on the solar sources of polar crown coronal mass ejections nat...

1
On the Solar Sources of Polarcrown Coronal Mass Ejections Nat Gopalswamy 1 , Seiji Yashiro 1,2 , and Sachiko Akiyama 1,2 (1)NASA Goddard Space Flight Center, (2) The Catholic University of America, Email: [email protected] Introduction Coronal mass ejections (CMEs) from the polar crown filament region originate above 60degree latitude during solar activity maxima. Cessation of these highlatitude CMEs marks the end of the maximum phase when the solar poles reverse their polarity (Gopalswamy et al. 2003). The eruption mechanism of the polar CMEs is not well understood: they originate from bipolar magnetic regions in contrast to the lowlatitude ones, which may occur from both bipolar and multipolar regions. One of the key questions is whether the polar CMEs are associated with flarelike brightening and if so what the nature of the CMEflare relationship is (Gopalswamy 2013). Flarelike brightening is not expected if the polar CMEs are simple expansions of magnetic loops suggested by Gosling (1990) to explain nonrope ICMEs or mass expansions (Antiochos et al. 1999) similar to Sheeley blobs (Sheeley et al. 1997). Uchida et al. (1992) also talked bout active region expansion without any reconnection. If polar CMEs are not similar to the lowlatitude ones, then they are expected have the following properties: (i) they occur without any reconnection and hence without post eruption arcades (PEAs), (ii) they start at a height of a few solar radii, and (iii) they should be slow (~10 km/s), and (iv) they should accelerate slowly (~4 m/s 2 ) like the solar wind. Polar CMEs become prolific during the maximum phase of solar cycles (Gopalswamy et al. 2012). For cycle 24, we have a number of instruments observing the polar CMEs: SOHO, STEREO, and SDO. We use these data to show that none of the three properties (i)(iii) listed above apply to the polar CME studied. We conclude that the polar CMEs may not be different from the lowlatitude CMEs. By inference, we think that the same eruption mechanism should apply to both high and lowlatitude CMEs. A Polar CME with 3-part Structure Figure 1 A3part CME observed by SOHO/LASCO (top right). The prominence core (PE) was observed by SDO/AIA (top left) and STEREOB/EUVI (bottom left). The CME was also observed by STEREOB/COR1 (bottom right) with the same 3part structure viewed from a different vantage point. Thus, morphologically, the highlatitude (HL) CME is similar to any other CME from lower latitudes. CME Kinematics and PEA Figure 2. (a,c) The prominence eruption (PE) from the polar crown and (b,d) the posteruption arcade of the event in Fig.1 as imaged by SDO and STEREO. PE is best observed in the 304 Å images, while the arcade is well observed in the 195 Å images. CME/PE heighttime plots and speeds are from SDO and STEREO images (e). The PEA intensity I in EUV and its derivative dI/dt are compared with the acceleration profiles of the CME leading edge (LE) and the prominence core. There is a flarelike brightening; the intensity (I) of the arcade resembles a gradual Xray event; dI/dt resembles Neupert effect. and peaks with CME acceleration. The free energy in the source region can be estimated as the magnetic potential energy of the source region. Since the PEA was very extended in the STEREO/EUVI image, we overlaid the PEA on the HMI synoptic magnetic field chart to get the average field strength under the arcade. The negative polarity was clear in the synoptic chart, so we used the triangular region as in Fig. 3 to get the average field strength. The positive polarity was on the poleward side. Since we know the length and width of the arcade, we can estimate the PEA volume assuming the height to be similar to the width. The estimated free energy ~7.8x10 30 erg is more than a factor of 2 higher than the CME kinetic energy and hence adequate to power the CME. Source Region Free Energy Figure 3. HMI synoptic chart for the 2012 March 12 event showing the PEA extending over a length of 2.8x10 5 km (E113 to E41). The arcade width is ~ 2.2x10 5 km. Assuming PEA width ~ height, the PEA volume V ~ 6.6x10 30 cm 3 . The average field strength B under the northern footprint of the PEA ~5.5 G. The magnetic potential energy (VB 2 /8π) ~7.8x10 30 erg. Figure 4. Temperature maps for the 2012 March 12 polar crown prominence