e s u l t17   V o = ( 1 + R f / R 1 ) * V i n + E v ;   / / Output v o l t a g e

    18   printf ( ” \n Output v o l t a g e i s = %. 4 f V d c   \n” , V o )   //R e s u l t

    19   // (OR)20   V o = ( 1 + R f / R 1 ) * V i n - E v ;   / / Output v o l t a g e21   printf ( ” \n Output v o l t a g e i s = %. 4 f V d c   \n” , V o )   //

    R e s u l t

    Scilab code Exa 4.11.a   Output offset voltage

    1   / / C h a pt e r42   // P age . No−1 41 , F i g u r e . No−4.283   // E xa mp le 4 1 1 a4   // Output o f f s e t v o l t a g e5   / / G iv en6   clear ; clc ;

    7   d e l t a _ V i o = 1 5 . 8 5 * 1 0 ^ - 6 ;   // Change i n i np ut o f f s e t

    v o l t a g e8   d e l t a _ V = 1 ;   // U ni t c ha ng e i n s up pl y v o l t a g e9   V = 2 ;   // Change i n s up p ly v o l t a g e

    10   R 1 = 1 * 1 0 ^ 3 ; R f = 1 0 0 * 1 0 ^ 3 ;

    11   d e l t a _ V o o = ( 1 + R f / R 1 ) * ( d e l t a _ V i o / d e l t a _ V ) * V ;   // C hange

    32

  • 8/20/2019 Op-Amps and Linear Integrated Circuits_R. a. Gayakwad_2

    34/92

    i n o u t p u t o f f s e t v o l t a ge

    12   printf ( ” \n Change i n o ut pu t o f f s e t v o l t a g e i s = %. 4 f  V   \n” , d e l t a _ V o o )   // R e su l t

    Scilab code Exa 4.11.b   Output offset voltage

    1   / / C h a pt e r4

    2   // P age . No−1 41 , F i g u r e . No−4.283   // E xa mp le 4 1 1 b4   // Output o f f s e t v o l t a g e5   / / G iv en6   clear ; clc ;

    7   d e l t a _ V i o = 1 5 . 8 5 * 1 0 ^ - 6 ;   // Change i n i np ut o f f s e tv o l t a g e

    8   d e l t a _ V = 1 ;   // U ni t c ha ng e i n s up pl y v o l t a g e9   V = 2 ;   // Change i n s up p ly v o l t a g e

    10   V i n = 1 0 * 1 0 ^ - 3 ;

    11   R 1 = 1 * 1 0 ^ 3 ; R f = 1 0 0 * 1 0 ^ 3 ;

    12   d e l t a _ V o o = ( 1 + R f / R 1 ) * ( d e l t a _ V i o / d e l t a _ V ) * V ;   / / O ut pu to f f s e t v o l t a g e

    13   V o = ( - R f / R 1 ) * V i n + d e l t a _ V o o ;   // T ot al o ut pu t o f f s e tv o l t a g e

    14   printf ( ” \n T o ta l o u t p ut o f f s e t v o l t a ge i s = %. 4 f V   \n” , V o )   // R e su l t

    15   // (OR)16   V o = ( - R f / R 1 ) * V i n - d e l t a _ V o o ;   // T ot al o ut pu t o f f s e t

    v o l t a g e17   printf ( ” \n T o ta l o u t p ut o f f s e t v o l t a ge i s = %. 4 f V   \

    n” , V o )   // R e su l t

    33

  • 8/20/2019 Op-Amps and Linear Integrated Circuits_R. a. Gayakwad_2

    35/92

    Scilab code Exa 4.12   Output ripple voltage

    1   / / C h a pt e r42   // P age . No−1 41 , F i g u r e . No −4 . 2 8 ( b )3   / / E xa m pl e 4 124   // Output r i p p l e v o l t a g e5   / / G iv en6   clear ; clc ;

    7   d e l t a _ V i o = 1 5 . 8 5 * 1 0 ^ - 6 ;   // Change i n i np ut o f f s e tv o l t a g e

    8   d e l t a _ V = 1 ;   // U ni t c ha ng e i n s up pl y v o l t a g e9   V = 1 0 * 1 0 ^ - 3 ;   // Change i n s up p ly v o l t a g e

    10   R 1 = 1 * 1 0 ^ 3 ; R f = 1 0 0 * 1 0 ^ 3 ;

    11   d e l t a _ V o o = ( 1 + R f / R 1 ) * ( d e l t a _ V i o / d e l t a _ V ) * V ;   // C hangei n o u t p u t o f f s e t v o l t a ge

    12   printf ( ” \n Change i n o ut pu t o f f s e t v o l t a g e i s = %. 6 f  V   \n” , d e l t a _ V o o )   // R e su l t

    Scilab code Exa 4.13  Change in output offset voltage

    1   / / C h a pt e r42   // P age . No−1 36 , F i g u r e . No−4.243   / / E xa m pl e 4 13

    4   / / Change i n o ut pu t o f f s e t v o l t a g e5   / / G iv en6   clear ; clc ;

    7   d e l t a _ V i o = 5 * 1 0 ^ - 6 ;   // Change i n i np ut o f f s e t v o l t ag e8   d e l t a _ t = 1 ;   // U ni t c ha ng e i n t im e

    34

  • 8/20/2019 Op-Amps and Linear Integrated Circuits_R. a. Gayakwad_2

    36/92

    9   d e l t a _ I i o = 2 * 1 0 ^ - 9 ;   // Change i n i np ut o f f s e t c u r r e nt

    10   t = 4 ;   / / Ti me e l a p s e d ( w e e ks )11   R 1 = 1 * 1 0 ^ 3 ; R f = 1 0 0 * 1 0 ^ 3 ; R l = 1 0 * 1 0 ^ 3 ;12   d e l t a _ V o o t = ( 1 + R f / R 1 ) * ( d e l t a _ V i o / d e l t a _ t ) * t + R f * (

    d e l t a _ I i o / d e l t a _ t ) * t ;   // Change i n o ut pu t o f f s e tv o l t a g e

    13   printf ( ” \n Change i n o ut pu t o f f s e t v o l t a g e i s = %. 4 f  V   \n” , d e l t a _ V o o t )   // R e su l t

    Scilab code Exa 4.14.a   Output voltage

    1   / / C h a pt e r42   // P age . No−1 53 , F i g u r e . No−4.323   // E xa mp le 4 1 4 a4   / / Output v o l t a g e5   / / G iv en6   clear ; clc ;

    7   R 1 = 1 * 1 0 ^ 3 ; R 2 = 1 * 1 0 ^ 3 ; R f = 1 0 * 1 0 ^ 3 ; R 3 = 1 0 * 1 0 ^ 3 ;

    8   v d = 5 * 1 0 ^ - 3 ;   // D i f f e r e n t i a l v o l t a g e9   v c m = 2 * 1 0 ^ - 3 ;   / / Common−mode v o l t a g e

