online model predictive torque control for permanent ... · pdf fileonline model predictive...

35
Online Model Predictive Torque Control for Permanent Magnet Synchronous Motors Gionata Cimini * , Daniele Bernardini * , Alberto Bemporad * and Stephen Levijoki * ODYS Srl General Motors Company 2015 IEEE International Conference on Industrial Technology Gionata Cimini, [email protected] 1 / 20

Upload: vuonghuong

Post on 06-Feb-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Online Model Predictive Torque Control for Permanent ... · PDF fileOnline Model Predictive Torque Control for Permanent Magnet Synchronous Motors Gionata Cimini , Daniele Bernardini

Online Model Predictive Torque Control forPermanent Magnet Synchronous Motors

Gionata Cimini∗, Daniele Bernardini∗, Alberto Bemporad∗ and Stephen Levijoki†

∗ODYS Srl

†General Motors Company

2015 IEEE International Conference on Industrial Technology

Gionata Cimini, [email protected] 1 / 20

Page 2: Online Model Predictive Torque Control for Permanent ... · PDF fileOnline Model Predictive Torque Control for Permanent Magnet Synchronous Motors Gionata Cimini , Daniele Bernardini

Outline

1 Introduction and Motivations

2 Model Predictive Control Design

3 Experimental Results

4 Conclusions

Gionata Cimini, [email protected] 2 / 20

Page 3: Online Model Predictive Torque Control for Permanent ... · PDF fileOnline Model Predictive Torque Control for Permanent Magnet Synchronous Motors Gionata Cimini , Daniele Bernardini

Company Overview (www.odys.it)

ODYS is a private SME founded in 2011, originally as a university spin-off

Core business: consultancy and software for the development of advancedcontrol systems, with special focus on model predictive control (MPC)

Main expertise: advanced multivariable control design, efficient real-timeoptimization algorithms, and tools for their deployment in embedded systems

Application domainsautomotive

aerospace

energy

process control

Gionata Cimini, [email protected] 3 / 20

Page 4: Online Model Predictive Torque Control for Permanent ... · PDF fileOnline Model Predictive Torque Control for Permanent Magnet Synchronous Motors Gionata Cimini , Daniele Bernardini

Background

The standard control method for PMSMs is the Field Oriented Control (FOC)(cascade structure, with three linear regulators)

→The work deals with the application of Model Predictive Control (MPC), toPMSM torque control.

MPC in electrical drives control is, mainly, motivated by two facts:

mathematical models of these systems are relatively well known

several constraints are needed for safety reasons

The main idea of MPC

Obtain the control actions by solving, at each sampling time, a finite-horizonoptimal control problem

Gionata Cimini, [email protected] 4 / 20

Page 5: Online Model Predictive Torque Control for Permanent ... · PDF fileOnline Model Predictive Torque Control for Permanent Magnet Synchronous Motors Gionata Cimini , Daniele Bernardini

Background

The standard control method for PMSMs is the Field Oriented Control (FOC)(cascade structure, with three linear regulators)

→The work deals with the application of Model Predictive Control (MPC), toPMSM torque control.

MPC in electrical drives control is, mainly, motivated by two facts:

mathematical models of these systems are relatively well known

several constraints are needed for safety reasons

The main idea of MPC

Obtain the control actions by solving, at each sampling time, a finite-horizonoptimal control problem

Gionata Cimini, [email protected] 4 / 20

Page 6: Online Model Predictive Torque Control for Permanent ... · PDF fileOnline Model Predictive Torque Control for Permanent Magnet Synchronous Motors Gionata Cimini , Daniele Bernardini

Model Predictive Control

Output Setpoint

MeasuredOutput

ControlInput

k +Nu k +Npk

Past

Linear prediction model

Control and Prediction Horizon

Hard input and soft output constraints

Gionata Cimini, [email protected] 5 / 20

Page 7: Online Model Predictive Torque Control for Permanent ... · PDF fileOnline Model Predictive Torque Control for Permanent Magnet Synchronous Motors Gionata Cimini , Daniele Bernardini

Model Predictive Control

Output Setpoint

PredictedOutput

MeasuredOutput

PredictedInput

ControlInput

Control HorizionPrediction Horizion

k +Nu k +Npk

Past Future

Linear prediction model

Control and Prediction Horizon

Hard input and soft output constraints

Gionata Cimini, [email protected] 5 / 20

Page 8: Online Model Predictive Torque Control for Permanent ... · PDF fileOnline Model Predictive Torque Control for Permanent Magnet Synchronous Motors Gionata Cimini , Daniele Bernardini