eruption (PE) at three instances: (a) preeruption, (b) early phase, and (c) late phase. The heated arcade is shown enclosed by a polygon in (c). Each temperature map was made from 6 SDO/AIA EUV images at 94, 131, 171, 193, 211, 335 Å. The color bar to the right indicates the logarithmic temperature: 5.7, 6.0, 6.3, and 6.7 correspond to 0.5 MK, 1.0 MK, 2.0 MK, and 5.0 MK, respectively. The arcade is at a temperature of ~2 MK, hotter than the surrounding corona (~1 MK). Aschwanden et al. (2013) showed that the temperature and emission measure can be obtained in various coronal structures from the coronal holes to active regions, so long as the temperatures are in the range 0.5 – 10 MK. The differential emission measure (DEM) distribution is modeled by a Gaussian function in logarithmic temperature. By fitting Gaussian functions to the observations, one can obtain the peak DEM and temperature in coronal structures Fig. 4 shows that the PEA is hotter than the surroundings. The formation of polar PEA is similar to that in regular flares Figure 5. Locations of prominence eruptions detected by automatically in SDO and STEREO 304 Å images. The HL activity ended in the northern hemisphere and the polarity reversed. More HL activity is expected from the southern hemisphere. We plan to perform statistical analysis of the polar CMEs and the associated PEAs using these data Summary We reported on a polar CMEs, which has a posteruption arcade (PEA) observed in soft Xray and EUV wavelengths. We find the polar CME has the usual 3part structure of lowlatitude (LL) CMEs the PEA intensity variation is similar to that of the CME speed the time derivative of the PEA intensity is similar to CME acceleration the initial CME acceleration is ~150 m/s 2 , typical of PErelated CMEs the acceleration is much bigger than the slowwind acceleration the mass (1.7x10 15 g) and kinetic energy (3.4x10 30 erg) are also typical of LL CMEs the free energy in the source is more than enough to power the CME the ratio of the thermal energy content of PEA to the CME kinetic energy is very similar to that from lowlatitude CMEs. Thus, we conclude that the polarcrown CME is fundamentally similar to the lowlatitude CMEs and hence may have similar eruption mechanism. SPD 2013 Session 100 00:00 01:00 02:00 03:00 04:00 0 1 2 3 4 5 Height [Rs] CME LE CME Core PE h-t Speed 0 200 400 600 800 1000 Speed [km/s] AIA/304 2012/03/12 00:56 STB/304 2012/03/12 00:56 AIA/193 2012/03/12 03:36 -800 -400 0 STB/195 2012/03/12 03:36 0 400 800 -1000 -600 -200 -1000 -600 -200 0 400 800 -1000 -600 -200 -1000 -600 -200 -800 -400 0 PE PE Arcade Arcade (a) (c) (b) (d) (e) Start Time (12-Mar-12 00:00:00) [m/s 2 ] Accel. 00:00 01:00 02:00 03:00 04:00 Ave. Intensity in the Box [DN] 100 200 300 400 (f) SDO STB 4 -0.02 -0.01 0.00 0.01 0.02 0.03 dI/dt Accel. Intensity dI/dt CME LE CME Core PE -100 0 100 The CME speed increased from 400 km/s (COR1) to 746 km/s (LASCO). The initial acceleration was 150 km/s 2 , typical of PE CMEs The acceleration typically peaks around 2.5 Rs, as in regular CMEs The CME mass from LASCO images: is 1.7x10 15 g The CME kinetic energy is 3.4x10 30 erg The speed and acceleration are more than an order of magnitude greater than the mass expansion rates. The mass and kinetic energy are slightly above those of the general population HMI Radial Synoptic Chart of Carrington Rotation 2121 90 120 150 180 210 240 270 Carrington Longitude [deg] S90 S30 0 Latitude [deg] AIA Two Ribbons STB Two Ribbons Area of Negative Polarity Thermal Energy Content of the PEA From the computed temperature and emission measure, we estimated the thermal energy content of the arcade as 7.3x10 28 erg. The PEA thermal energy is 2.2% of the CME kinetic energy, not too different from the values 0.5% to 10% (mean 3.2%) for major flares (Emslie et al. 2012) Future Work PE Latitudes from SDO 2007 2008 2009 2010 2011 2012 -100 -50 0 50 100 Latitude [deg] PE Latitudes from STEREO-A 2007 2008 2009 2010 2011 2012 -100 -50 0 50 100 Latitude [deg] Aschwanden, M. J., et al. Solar Phys. 283, 5, 2013 Emslie, A. G., et al., ApJ, 759, 71, 2012 Gosling, J. T., AGU Monograph 58, 343, 1990 Antiochos, S. K. et al. ApJ, 510, 485, 1999 Sheeley, N. R. et al., ApJ 484, 472, 1997 Uchida, Y. et al., PASJ 44, L155 Gopalswamy, N. et al., ApJ 598, L63, 2003 Gopalswamy, N., Solar Wind 13, AIP Conf Proc 1539, 5, 2013