    10   A d = R f / R 1 ;   / / C l os e d−lo op d i f f e r e n t i a l ga in11   v o = A d * v d ;   / / Output v o l t a g e12   printf ( ” \n Output v o l t a g e i s = %. 3 f V   \n” , v o )   //

    R e s u l t

    Scilab code Exa 4.14.b  Output common mode voltage

    1   / / C h a pt e r42   // P age . No−1 53 , F i g u r e . No−4.32

    35

  • 8/20/2019 Op-Amps and Linear Integrated Circuits_R. a. Gayakwad_2

    37/92

    3   // E xa mp le 4 1 4 b

    4   // Output common−mode v o l t a g e5   / / G iv en6   clear ; clc ;

    7   R 1 = 1 * 1 0 ^ 3 ; R 2 = 1 * 1 0 ^ 3 ; R f = 1 0 * 1 0 ^ 3 ; R 3 = 1 0 * 1 0 ^ 3 ;

    8   v d = 5 * 1 0 ^ - 3 ;   // D i f f e r e n t i a l v o l t a g e9   v c m = 2 * 1 0 ^ - 3 ;   / / Common−mode v o l t a g e

    10   A d = R f / R 1 ;   / / C l os e d−lo op d i f f e r e n t i a l ga in11   C M R R d b = 9 0

    12   C M R R = 1 0 ^ ( 9 0 / 2 0 ) ;   // Us in g CMRRdb=20∗ l o g 1 0 (CMRR) , toc o n v e r t t h e CMRR( dB ) v a l u e i n t o i t s e q u u i v a l e n tn u m e ri c a l v a l u e

    13   printf ( ” \n CMRR i s = %.2 f    \n” , C M R R )   // R e su l t14   v o c m = ( A d * v c m ) / C M R R ;   // Output common−mode v o l t a g e15   printf ( ” \n Output common−mode v o l t a g e i s = %. 8 f V   \n

    ” , v o c m )   // R e su l t

    36

  • 8/20/2019 Op-Amps and Linear Integrated Circuits_R. a. Gayakwad_2

    38/92

    Chapter 5

    Frequency Response of an

    Opamp

    Scilab code Exa 5.1   Maximum gain

    1   / / C ha p t er 52   // P age . No−1 71 , F i g u r e . No−5.43   / / E xa mp le 5 14   / / Maximum ga in5   / / G iv en6   clear ; clc ;

    7   f o = 5 ;   // Break f r e q o f t h e op−amp i n Hz8   s = % s ;

    9   A = 2 0 0 0 0 0 ;   // Gain o f t he op−amp a t 0 Hz10   H = syslin ( ’ c ’ , ( A * f o * 2 * % p i ) / ( ( f o * 2 * % p i ) + s ) ) ;11   f m i n = 1 ;

    12   f m a x = 1 0 0 0 0 0 ;

    13   bode ( H , f m i n , f m a x ) ;

    14   A o l = 4 0 ;

    15   printf ( ” \n Maximum g a i n i s = % . f dB   \n ” , A o l ) ;   //From t h e g r a ph

    37

  • 8/20/2019 Op-Amps and Linear Integrated Circuits_R. a. Gayakwad_2

    39/92

    Scilab code Exa 5.2   Gain equation and break frequencies

    1   / / C h a p t e r 52   // Page . No−1 72 , F i g u r e . No−5.53   / / E x a m p l e 5 24   / / Gain e q ua t i on and b re ak f r e q u e n c i e s5   // Given :6   clear ; clc ;

    7   p h a s e = - 1 5 7 . 5 ;   // Phas e s h i f t a t a bo ut 3 MHz8   f = 3 * 1 0 ^ 6 ;

    9   disp ( ” G a in e q u a t i o n i s A o l ( f )=A / ( ( 1 + ( f / f o 1 ) ∗ j ) ∗(1+( f  / fo 2 ) ∗ j ) ) , where fo1 − f i r s t b r e ak f r e q u e n c y and f o 2−s e co n d b r ea k f r e q u e n cy ” )   // From t he f i g u r e

    10   f o 1 = 6 ;

    11   printf ( ” \n F i r s t b r ea k f r e qu e n c y f o1 i s = %. f Hz   \n”, f o 1 )   / / F rom t h e g r a ph

    12   k = - a t a n d ( f / f o 1 ) - p h a s e ;

    13   f o 2 = f / t a n d ( k ) ;14   printf ( ” \n S eco nd b re ak f r eq u e nc y f o 2 i s = %. 1 f Hz   \

    n” , f o 2 )   // R e su l t

    Scilab code Exa 5.3  Stability of voltage follower

    1   / / C ha p t er 52   // P age . No−8 3 , F i g u r e . No−3.73   / / E xa mp le 5 34   // S t a b i l i t y o f v o l t a g e f o l l o w e r5   / / G iv en

    38

  • 8/20/2019 Op-Amps and Linear Integrated Circuits_R. a. Gayakwad_2

    40/92

    6   clear ; clc ;

    7   f o = 5 ;   // Break f r e q o f t h e op−amp i n Hz8   s = % s ;9   A = 2 0 0 0 0 0 ;   // Gain o f t he op−amp a t 0 Hz

    10   H = syslin ( ’ c ’ , ( A * f o * 2 * % p i ) / ( ( f o * 2 * % p i ) + s ) ) ;11   f m i n = 1 0 ;

    12   f m a x = 1 0 0 0 0 0 0 ;

    13   bode ( H , f m i n , f m a x ) ;

    14   A o l = 0 ;

    15   printf ( ” \n M agni tude a t whi ch v o l t a g e f o l l o w e r i ss t a b l e i s = %. f dB   \n ” , A o l ) ;   // From t h e g r a ph

    39

  • 8/20/2019 Op-Amps and Linear Integrated Circuits_R. a. Gayakwad_2

    41/92

    Chapter 6

    General Linear Applications

    Scilab code Exa 6.1  Bandwidth of the amplifier

    1   / / C h a pt e r62   // P age . No−1 93 , F i g u r e . No − 6 . 3 ( a )3   / / E xa mp le 6 14   / / B andwidth o f t he a m p l i f i e r5   / / G iv en6   clear ; clc ;

    7   R 1 = 1 0 0 ; R f = 1 * 1 0 ^ 3 ; R i n = 5 0 ; R l = 1 0 * 1 0 ^ 3 ;8   C i = 0 . 1 * 1 0 ^ - 6 ;   // C ap a ci t an ce b /w 2 s t a g e s b e in g

    c o u p l e d9   R i F = R 1 ;   // ac i np ut r e s i s t a n c e o f t h e s ec o nd s t a g e

    10   R o = R i n ;   // ac o ut p u t r e s i s t a n c e o f t he 1 s t s t a g e11   U G B = 1 0 ^ 6 ;   // U ni t y g a i n b an dw id th12   f l = 1 / ( 2 * % p i * C i * ( R i F + R o ) ) ;   // Low−f r e q c u t o f f  13   printf ( ” \n Low−f r e q c u t o f f i s = %. 1 f Hz   \n” , f l )   //