Model Predictive Control

Output Setpoint

MeasuredOutput

ControlInput

k + 1

Past Future

k +Nu k +Np

Linear prediction model

Control and Prediction Horizon

Hard input and soft output constraints

Gionata Cimini, [email protected] 5 / 20

Page 9: Online Model Predictive Torque Control for Permanent ... · PDF fileOnline Model Predictive Torque Control for Permanent Magnet Synchronous Motors Gionata Cimini , Daniele Bernardini

Existing solutions

Explicit MPCa: the optimization problem is pre-solved offlinevia multiparametric Quadratic Programming (mpQP)

! it is an easy-to-implement PieceWise Affine (PWA) function ofthe parameters

! fast binary search tree algorithm can be used

% it is applicable only to small problems

% high memory requirements

Finite Control Setb: exploits the discrete nature of thesystem by manipulating the inverter switch positions directly

! MPC is solved on line, by enumeration

! very fast with short prediction horizon

% computational load scales exponentially with the horizon

% high sampling frequency, not decoupled from control frequency

% variable frequency

————————————————————-a Bolognani, S.; Bolognani, S.; Peretti, L.; Zigliotto, M., ”Design and Implementation of Model Predictive Control for ElectricalMotor Drives”b Rodriguez, J. and Kazmierkowski, M.P. and Espinoza, J.R. and Zanchetta, P. and Abu-Rub, H. and Young, H.A and Rojas,”C.A, State of the Art of Finite Control Set Model Predictive Control in Power Electronics”

Gionata Cimini, [email protected] 6 / 20

Page 10: Online Model Predictive Torque Control for Permanent ... · PDF fileOnline Model Predictive Torque Control for Permanent Magnet Synchronous Motors Gionata Cimini , Daniele Bernardini

Existing solutions

Explicit MPCa: the optimization problem is pre-solved offlinevia multiparametric Quadratic Programming (mpQP)

! it is an easy-to-implement PieceWise Affine (PWA) function ofthe parameters

! fast binary search tree algorithm can be used

% it is applicable only to small problems

% high memory requirements

Finite Control Setb: exploits the discrete nature of thesystem by manipulating the inverter switch positions directly

! MPC is solved on line, by enumeration

! very fast with short prediction horizon

% computational load scales exponentially with the horizon

% high sampling frequency, not decoupled from control frequency

% variable frequency

————————————————————-a Bolognani, S.; Bolognani, S.; Peretti, L.; Zigliotto, M., ”Design and Implementation of Model Predictive Control for ElectricalMotor Drives”b Rodriguez, J. and Kazmierkowski, M.P. and Espinoza, J.R. and Zanchetta, P. and Abu-Rub, H. and Young, H.A and Rojas,”C.A, State of the Art of Finite Control Set Model Predictive Control in Power Electronics”

Gionata Cimini, [email protected] 6 / 20

Page 11: Online Model Predictive Torque Control for Permanent ... · PDF fileOnline Model Predictive Torque Control for Permanent Magnet Synchronous Motors Gionata Cimini , Daniele Bernardini

MPC with online optimization

Embedded QP solver:Model Predictive Control → Quadratic Programming with affine constraints

! MPC is solved online

! Low memory Requirements

! Switching frequency decoupled from sampling frequency

! Fixed switching frequency

% High computational burden

Main Objective

Verify the feasibility of embedded, online MPC

Application in low-power DSP, commonly used for motion control

Gionata Cimini, [email protected] 7 / 20

Page 12: Online Model Predictive Torque Control for Permanent ... · PDF fileOnline Model Predictive Torque Control for Permanent Magnet Synchronous Motors Gionata Cimini , Daniele Bernardini

Standard PI Field Oriented Control

Inverter

PMSMPMSMPWM

abc

dq

iq

Kt

τ

∫θ

ω

ωrefPI

τref

id

id,ref

PI

PI

abc

dq

ud

uq

The aim is replacing the standard PI-based torque controller, with . . .

Gionata Cimini, [email protected] 8 / 20

Page 13: Online Model Predictive Torque Control for Permanent ... · PDF fileOnline Model Predictive Torque Control for Permanent Magnet Synchronous Motors Gionata Cimini , Daniele Bernardini

Proposed MPC Torque Control

Inverter

PMSMPMSMPWM

abc

dq

iq ∫θ

ω

ωrefPI

τref

id

abc

dq

ud

uq MPCid,ref

. . . an MPC torque control, solved with online optimization.

Gionata Cimini, [email protected] 9 / 20

Page 14: Online Model Predictive Torque Control for Permanent ... · PDF fileOnline Model Predictive Torque Control for Permanent Magnet Synchronous Motors Gionata Cimini , Daniele Bernardini

Outline

1 Introduction and Motivations

2 Model Predictive Control Design

3 Experimental Results

4 Conclusions

Gionata Cimini, [email protected] 10 / 20

Page 15: Online Model Predictive Torque Control for Permanent ... · PDF fileOnline Model Predictive Torque Control for Permanent Magnet Synchronous Motors Gionata Cimini , Daniele Bernardini

Prediction Model

Consider an isotropic PMSM , with one pole pair. The nonlinear mathematical model is:

id(t) = −R

Lid(t) + ω(t)iq(t) +

1

Lud(t)

iq(t) = −R

Liq(t)− ω(t)id(t) +

1

Luq(t)−

λ

Lω(t)

ω(t) =B

Jω(t) +

Kt

Jiq(t)−

1

Jτl(t),

——————————————————————————–The linearized model of the electrical subsystem is obtained imposing nominal speed ω(t) = ω0.

x(k + 1) = Ax(k) +Bu(k) +Gv(k)

y(k) = Cx(k)

A = eAcTs , B =

∫ Ts

0eAcτdτBc, G =

∫ Ts

0eAcτdτGc, C = Cc

Ac =

−RL ω0

−ω0 −R

L

Bc =

1

L0

01

L

Gc =

[0

−λ

L

]Cc =

[1 00 Kt

]

Gionata Cimini, [email protected] 11 / 20

Page 16: Online Model Predictive Torque Control for Permanent ... · PDF fileOnline Model Predictive Torque Control for Permanent Magnet Synchronous Motors Gionata Cimini , Daniele Bernardini

Prediction Model

Consider an isotropic PMSM , with one pole pair. The nonlinear mathematical model is:

id(t) = −R

Lid(t) + ω(t)iq(t) +

1

Lud(t)

iq(t) = −R

Liq(t)− ω(t)id(t) +

1

Luq(t)−

λ

Lω(t)

ω(t) =B

Jω(t) +

Kt

Jiq(t)−

1

Jτl(t),

——————————————————————————–The linearized model of the electrical subsystem is obtained imposing nominal speed ω(t) = ω0.

x(k + 1) = Ax(k) +Bu(k) +Gv(k)

y(k) = Cx(k)

A = eAcTs , B =

∫ Ts

0eAcτdτBc, G =

∫ Ts

0eAcτdτGc, C = Cc

Ac =

−RL ω0

−ω0 −R

L

Bc =

1

L0

01

L

Gc =

[0

−λ

L

]Cc =

[1 00 Kt

]

Gionata Cimini, [email protected] 11 / 20

Page 17: Online Model Predictive Torque Control for Permanent ... · PDF fileOnline Model Predictive Torque Control for Permanent Magnet Synchronous Motors Gionata Cimini , Daniele Bernardini

System Constraints

The most critical constraints concern the electrical components

u ∈ U = {u ∈ R2 : ‖u‖2 ≤ Vmax} (1)

x ∈ X = {x ∈ R2 : ‖x‖2 ≤ Imax} (2)

ud

uq

Vmax

(a) Voltage constraints

id

iq

Imax

(b) Current constraints

Vmax → Depending from the maximum DC-bus and from the modulation scheme(Vmax = VDC/

√3 for PWM and SVM)

Imax → Chosen to prevent overheating. Peaks larger than this limit are allowedfor short time intervals .

Gionata Cimini, [email protected] 12 / 20

Page 18: Online Model Predictive Torque Control for Permanent ... · PDF fileOnline Model Predictive Torque Control for Permanent Magnet Synchronous Motors Gionata Cimini , Daniele Bernardini

System Constraints

The most critical constraints concern the electrical components

u ∈ U = {u ∈ R2 : ‖u‖2 ≤ Vmax} (1)

x ∈ X = {x ∈ R2 : ‖x‖2 ≤ Imax} (2)

Uud

uq

Vmax

(c) Voltage constraints

X

id

iq

Imax

(d) Current constraints

Vmax → Depending from the maximum DC-bus and from the modulation scheme(Vmax = VDC/

√3 for PWM and SVM)

Imax → Chosen to prevent overheating. Peaks larger than this limit are allowedfor short time intervals .