    R e s u l t14   K = R f / ( R 1 + R f ) ;

    15   A f = - R f / R 1 ;   // c l o se d l oo p v o l t a ge g ai n16   f h = U G B * K / abs ( A f ) ;   / / H ig h−f r e q c u t o f f  17   printf ( ” \n H ig h−f r e q c u t o f f i s = %. 1 f Hz   \n” , f h )   //

    R e s u l t18   B W = f h - f l ;   // Bandw i dt h

    40

  • 8/20/2019 Op-Amps and Linear Integrated Circuits_R. a. Gayakwad_2

    42/92

    19   printf ( ” \n B an dw id th i s = %. 1 f Hz   \n” , B W )   // R e su l t

    Scilab code Exa 6.2.a  Bandwidth of the amplifier

    1   / / C h a pt e r62   // P age . No−1 93 , F i g u r e . No − 6. 4( c )3   // E xa mp le 6 2 a

    4   / / B andwidth o f t he a m p l i f i e r5   / / G iv en6   clear ; clc ;

    7   R 1 = 1 0 0 * 1 0 ^ 3 ; R 2 = 1 0 0 * 1 0 ^ 3 ; R 3 = 1 0 0 * 1 0 ^ 3 ; R f = 1 * 1 0 ^ 6 ; R i n

    =50;

    8   C i = 0 . 1 * 1 0 ^ - 6 ;   // C ap a ci t an ce b /w 2 s t a g e s b e in gc o u p l e d

    9   R o = R i n ;   // ac o ut p u t r e s i s t a n c e o f t he 1 s t s t a g e10   V c c = 1 5 ;

    11   U G B = 1 0 ^ 6 ;   // U ni t y g a i n b an dw id th12   R i f = R 2 * R 3 / ( R 2 + R 3 ) ;   // s i n c e R i ∗(1+A∗B)>>R2 o r R3

    13   f l = 1 / ( 2 * % p i * C i * ( R i f + R o ) ) ;   / / l ow−f r e q c u t o f f  14   printf ( ” \n Low−f r e q c u t o f f i s = %. 1 f Hz   \n” , f l )   //

    R e s u l t15   K = R f / ( R 1 + R f ) ;

    16   A f = - R f / R 1 ;   // c l o se d l oo p v o l t a ge g ai n17   f h = U G B * K / abs ( A f ) ;   / / H ig h−f r e q c u t o f f  18   printf ( ” \n H ig h−f r e q c u t o f f i s = %. 1 f Hz   \n” , f h )   //

    R e s u l t19   B W = f h - f l ;   // Bandw i dt h20   printf ( ” \n B an dw id th i s = %. 1 f Hz   \n” , B W )   // R e su l t

    41

  • 8/20/2019 Op-Amps and Linear Integrated Circuits_R. a. Gayakwad_2

    43/92

    Scilab code Exa 6.2.b  Max output voltage swing

    1   / / C h a pt e r62   // P age . No−1 93 , F i g u r e . No − 6. 4( c )3   // E xa mp le 6 2 b4   / / Max o ut pu t v o l t a g e s wi ng5   / / G iv en6   clear ; clc ;

    7   R 1 = 1 0 0 * 1 0 ^ 3 ; R 2 = 1 0 0 * 1 0 ^ 3 ; R 3 = 1 0 0 * 1 0 ^ 3 ; R f = 1 * 1 0 ^ 6 ; R i n

    =50;

    8   C i = 0 . 1 * 1 0 ^ - 6 ;   // C ap a ci t an ce b /w 2 s t a g e s b e in gc o u p l e d

    9   R o = R i n ;   // ac o ut p u t r e s i s t a n c e o f t he 1 s t s t a g e10   U G B = 1 0 ^ 6 ;   // U ni t y g a i n b an dw id th11   V c c = 1 5 ;

    12   printf ( ” \n The i d e a l maximum o u tp u t v o l t a g e s wi ng i s= %. f V pp   \n” , V c c )

    Scilab code Exa 6.3  Components of peak amplifier

    1   / / C h a pt e r62   // P age . No−1 93 , F i g u r e . No − 6 . 5 ( a )3   / / E xa mp le 6 34   / / C omponents o f p ea k a m p l i f i e r5   / / G iv en6   clear ; clc ;

    7   f p = 1 6 * 1 0 ^ 3 ;   / / Peak f r e q u e n c y8   A f = 1 0 ;   // Gain a t p eak f r e qu e n cy

    9   C = 0 . 0 1 * 1 0 ^ - 6 ;   // Assume10   L = 1 / ( ( ( 2 * % p i * f p ) ^ 2 ) * 1 0 ^ - 8 ) ;   / / S i m p l i f y i n g f p =1/ (2∗p i ∗ s q r t ( L∗C) )

    11   printf ( ” \n I n du c ta n ce i s = %. 4 f H   \n” ,L )12   L = 1 0 * 1 0 ^ - 3 ;   / / A p p ro x i m at e

    42

  • 8/20/2019 Op-Amps and Linear Integrated Circuits_R. a. Gayakwad_2

    44/92

    13   R = 3 0 ;   // A ssume t h e v al ue o f i n t e r n a l r e s i s t a n c e o f  

    t he i n d u c to r14   X l = 2 * % p i * f p * L ;   // I n d uc t i v e r e a ct a n ce15   Q c o i l = X l / R ;   // F ig ur e o f m er i t o f t h e c o i l16   printf ( ” \n F i gu re o f m e r it o f t h e c o i l i s = %. 1 f    \n”

    , Q c o i l )

    17   R p = ( Q c o i l ) ^ 2 * R ;   // P a r a l l e l r e s i s t a n c e o f t h e t an kc i r c u i t

    18   printf ( ” \n P a r a l l e l r e s i s t a n c e o f t h e t a nk c i r c u i ti s = %. 1 f ohm   \n” , R p )

    19   R 1 = 1 0 0 ;   // Assume t h e v al ue o f i n t e r n a l r e s i s r a n c eo f t h e c o i l

    20   R f = - R p / ( 1 - ( R p / ( A f * R 1 ) ) ) ;   // S i m p l i f y i n g Af =( Rf   | | Rp) /R1

    21   printf ( ” \n Feed ba ck r e s i s t a n c e i s = %. 1 f ohm   \n” , R f )

    Scilab code Exa 6.4   Output voltage

    1   / / C h a pt e r62   // P age . No−2 00 , F i g u r e . No−6.63   / / E xa mp le 6 44   / / Output v o l t a g e5   / / G iv en6   clear ; clc ;