Gionata Cimini, [email protected] 12 / 20

Page 19: Online Model Predictive Torque Control for Permanent ... · PDF fileOnline Model Predictive Torque Control for Permanent Magnet Synchronous Motors Gionata Cimini , Daniele Bernardini

How about embedded online optimization?

MPC problem formulation

min∆u

N−1∑i=0

‖Q(yk+i|k − r(k))‖22+

Nu−1∑j=0

‖R∆uk+j|k‖22+

+ ‖P (yk+N|k − r(k))‖22s.t. xk|k = x(k)

xk+i+1|k = Axk+i|k +Buk+i|k +Gv(k)

yk+i+1|k = Cxk+i+1|k

uk+i|k ∈ U, xk+i+1|k ∈ X

i = 0, 1, . . . , N − 1

j = 0, 1, . . . , N −Nu − 1

Quadratic problem (QP)

minz

q(z) ,1

2z′Hz + p(t)′F ′z

s.t. Gz ≤W + Sp(t)

convex quadratic objectivefunction

polyhedral constraints

QPs are easier to solve thanstandard formulation

We developed an embedded QP solver

Gionata Cimini, [email protected] 13 / 20

Page 20: Online Model Predictive Torque Control for Permanent ... · PDF fileOnline Model Predictive Torque Control for Permanent Magnet Synchronous Motors Gionata Cimini , Daniele Bernardini

How about embedded online optimization?

MPC problem formulation

min∆u

N−1∑i=0

‖Q(yk+i|k − r(k))‖22+

Nu−1∑j=0

‖R∆uk+j|k‖22+

+ ‖P (yk+N|k − r(k))‖22s.t. xk|k = x(k)

xk+i+1|k = Axk+i|k +Buk+i|k +Gv(k)

yk+i+1|k = Cxk+i+1|k

uk+i|k ∈ U, xk+i+1|k ∈ X

i = 0, 1, . . . , N − 1

j = 0, 1, . . . , N −Nu − 1

Quadratic problem (QP)

minz

q(z) ,1

2z′Hz + p(t)′F ′z

s.t. Gz ≤W + Sp(t)

convex quadratic objectivefunction

polyhedral constraints

QPs are easier to solve thanstandard formulation

We developed an embedded QP solver

Gionata Cimini, [email protected] 13 / 20

Page 21: Online Model Predictive Torque Control for Permanent ... · PDF fileOnline Model Predictive Torque Control for Permanent Magnet Synchronous Motors Gionata Cimini , Daniele Bernardini

How about embedded online optimization?

MPC problem formulation

min∆u

N−1∑i=0

‖Q(yk+i|k − r(k))‖22+

Nu−1∑j=0

‖R∆uk+j|k‖22+

+ ‖P (yk+N|k − r(k))‖22s.t. xk|k = x(k)

xk+i+1|k = Axk+i|k +Buk+i|k +Gv(k)

yk+i+1|k = Cxk+i+1|k

uk+i|k ∈ U, xk+i+1|k ∈ X

i = 0, 1, . . . , N − 1

j = 0, 1, . . . , N −Nu − 1

Quadratic problem (QP)

minz

q(z) ,1

2z′Hz + p(t)′F ′z

s.t. Gz ≤W + Sp(t)

convex quadratic objectivefunction

polyhedral constraints

QPs are easier to solve thanstandard formulation

We developed an embedded QP solver

Gionata Cimini, [email protected] 13 / 20

Page 22: Online Model Predictive Torque Control for Permanent ... · PDF fileOnline Model Predictive Torque Control for Permanent Magnet Synchronous Motors Gionata Cimini , Daniele Bernardini

Outline

1 Introduction and Motivations

2 Model Predictive Control Design

3 Experimental Results

4 Conclusions

Gionata Cimini, [email protected] 14 / 20

Page 23: Online Model Predictive Torque Control for Permanent ... · PDF fileOnline Model Predictive Torque Control for Permanent Magnet Synchronous Motors Gionata Cimini , Daniele Bernardini

Processor In the Loop Experiments

Inverter

PMSMPMSMPWM

abc

dq

iq ∫θ

ω

ωrefPI

τref

id

abc

dq

ud

uq MPCid,ref

Simulation model: MBE.300.E500 PMSM, commercially available from Technosoft c©

Platform: Low cost F28335 Delfino DSP by Texas Instruments c©. (32-bit, 150 MHz CPUand IEEE-754 single-precision Floating- Point Unit)

This board is commonly used for motion control!