    7   V a = 1 ; V b = 2 ; V c = 3 ;   // I n pu t v o l t a g e s i n v o l t s8   R a = 3 * 1 0 ^ 3 ; R b = 3 * 1 0 ^ 3 ; R c = 3 * 1 0 ^ 3 ; R f = 1 * 1 0 ^ 3 ;

    9   V o = - ( ( R f / R a ) * V a + ( R f / R b ) * V b + ( R f / R c ) * V c ) ;   // O utputv o l t a g e

    10   printf ( ” \n Output v o l t a g e i s = %. f V   \n” , V o )

    43

  • 8/20/2019 Op-Amps and Linear Integrated Circuits_R. a. Gayakwad_2

    45/92

    Scilab code Exa 6.5   Output voltage

    1   / / C h a pt e r62   // P age . No−2 03 , F i g u r e . No−6.73   / / E xa mp le 6 54   / / Output v o l t a g e5   / / G iv en6   clear ; clc ;

    7   V a = 2 ; V b = - 3 ; V c = 4 ;   // I np ut v o l t a g e s i n v o l t s8   R 1 = 1 * 1 0 ^ 3 ; R f = 2 * 1 0 ^ 3 ;

    9   V 1 = ( V a + V b + V c ) / 3 ;   // V ol t ag e a t non− i n v e r t i n gt e r m i n a l

    10   printf ( ” \n V o lt ag e a t non− i n v e r t i n g t e r m i n al i s = %.f V   \n” , V 1 )

    11   V o = ( 1 + R f / R 1 ) * V 1 ;   // Output v o l t a g e12   printf ( ” \n Output v o l t a g e i s = %. f V   \n” , V o )

    Scilab code Exa 6.6   Output voltage

    1   / / C h a pt e r62   // P age . No−2 05 , F i g u r e . No−6.93   / / E xa mp le 6 64   / / Output v o l t a g e

    5   / / G iv en6   clear ; clc ;

    7   V a = 2 ; V b = 3 ; V c = 4 ; V d = 5 ;   // I n pu t v o l t a g e s i n v o l t s8   R = 1 * 1 0 ^ 3 ;

    9   V o = - V a - V b + V c + V d ;   // Output v o l t a g e

    44

  • 8/20/2019 Op-Amps and Linear Integrated Circuits_R. a. Gayakwad_2

    46/92

    10   printf ( ” \n Output v o l t a g e i s = %. f V   \n” , V o )

    Scilab code Exa 6.7   Output voltage

    1   / / C h a pt e r62   // P age . No−2 09 , F i g u r e . No−6.123   / / E xa mp le 6 7

    4   / / Output v o l t a g e5   / / G iv en6   clear ; clc ;

    7   R 1 = 1 * 1 0 ^ 3 ; R f = 4 . 7 * 1 0 ^ 3 ; R a = 1 0 0 * 1 0 ^ 3 ; R b = 1 0 0 * 1 0 ^ 3 ; R c

    = 1 0 0 * 1 0 ^ 3 ;

    8   V d c = 5 ;

    9   R t = 1 0 0 * 1 0 ^ 3 ;   // R e s i st a nc e o f a t h er m is t or10   t e m p _ c o e f f = 1 * 1 0 ^ 3 ;

    11

    12   / / O utput v o l t a g e a t 0 d e g re e13   d e l t a _ R = - t e m p _ c o e f f * ( 0 - 2 5 ) ;   // Change i n r e s i s t a n c e

    14   R = R a ;   // Ra=Rb=Rc=R15   V o = ( ( R f * d e l t a _ R ) / ( R 1 * 4 * R ) ) * V d c ;

    16   printf ( ” \n Output v o l t ag e a t 0 d e g r ee i s = %. 2 f V   \n” , V o )

    17

    18   / / Output v o l t a g e a t 1 00 d e gr e e19   d e l t a _ R = - t e m p _ c o e f f * ( 1 0 0 - 2 5 ) ;   / / C ha ng e i n

    r e s i s t a n c e20   V o = ( ( R f * d e l t a _ R ) / ( R 1 * 4 * R ) ) * V d c ;

    21   printf ( ” \n Output v o l t ag e a t 100 d e g r ee i s = %. 2 f V

    \n” , V o )

    45

  • 8/20/2019 Op-Amps and Linear Integrated Circuits_R. a. Gayakwad_2

    47/92

    Scilab code Exa 6.8  Change in resistance in straingage

    1   / / C h a pt e r62   // P age . No−2 09 , F i g u r e . No−6.123   / / E xa mp le 6 74   / / Change i n r e s i s t a n c e i n s t r ai n g a ge5   / / G iv en6   clear ; clc ;

    7   A = - 1 0 0 ;   / / G ai n o f t h e d i f f e r e n t i a l i n s t r u m e n t a t i o na m p l i f i e r

    8   R a = 1 0 0 ; R b = 1 0 0 ; R c = 1 0 0 ;

    9   V d c = 1 0 ; V o = 1 ;

    10   R = R a ;   // Ra=Rb=Rc=R11   d e l t a _ R = ( V o * R ) / ( V d c * abs ( A ) ) ;   // Change i n r e s i s t a n c e12   printf ( ” \n Change i n r e s i s t a n c e i s = %. 1 f ohm   \n” ,

    d e l t a _ R )

    Scilab code Exa 6.9  Gain of the amplifier

    1   / / C h a pt e r62   // P age . No−2 16 , F i g u r e . No −6 . 1 4 ( a )3   / / E xa mp le 6 94   / / Gain o f t h e a m p l i f i e r

    5   / / G iv en6   clear ; clc ;

    7   V o = 3 . 7 ; V i n = 1 0 0 * 1 0 ^ - 3 ;

    8   R 1 = 1 0 0 ;   // Assume9   R f = 0 . 5 * ( ( V o * R 1 ) / V i n - 1 ) ;   // Fee db ack r e s i s r a n c e

    46

  • 8/20/2019 Op-Amps and Linear Integrated Circuits_R. a. Gayakwad_2

    48/92

    10   printf ( ” \n Feed ba ck r e s i s r a n c e i s = %. 1 f ohm   \n” , R f )

    11   A = ( 1 + 2 * R f / R 1 ) ;   / / G ai n o f t h e d i f f e r e n t i a l a m p l i f i e r12   printf ( ” \n G ai n o f t h e d i f f e r e n t i a l a m p l i f i e r i s = %. 1 f    \n” ,A )

    Scilab code Exa 6.10  Range of input voltage

    1   / / C h a pt e r62   // P age . No−2 20 , F i g u r e . No−6.173   / / E xa m pl e 6 104   / / Range o f i n pu t v o l t a g e5   / / G iv en6   clear ; clc ;

    7   R 1 m i n = 1 * 1 0 ^ 3 ; R 1 m a x = 6 . 8 * 1 0 ^ 3 ;

    8   i o = 1 * 1 0 ^ - 3 ;   // Meter c u rr e n t f o r f u l l −waver e c t i f i c a t i o n