Gionata Cimini, [email protected] 15 / 20

Page 24: Online Model Predictive Torque Control for Permanent ... · PDF fileOnline Model Predictive Torque Control for Permanent Magnet Synchronous Motors Gionata Cimini , Daniele Bernardini

Processor In the Loop Experiments

Inverter

PMSMPMSMPWM

abc

dq

iq ∫θ

ω

ωrefPI

τref

id

abc

dq

ud

uq MPCid,ref

Simulation model: MBE.300.E500 PMSM, commercially available from Technosoft c©

Platform: Low cost F28335 Delfino DSP by Texas Instruments c©. (32-bit, 150 MHz CPUand IEEE-754 single-precision Floating- Point Unit)

This board is commonly used for motion control!

Gionata Cimini, [email protected] 15 / 20

Page 25: Online Model Predictive Torque Control for Permanent ... · PDF fileOnline Model Predictive Torque Control for Permanent Magnet Synchronous Motors Gionata Cimini , Daniele Bernardini

Processor In the Loop Experiments

Inverter

PMSMPMSMPWM

abc

dq

iq ∫θ

ω

ωrefPI

τref

id

abc

dq

ud

uq MPCid,ref

Simulation model: MBE.300.E500 PMSM, commercially available from Technosoft c©

Platform: Low cost F28335 Delfino DSP by Texas Instruments c©. (32-bit, 150 MHz CPUand IEEE-754 single-precision Floating- Point Unit)

This board is commonly used for motion control!

Gionata Cimini, [email protected] 15 / 20

Page 26: Online Model Predictive Torque Control for Permanent ... · PDF fileOnline Model Predictive Torque Control for Permanent Magnet Synchronous Motors Gionata Cimini , Daniele Bernardini

Processor In the Loop Experiments

Inverter

PMSMPMSMPWM

abc

dq

iq ∫θ

ω

ωrefPI

τref

id

abc

dq

ud

uq MPCid,ref

Simulation model: MBE.300.E500 PMSM, commercially available from Technosoft c©

Platform: Low cost F28335 Delfino DSP by Texas Instruments c©. (32-bit, 150 MHz CPUand IEEE-754 single-precision Floating- Point Unit)

This board is commonly used for motion control!

Gionata Cimini, [email protected] 15 / 20

Page 27: Online Model Predictive Torque Control for Permanent ... · PDF fileOnline Model Predictive Torque Control for Permanent Magnet Synchronous Motors Gionata Cimini , Daniele Bernardini

Control Performance

torque control with MPTC

0 0.1 0.2 0.3 0.4 0.5-0.03

-0.02

-0.01

0

0.01

0.02

0.03

time (s)

τ(N

·m)

τl

τref

MPC

τMPC

MPTC vs PI-FOC torque transient

0.3 0.31 0.32 0.33 0.34-0.03

-0.025

-0.02

-0.015

time (s)

τ(N

·m)

τl

τPI

τMPC

MPTC vs PI-FOC speed tracking

0 0.1 0.2 0.3 0.4 0.5-500

0

500

1000

1500

2000

2500

3000

3500

4000

time (s)

ω(rpm)

ωref

ωPI

ωMPC

MPC provides 2.3% and 4.2% improvementin speed and torque tracking, respectively

(ISE index)

Gionata Cimini, [email protected] 16 / 20

Page 28: Online Model Predictive Torque Control for Permanent ... · PDF fileOnline Model Predictive Torque Control for Permanent Magnet Synchronous Motors Gionata Cimini , Daniele Bernardini

Control Performance

torque control with MPTC

0 0.1 0.2 0.3 0.4 0.5-0.03

-0.02

-0.01

0

0.01

0.02

0.03

time (s)

τ(N

·m)

τl

τref

MPC

τMPC

MPTC vs PI-FOC torque transient

0.3 0.31 0.32 0.33 0.34-0.03

-0.025

-0.02

-0.015

time (s)

τ(N

·m)

τl

τPI

τMPC

MPTC vs PI-FOC speed tracking

0 0.1 0.2 0.3 0.4 0.5-500

0

500

1000

1500

2000

2500

3000

3500

4000

time (s)

ω(rpm)

ωref

ωPI

ωMPC

MPC provides 2.3% and 4.2% improvementin speed and torque tracking, respectively

(ISE index)

Gionata Cimini, [email protected] 16 / 20

Page 29: Online Model Predictive Torque Control for Permanent ... · PDF fileOnline Model Predictive Torque Control for Permanent Magnet Synchronous Motors Gionata Cimini , Daniele Bernardini

Control Performance

torque control with MPTC

0 0.1 0.2 0.3 0.4 0.5-0.03

-0.02

-0.01

0

0.01

0.02

0.03

time (s)

τ(N

·m)

τl

τref

MPC

τMPC

MPTC vs PI-FOC torque transient

0.3 0.31 0.32 0.33 0.34-0.03

-0.025

-0.02

-0.015

time (s)

τ(N

·m)

τl

τPI

τMPC

MPTC vs PI-FOC speed tracking

0 0.1 0.2 0.3 0.4 0.5-500

0

500

1000

1500

2000

2500

3000

3500

4000

time (s)

ω(rpm)

ωref

ωPI

ωMPC

MPC provides 2.3% and 4.2% improvementin speed and torque tracking, respectively

(ISE index)

Gionata Cimini, [email protected] 16 / 20

Page 30: Online Model Predictive Torque Control for Permanent ... · PDF fileOnline Model Predictive Torque Control for Permanent Magnet Synchronous Motors Gionata Cimini , Daniele Bernardini

Control Performance

torque control with MPTC

0 0.1 0.2 0.3 0.4 0.5-0.03

-0.02

-0.01

0

0.01

0.02

0.03

time (s)

τ(N

·m)

τl

τref

MPC

τMPC

MPTC vs PI-FOC torque transient

0.3 0.31 0.32 0.33 0.34-0.03

-0.025

-0.02

-0.015

time (s)

τ(N

·m)

τl

τPI

τMPC

MPTC vs PI-FOC speed tracking

0 0.1 0.2 0.3 0.4 0.5-500

0

500

1000

1500

2000

2500

3000

3500

4000

time (s)

ω(rpm)

ωref

ωPI

ωMPC

MPC provides 2.3% and 4.2% improvementin speed and torque tracking, respectively

(ISE index)

Gionata Cimini, [email protected] 16 / 20

Page 31: Online Model Predictive Torque Control for Permanent ... · PDF fileOnline Model Predictive Torque Control for Permanent Magnet Synchronous Motors Gionata Cimini , Daniele Bernardini

Online Optimization

The sampling interval is 0.3ms

Dimension of the QP problem: 5 decision variables and 41 constraints

DSP with 150MHz processor

One hardware multiplier 32× 32 bit

Single precision

0 0.1 0.2 0.3 0.4 0.50

50

100

150

200

time (s)

t sol(µs)

Memory occupancy: 2.5kB out of the 34kB of memory provided by the DSP

Gionata Cimini, [email protected] 17 / 20

Page 32: Online Model Predictive Torque Control for Permanent ... · PDF fileOnline Model Predictive Torque Control for Permanent Magnet Synchronous Motors Gionata Cimini , Daniele Bernardini

Online Optimization

The sampling interval is 0.3ms

Dimension of the QP problem: 5 decision variables and 41 constraints

DSP with 150MHz processor

One hardware multiplier 32× 32 bit

Single precision

0 0.1 0.2 0.3 0.4 0.50

50

100

150

200

time (s)

t sol(µs)

Memory occupancy: 2.5kB out of the 34kB of memory provided by the DSP

Gionata Cimini, [email protected] 17 / 20

Page 33: Online Model Predictive Torque Control for Permanent ... · PDF fileOnline Model Predictive Torque Control for Permanent Magnet Synchronous Motors Gionata Cimini , Daniele Bernardini

Outline

1 Introduction and Motivations

2 Model Predictive Control Design

3 Experimental Results

4 Conclusions

Gionata Cimini, [email protected] 18 / 20

Page 34: Online Model Predictive Torque Control for Permanent ... · PDF fileOnline Model Predictive Torque Control for Permanent Magnet Synchronous Motors Gionata Cimini , Daniele Bernardini

Conclusions

Summary

The feasibility of MPC with online optimization in terms of

required computational power

memory occupancy

has been demonstrated through processor-in-the-loop tests on a low power DSP

Future Activities

Extension of the proposed strategy to consider the speed loop

Flux weakening handling

Evaluation of the effects of winding resistance increase due to temperature rise

Application to automotive problems, such as Electronic Throttle Controland Hybrid Electric Motor Control

Gionata Cimini, [email protected] 19 / 20

Page 35: Online Model Predictive Torque Control for Permanent ... · PDF fileOnline Model Predictive Torque Control for Permanent Magnet Synchronous Motors Gionata Cimini , Daniele Bernardini

Thank you for your attention!!

www.odys.it

Gionata Cimini, [email protected] 20 / 20