    9   v i n _ m i n = 1 . 1 * R 1 m i n * i o ;   // Minimum i n p u t v o l t a g e10   printf ( ” \n Minimum i n p u t v o l t a g e i s = %. 1 f V   \n” ,

    v i n _ m i n )11   v i n _ m a x = 1 . 1 * R 1 m a x * i o ;   / / Maximum i n p u t v o l t a g e12   printf ( ” \n Maximum i n p u t v o l t a g e i s = %. 2 f V   \n” ,

    v i n _ m a x )

    Scilab code Exa 6.11  Current and voltage drop

    1   / / C h a pt e r62   // P age . No−2 22 , F i g u r e . No−6.183   / / E xa m pl e 6 114   / / C ur re nt and v o l t a g e d ro p

    47

  • 8/20/2019 Op-Amps and Linear Integrated Circuits_R. a. Gayakwad_2

    49/92

    5   / / G iv en

    6   clear ; clc ;7   V i n = 0 . 5 ; V o = 1 . 2 ;

    8   R 1 = 1 0 0 ;

    9   I o = V i n / R 1 ;   // C ur re nt t hr o ug h d i o d e10   printf ( ” \n C ur re nt t hr ou gh d i od e i s = %. 4 f A   \n” , I o )11   V d = V o - V i n ;   // V ol ta ge dr op a c r o s s d io de12   printf ( ” \n V ol ta ge dr op a c r o s s d io de i s = %. 1 f V   \n”

    , V d )

    Scilab code Exa 6.12.a   Load current

    1   / / C h a pt e r62   // P age . No−2 22 , F i g u r e . No−6.193   // E xa mp le 6 1 2 a4   / / Load c u r r e n t5   / / G iv en6   clear ; clc ;

    7   V i n = 5 ; V 1 = 1 ;8   R = 1 0 * 1 0 ^ 3 ;

    9   I l = V i n / R ;   // Load c u r r e n t10   printf ( ” \n Load c u r re n t i s = %. 5 f A   \n” , I l )

    Scilab code Exa 6.12.b   Output voltage

    1   / / C h a pt e r62   // P age . No−2 22 , F i g u r e . No−6.193   // E xa mp le 6 1 2 b4   / / Output v o l t a g e

    48

  • 8/20/2019 Op-Amps and Linear Integrated Circuits_R. a. Gayakwad_2

    50/92

    5   / / G iv en

    6   clear ; clc ;7   V i n = 5 ; V 1 = 1 ;

    8   R = 1 0 * 1 0 ^ 3 ;

    9   V o = 2 * V 1 ;   // Output v o l t a g e10   printf ( ” \n Output v o l t a g e i s = %. f V   \n” , V o )

    Scilab code Exa 6.13  Range of output voltage

    1   / / C h a pt e r62   // P age . No−2 22 , F i g u r e . No−6.203   / / E xa m pl e 6 134   / / Range o f o ut pu t v o l t a g e5   / / G iv en6   clear ; clc ;

    7   R 1 = 1 * 1 0 ^ 3 ; R f = 2 . 7 * 1 0 ^ 3 ;

    8   V r e f = 2 ;

    9   I o = 0 ;   // S i n ce a l l t h e b in ar y i np u t s D0 t o D7 a r e

    l o g i c z er o10   V o _ m i n = I o * R f ;   / / Minimum o u t p u t v o l t a g e11   printf ( ” \n Minimum o u t pu t v o l t a g e i s = % . f V   \n” ,

    V o _ m i n )

    12   I o = ( V r e f / R 1 )

    * ( 1 / 2 + 1 / 4 + 1 / 8 + 1 / 1 6 + 1 / 3 2 + 1 / 6 4 + 1 / 1 2 8 + 1 / 2 5 6 ) ;

    13   V o _ m a x = I o * R f ;   / / Maximum o u t p u t v o l t a g e14   printf ( ” \n Maximum o u t pu t v o l t a g e i s = %. 2 f V   \n” ,

    V o _ m a x )

    Scilab code Exa 6.14  Change in output voltage

    49

  • 8/20/2019 Op-Amps and Linear Integrated Circuits_R. a. Gayakwad_2

    51/92

    1   / / C h a pt e r6

    2   // P age . No−2 28 , F i g u r e . No−6.213   / / E xa m pl e 6 144   / / C hange i n o u tp ut v o l t a g e5   / / G iv en6   clear ; clc ;

    7   R f = 3 * 1 0 ^ 3 ;

    8   V d c = 5 ;

    9   R t = 1 0 0 * 1 0 ^ 3 ;   // R e s is t a nc e a t d a rk ne ss10   V o m i n = - ( V d c / R t ) * R f ;   // Min o ut pu t v o l t a g e a t

    d a r k n e s s11   printf ( ” \n Min o ut p ut v o l t a g e a t d a rk ne ss i s = %. 2 f  

    V   \n” , V o m i n )12   R t = 1 . 5 * 1 0 ^ 3 ;   // R e s i st a nc e a t I l l u mi n a t i o n13   V o m a x = - ( V d c / R t ) * R f ;   // Max o ut p ut v o l t a g e a t

    I l l u m i n a t i o n14   printf ( ” \n Max o u tp ut v o l t a g e a t I l l u m i n a t i o n i s = %

    . f V   \n” , V o m a x )

    Scilab code Exa 6.15   Output voltage of an integrator

    1   / / C h a pt e r62   // P age . No−2 30 , F i g u r e . No−6.233   / / E xa m pl e 6 154   / / O utput v o l t a g e o f an i n t e g r a t o r5   / / G iv en6   clear ; clc ;

    7   V i n = 2 ;   // I np ut v o lt a g e i n v o l t

    8   V o 0 = 0 ;9   V o 1 = - i n t e g r a t e ( ’ 2 ’ , ’ t ’ ,0,1);10   disp ( V o 1 )

    11   V o 2 = - i n t e g r a t e ( ’ 2 ’ , ’ t ’ , 1 , 2 ) + V o 1 ;12   disp ( V o 2 )

    50

  • 8/20/2019 Op-Amps and Linear Integrated Circuits_R. a. Gayakwad_2

    52/92

    13   V o 3 = - i n t e g r a t e ( ’ 2 ’ , ’ t ’ , 2 , 3 ) + V o 2 ;

    14   disp ( V o 3 )15   V o 4 = - i n t e g r a t e ( ’ 2 ’ , ’ t ’ , 3 , 4 ) + V o 3 ;16   disp ( V o 4 )

    17   V o = [ Vo 0 V o1 V o2 V o3 V o4 ] ;

    18   t = [0 1 2 3 4];

    19   plot ( t , V o ) ;

    20   t i t l e ( ’ O ut pu t V o l t a g e ’ ) ;21   x l a b e l ( ’ t ’ ) ;22   y l a b e l ( ’ Vo ’ ) ;

    Scilab code Exa 6.16.a   Design of differentiator

    1   / / C h a pt e r62   // P age . No−2383   // E xa mp le 6 1 6 a4   // D e s i g n o f d i f f e r e n t i a t o r5   / / G iv en6   clear ; clc ;

    7   C 1 = 0 . 1 * 1 0 ^ - 6 ;   // Assume

    8   f a = 1 * 1 0 ^ 3 ;   // Freq a t whi ch g ai n i s 0 dB9   R f = 1 / ( 2 * % p i * f a * C 1 ) ;   / / U s i n g f a = 1/ (2∗ %p i ∗ Rf ∗C1 )

    10   printf ( ” \n Feed ba ck r e s i s t a n c e i s = %. 1 f ohm   \n” , R f )11   R f = 1 . 5 * 1 0 ^ 3 ;   / / A p p ro x i ma t i o n12   f b = 2 0 * 1 0 ^ 3 ;   // Gain l i m i t i n g f r e q13   R 1 = 1 / ( 2 * % p i * f b * C 1 ) ;

    14   printf ( ” \n R e s i s t a nc e , R1 i s = %. 1 f ohm   \n” , R 1 )15   R 1 = 8 2 ;   / / A p p ro x i m at i o n16   C f = R 1 * C 1 / R f ;

    17   printf ( ” \n C a pa c it a nc e , Cf i s = %. 1 0 f f a r a d   \n” , C f )

    18   C f = 0 . 0 0 5 * 1 0 ^ - 6 ;   / / A p p ro x i m at i o n

    51

  • 8/20/2019 Op-Amps and Linear Integrated Circuits_R. a. Gayakwad_2

    53/92

    Scilab code Exa 6.16.b  Output waveform of differentiator

    1   / / C h a pt e r62   // P age . No−2383   // E xa mp le 6 1 6 b4   // Output w aveform o f d i f f e r e n t i a t o r5   / / G iv en6   clear ; clc ;

    7   s t e p = 0 . 0 1 ;

    8   t = 0 : s t e p : 2 * % p i ;

    9   dy = diff ( sin ( t ) ) / s t e p ;   // a p pr ox im at e d i f f e r e n t i a t i o no f s i n e f u n c t i o n

    10   V o = - 1 . 5 * 1 0 ^ 3 * 0 . 1 * 1 0 ^ - 6 * 2 * % p i * 1 0 ^ 3 * d y ;

    11   plot ( V o ) ;

    12   t i t l e ( ’ O ut pu t V o l t a g e ’ ) ;13   x l a b e l ( ’ t ’ ) ;14   y l a b e l ( ’ Vo ’ ) ;

    52

  • 8/20/2019 Op-Amps and Linear Integrated Circuits_R. a. Gayakwad_2

    54/92

    Chapter 7

    Active Filters and Oscillators

    Scilab code Exa 7.1  Design of low pass filter

    1   / / C h a pt e r72   // P age . No−2563   / / E xa mp le 7 14   / / D es i gn o f l ow p a s s f i l t e r5   / / G iv en6   clear ; clc ;

    7   f h = 1 * 1 0 ^ 3 ;   / / Cut− o f f f r eq u en c y8   C = 0 . 0 1 * 1 0 ^ - 6 ;   / / A s s um p t io n9   R = 1 / ( 2 * % p i * f h * C ) ;

    10   printf ( ” \n R e s i s t a n ce R i s = %. 1 f ohm   \n” ,R )   //R e s u l t

    11   printf ( ” \n U se 2 0 kohm POT a s R   \n” )12   R 1 = 1 0 * 1 0 ^ 3 ;   / / A s s um p t io n13   printf ( ” \n R e s i s t a n ce R1 i s = %. 1 f ohm   \n” , R 1 )14   R f = R 1 ;   // S i c e p as sb an d g a in i s 2 , R1 a nd Rf must be

    e q u a l

    15   printf ( ” \n R e s i s t a n ce Rf i s = %. 1 f ohm   \n” , R f )

    53

  • 8/20/2019 Op-Amps and Linear Integrated Circuits_R. a. Gayakwad_2

    55/92

    This code can be downloaded from the website wwww.scilab.in

    Scilab code Exa 7.2  Design of low pass filter

    1   / / C h a pt e r72   // P age . No−2563   / / E xa mp le 7 24   / / D es i gn o f l ow p a s s f i l t e r5   / / G iv en6   clear ; clc ;

    7   f c 0 = 1 * 1 0 ^ 3 ;   // O r i g i na l cut − o f f f r eq u en c y8   f c 1 = 1 . 6 * 1 0 ^ 3 ;   // New c ut−o f f f r e q ue n cy9   R = 1 5 . 9 * 1 0 ^ 3 ;   // O r i g i n a l r e s i s t a n c e v al ue

    10   k = f c 0 / f c 1 ;

    11   R n e w = R * k ;

    12   printf ( ” \n New R e s i s t a n c e Rnew i s = %. 1 f ohm   \n” ,

    R n e w )   // R e su l t

    Scilab code Exa 7.3  Frequency response of low pass filter

    1   / / C h a pt e r72   // P age . No−257

    3   / / E xa mp le 7 34   / / F re qu en cy r e s p o n s e o f l ow p a s s f i l t e r5   / / G iv en6   clear ; clc ;

    7   A f = 2 ;   / / P as sb an d g a i n o f t h e f i l t e r

    54

  • 8/20/2019 Op-Amps and Linear Integrated Circuits_R. a. Gayakwad_2

    56/92

    8   f h = 1 0 0 0 ;   / / Cut− o f f f r eq u en c y

    9   f 1 = 1 0 ;   // I np ut f r e q i n Hz10   a v 1 = A f / sqrt ( 1 + ( f 1 / f h ) ^ 2 ) ;11   printf ( ” \n Gain m ag ni tu de av1 a t f 1 i s = %. 2 f    \n” ,

    a v 1 )   // R e su l t12   f 2 = 1 0 0 ;   // Freq i n Hz13   a v 2 = A f / sqrt ( 1 + ( f 2 / f h ) ^ 2 ) ;

    14   printf ( ” \n Gain m ag ni tu de av2 a t f 2 i s = %. 2 f    \n” ,a v 2 )   // R e su l t

    15   f 3 = 2 0 0 ;   // Freq i n Hz16   a v 3 = A f / sqrt ( 1 + ( f 3 / f h ) ^ 2 ) ;

    17   printf ( ” \n Gain m ag ni tu de av3 a t f 3 i s = %. 2 f    \n” ,

    a v 3 )   // R e su l t18   f 4 = 7 0 0 ;   // Freq i n Hz19   a v 4 = A f / sqrt ( 1 + ( f 4 / f h ) ^ 2 ) ;

    20   printf ( ” \n Gain m ag ni tu de av4 a t f 4 i s = %. 2 f    \n” ,a v 4 )   // R e su l t

    21   f 5 = 1 0 0 0 ;   // Fre q i n Hz22   a v 5 = A f / sqrt ( 1 + ( f 5 / f h ) ^ 2 ) ;

    23   printf ( ” \n Gain m ag ni tu de av5 a t f 5 i s = %. 2 f    \n” ,a v 5 )   // R e su l t

    24   f 6 = 3 0 0 0 ;   // Fre q i n Hz25   a v 6 = A f / sqrt ( 1 + ( f 6 / f h ) ^ 2 ) ;

    26   printf ( ” \n Gain m ag ni tu de av6 a t f 6 i s = %. 2 f    \n” ,a v 6 )   // R e su l t

    27   f 7 = 7 0 0 0 ;   // Fre q i n Hz28   a v 7 = A f / sqrt ( 1 + ( f 7 / f h ) ^ 2 ) ;

    29   printf ( ” \n Gain m ag ni tu de av7 a t f 7 i s = %. 2 f    \n” ,a v 7 )   // R e su l t

    30   f 8 = 1 0 0 0 0 ;   // Fr eq i n Hz31   a v 8 = A f / sqrt ( 1 + ( f 8 / f h ) ^ 2 ) ;

    32   printf ( ” \n Gain m ag ni tu de av8 a t f 8 i s = %. 2 f    \n” ,a v 8 )   // R e su l t

    33   f 9 = 3 0 0 0 0 ;   // Fr eq i n Hz34   a v 9 = A f / sqrt ( 1 + ( f 9 / f h ) ^ 2 ) ;

    35   printf ( ” \n Gain m ag ni tu de av9 a t f 9 i s = %. 2 f    \n” ,a v 9 )   // R e su l t

    36   f 1 0 = 1 0 0 0 0 0 ;   // Fr eq i n Hz

    55

  • 8/20/2019 Op-Amps and Linear Integrated Circuits_R. a. Gayakwad_2

    57/92

    37   a v 1 0 = A f / sqrt ( 1 + ( f 1 0 / f h ) ^ 2 ) ;

    38   printf ( ” \n Gain m ag ni tu de a v1 0 a t f 1 0 i s = %. 2 f    \n” ,a v 1 0 )   // R e su l t39   x =[ f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 ];

    40   y = [ av 1 a v2 a v3 a v4 a v5 a v6 a v7 a v8 a v9 a v1 0 ];

    41   gainplot ( x , y ) ;

    42   t i t l e (  ’ F r e q u e n c y R e s p o n s e ’ ) ;43   x l a b e l ( ’ Frequenc y (Hz) ’ ) ;44   y l a b e l (  ’ V o l t a g e g a i n ( dB ) ’ ) ;

    Scilab code Exa 7.4.a  Design of second order low pass filter

    1   / / C h a pt e r72   // P age . No−2563   // E xa mp le 7 4 a4   / / D es i gn o f s e co n d o r d e r l ow p a s s f i l t e r5   / / G iv en6   clear ; clc ;

    7   f h = 1 * 1 0 ^ 3 ;   / / Cut− o f f f r eq u en c y8   C 2 = 0 . 0 0 4 7 * 1 0 ^ - 6 ;   / / A s s um p t io n9   C 3 = C 2 ;

    10   R 2 = 1 / ( 2 * % p i * f h * C 2 ) ;

    11   printf ( ” \n R e s i s t a n ce R2 i s = %. 1 f ohm   \n” , R 2 )   //R e s u l t

    12   R 2 = 3 3 * 1 0 ^ 3 ;   / / A p p ro x i m at i o n13   R 3 = R 2 ;

    14   printf ( ” \n R e s i s t a n ce R3 i s = %. 1 f ohm   \n” , R 3 )   //R e s u l t

    15   R 1 = 2 7 * 1 0 ^ 3 ;   / / A s s um p t io n16   R f = 0 . 5 8 6 * R 1 ;17   printf ( ” \n R e s i s t a n ce Rf i s = %. 1 f ohm   \n” , R f )   //

    R e s u l t18   printf ( ” \n U se 2 0 kohm POT a s R f    \n” )

    56

  • 8/20/2019 Op-Amps and Linear Integrated Circuits_R. a. Gayakwad_2

    58/92

    Scilab code Exa 7.4.b  Frequency response of second order highpass filter

    1   / / C h a pt e r72   // P age . No−2603   // E xa mp le 7 4 b4   // F re qu en cy r e s p on s e o f s ec on d o r d er h i g h pa s s

    f i l t e r5   / / G iv en6   clear ; clc ;

    7   A f = 1 . 5 8 6 ;   / / P as sb an d g a i n o f t h e f i l t e r8   f h = 1 0 0 0 ;   / / Cut− o f f f r eq u en c y9   f 1 = 1 0 ;   // I np ut f r e q i n Hz

    10   a v 1 = A f / sqrt ( 1 + ( f 1 / f h ) ^ 4 ) ;

    11   printf ( ” \n Gain m ag ni tu de av1 a t f 1 i s = %. 2 f    \n” ,a v 1 )   // R e su l t

    12   f 2 = 1 0 0 ;   // Freq i n Hz13   a v 2 = A f / sqrt ( 1 + ( f 2 / f h ) ^ 4 ) ;

    14   printf ( ” \n Gain m ag ni tu de av2 a t f 2 i s = %. 2 f    \n” ,a v 2 )   // R e su l t

    15   f 3 = 2 0 0 ;   // Freq i n Hz16   a v 3 = A f / sqrt ( 1 + ( f 3 / f h ) ^ 4 ) ;

    17   printf ( ” \n Gain m ag ni tu de av3 a t f 3 i s = %. 2 f    \n” ,a v 3 )   // R e su l t

    18   f 4 = 7 0 0 ;   // Freq i n Hz19   a v 4 = A f / sqrt ( 1 + ( f 4 / f h ) ^ 4 ) ;

    20   printf ( ” \n Gain m ag ni tu de av4 a t f 4 i s = %. 2 f    \n” ,a v 4 )   // R e su l t

    21   f 5 = 1 0 0 0 ;   // Fre q i n Hz22   a v 5 = A f / sqrt ( 1 + ( f 5 / f h ) ^ 4 ) ;

    23   printf ( ” \n Gain m ag ni tu de av5 a t f 5 i s = %. 2 f    \n” ,a v 5 )   // R e su l t

    24   f 6 = 3 0 0 0 ;   // Fre q i n Hz

    57

  • 8/20/2019 Op-Amps and Linear Integrated Circuits_R. a. Gayakwad_2

    59/92

    25   a v 6 = A f / sqrt ( 1 + ( f 6 / f h ) ^ 4 ) ;

    26   printf ( ” \n Gain m ag ni tu de av6 a t f 6 i s = %. 2 f    \n” ,a v 6 )   // R e su l t27   f 7 = 7 0 0 0 ;   // Fre q i n Hz28   a v 7 = A f / sqrt ( 1 + ( f 7 / f h ) ^ 4 ) ;

    29   printf ( ” \n Gain m ag ni tu de av7 a t f 7 i s = %. 2 f    \n” ,a v 7 )   // R e su l t

    30   f 8 = 1 0 0 0 0 ;   // Fr eq i n Hz31   a v 8 = A f / sqrt ( 1 + ( f 8 / f h ) ^ 4 ) ;

    32   printf ( ” \n Gain m ag ni tu de av8 a t f 8 i s = %. 2 f    \n” ,a v 8 )   // R e su l t

    33   f 9 = 3 0 0 0 0 ;   // Fr eq i n Hz

    34   a v 9 = A f / sqrt ( 1 + ( f 9 / f h ) ^ 4 ) ;35   printf ( ” \n Gain m ag ni tu de av9 a t f 9 i s = %. 5 f    \n” ,

    a v 9 )   // R e su l t36   f 1 0 = 1 0 0 0 0 0 ;   // Fr eq i n Hz37   a v 1 0 = A f / sqrt ( 1 + ( f 1 0 / f h ) ^ 4 ) ;

    38   printf ( ” \n Gain m ag ni tu de a v1 0 a t f 1 0 i s = %. 6 f    \n” ,a v 1 0 )   // R e su l t

    39   x =[ f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 ];

    40   y = [ av 1 a v2 a v3 a v4 a v5 a v6 a v7 a v8 a v9 a v1 0 ];

    41   gainplot ( x , y ) ;

    42   t i t l e (  ’ F r e q u e n c y R e s p o n s e ’

    ) ;

    43   x l a b e l ( ’ Frequenc y (Hz) ’ ) ;44   y l a b e l (  ’ V o l t a g e g a i n ( dB ) ’ ) ;

    Scilab code Exa 7.5.a  Design of highpass filter

    1   / / C h a pt e r72   // P age . No−2633   // E xa mp le 7 5 a4   / / D es i gn o f h i g h p a s s f i l t e r5   / / G iv en

    58

  • 8/20/2019 Op-Amps and Linear Integrated Circuits_R. a. Gayakwad_2

    60/92

    6   clear ; clc ;

    7   f h = 1 * 1 0 ^ 3 ;   / / Cut− o f f f r eq u en c y8   A f = 2 ;   / / P as sb an d g a i n o f t h e f i l t e r9   C = 0 . 0 1 * 1 0 ^ - 6 ;   / / A s s um p t io n

    10   R = 1 / ( 2 * % p i * f h * C ) ;

    11   printf ( ” \n R e s i s t a n ce R i s = %. 1 f ohm   \n” ,R )   //R e s u l t

    12   printf ( ” \n U se 2 0 kohm POT a s R   \n” )13   R 1 = 1 0 * 1 0 ^ 3 ;   / / A s s um p t io n14   printf ( ” \n R e s i s t a n ce R1 i s = %. 1 f ohm   \n” , R 1 )15   R f = R 1 ;   // S i c e p as sb an d g a in i s 2 , R1 a nd Rf must be

    e q u a l

    16   printf ( ” \n R e s i s t a n ce Rf i s = %. 1 f ohm   \n” , R f )

    Scilab code Exa 7.5.b  Frequency response of highpass filter

    1   / / C h a pt e r72   // P age . No−263

    3   // E xa mp le 7 5 b4   / / F re qu en cy r e s p o n s e o f h i g h p a s s f i l t e r5   / / G iv en6   clear ; clc ;

    7   A f = 2 ;   / / P as sb an d g a i n o f t h e f i l t e r8   f l = 1 0 0 0 ;   / / Cut− o f f f r eq u en c y9   f 1 = 1 0 0 ;   // I np u t f r e q i n Hz

    10   a v 1 = ( A f * ( f 1 / f l ) ) / sqrt ( 1 + ( f 1 / f l ) ^ 2 ) ;

    11   printf ( ” \n Gain m ag ni tu de av1 a t f 1 i s = %. 2 f    \n” ,a v 1 )   // R e su l t

    12   f 2 = 2 0 0 ;   // Freq i n Hz13   a v 2 = ( A f * ( f 2 / f l ) ) / sqrt ( 1 + ( f 2 / f l ) ^ 2 ) ;14   printf ( ” \n Gain m ag ni tu de av2 a t f 2 i s = %. 2 f    \n” ,

    a v 2 )   // R e su l t15   f 3 = 4 0 0 ;   // Freq i n Hz

    59

  • 8/20/2019 Op-Amps and Linear Integrated Circuits_R. a. Gayakwad_2

    61/92

    16   a v 3 = ( A f * ( f 3 / f l ) ) / sqrt ( 1 + ( f 3 / f l ) ^ 2 ) ;

    17   printf ( ” \n Gain m ag ni tu de av3 a t f 3 i s = %. 2 f    \n” ,a v 3 )   // R e su l t18   f 4 = 7 0 0 ;   // Freq i n Hz19   a v 4 = ( A f * ( f 4 / f l ) ) / sqrt ( 1 + ( f 4 / f l ) ^ 2 ) ;

    20   printf ( ” \n Gain m ag ni tu de av4 a t f 4 i s = %. 2 f    \n” ,a v 4 )   // R e su l t

    21   f 5 = 1 0 0 0 ;   // Fre q i n Hz22   a v 5 = ( A f * ( f 5 / f l ) ) / sqrt ( 1 + ( f 5 / f l ) ^ 2 ) ;

    23   printf ( ” \n Gain m ag ni tu de av5 a t f 5 i s = %. 2 f    \n” ,a v 5 )   // R e su l t

    24   f 6 = 3 0 0 0 ;   // Fre q i n Hz

    25   a v 6 = ( A f * ( f 6 / f l ) ) / sqrt ( 1 + ( f 6 / f l ) ^ 2 ) ;26   printf ( ” \n Gain m ag ni tu de av6 a t f 6 i s = %. 2 f    \n” ,

    a v 6 )   // R e su l t27   f 7 = 7 0 0 0 ;   // Fre q i n Hz28   a v 7 = ( A f * ( f 7 / f l ) ) / sqrt ( 1 + ( f 7 / f l ) ^ 2 ) ;

    29   printf ( ” \n Gain m ag ni tu de av7 a t f 7 i s = %. 2 f    \n” ,a v 7 )   // R e su l t

    30   f 8 = 1 0 0 0 0 ;   // Fr eq i n Hz31   a v 8 = ( A f * ( f 8 / f l ) ) / sqrt ( 1 + ( f 8 / f l ) ^ 2 ) ;

    32   printf ( ” \n Gain m ag ni tu de av8 a t f 8 i s = %. 2 f    \n” ,a v 8 )

      // R e su l t33   f 9 = 3 0 0 0 0 ;   // Fr eq i n Hz34   a v 9 = ( A f * ( f 9 / f l ) ) / sqrt ( 1 + ( f 9 / f l ) ^ 2 ) ;

    35   printf ( ” \n Ga