Upload: others

Post on 12-Nov-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: On the Solar Sources of Polar crown Coronal Mass Ejections Nat …solar.physics.montana.edu/.../Gopalswamy-SPD2013-poster.pdf · 2013. 10. 20. · On the Solar Sources of Polar‐crown

On the Solar Sources of Polar‐crown Coronal Mass Ejections

Nat Gopalswamy1, Seiji Yashiro1,2, and Sachiko Akiyama1,2

(1)NASA Goddard Space Flight Center, (2) The Catholic University of America, Email: [email protected]

IntroductionCoronal mass ejections (CMEs) from the polar crown filament region 

originate above 60‐degree latitude during solar activity maxima. 

Cessation of these high‐latitude CMEs marks the end of the maximum 

phase when the solar poles reverse their polarity (Gopalswamy et al. 

2003).  The eruption mechanism of the polar CMEs is not well 

understood: they originate from bipolar magnetic regions in contrast 

to the low‐latitude ones, which may occur from both bipolar and 

multipolar regions.  One of the key questions is whether the polar 

CMEs are associated with flare‐like brightening and if so what the 

nature of the CME‐flare relationship is (Gopalswamy 2013). Flare‐like 

brightening is not expected if the polar CMEs are simple expansions 

of magnetic loops suggested by Gosling (1990) to explain non‐rope 

ICMEs or mass expansions (Antiochos et al. 1999) similar to Sheeley 

blobs (Sheeley et al. 1997). Uchida et al. (1992) also talked bout active 

region expansion without any reconnection. If polar CMEs are not 

similar to the low‐latitude ones, then they are expected have the 

following properties: (i) they occur without any reconnection and 

hence without post eruption arcades (PEAs), (ii) they start at a height 

of a few solar radii, and (iii) they should be slow (~10 km/s), and (iv) 

they should accelerate slowly (~4 m/s2) like the solar wind. 

Polar CMEs become prolific during the maximum phase of solar 

cycles (Gopalswamy et al. 2012). For cycle 24, we have a number of 

instruments observing the polar CMEs: SOHO, STEREO, and SDO. 

We use these data to show that none of the three properties (i)‐(iii) 

listed above apply to the polar CME studied. We conclude that the 

polar CMEs may not be different from the low‐latitude CMEs. By 

inference, we think that the same eruption mechanism should apply 

to both high and low‐latitude CMEs. 

A Polar CME with 3-part Structure

Figure 1 A 3‐part CME observed by SOHO/LASCO (top right). The

prominence core (PE) was observed by SDO/AIA (top left) and STEREO‐

B/EUVI (bottom left). The CME was also observed by STEREO‐B/COR1

(bottom right) with the same 3‐part structure viewed from a different

vantage point. Thus, morphologically, the high‐latitude (HL) CME is

similar to any other CME from lower latitudes.

CME Kinematics and PEA

Figure 2. (a,c) The prominence eruption (PE) from the polar crown and (b,d) the post‐eruption arcade  of the  event in Fig.1 as imaged by SDO and STEREO. PE is best observed in the 304 Å images, while the arcade is well observed in the 195 Å images. CME/PE height‐time plots and  speeds are from SDO and STEREO images (e). The PEA intensity I in EUV and its derivative dI/dt are compared with the acceleration profiles of the CME leading edge (LE) and the prominence core. There is a flare‐like brightening; the intensity (I) of the arcade resembles a gradual X‐ray event; dI/dt resembles Neupert effect. and peaks with CME acceleration.

The free energy in the source region can be estimated as the magnetic 

potential energy of the source region.  Since the PEA was very extended 

in the STEREO/EUVI image, we overlaid the PEA on the HMI synoptic 

magnetic field chart to get the average field strength under the arcade. 

The negative polarity was clear in the synoptic chart, so we used the 

triangular region as in Fig. 3 to get the average field strength. The 

positive polarity was on the poleward side. Since we know the length 

and width of the arcade, we can estimate the PEA volume assuming the 

height to be similar to the width. The estimated free energy ~7.8x1030

erg is more than a factor of 2 higher than the CME kinetic energy and 

hence adequate to power the CME.

Source Region Free Energy

Figure 3. HMI synoptic chart for the 2012 March 12 event showing the PEA extending over a length of 2.8x105 km (E113 to E41). The arcade width is ~ 2.2x105 km. Assuming PEA width ~ height, the PEA volume V ~ 6.6x1030

cm3. The average field strength B under the northern footprint of the PEA ~5.5 G. The magnetic potential energy (VB2/8π) ~7.8x1030 erg.

Figure 4. Temperature maps for the 2012 March 12 polar crown prominence eruption (PE) at three instances: (a) pre‐eruption, (b) early phase, and (c) late phase. The heated arcade is shown enclosed by a polygon in (c).  Each temperature map was made from 6 SDO/AIA EUV images at 94, 131, 171, 193, 211, 335 Å. The color bar to the right indicates the logarithmic temperature: 5.7, 6.0, 6.3, and 6.7 correspond to 0.5 MK, 1.0 MK, 2.0 MK, and 5.0 MK, respectively. The arcade is at a temperature of ~2 MK, hotter than the surrounding corona (~1 MK).   

• Aschwanden et al. (2013) showed that the temperature and emission measure can be obtained in various coronal structures from the coronal holes to active regions, so long as the temperatures are in the range 0.5 – 10 MK. 

• The differential emission measure (DEM) distribution is modeled by a Gaussian function in logarithmic temperature. By fitting Gaussian functions to the observations, one can obtain the peak DEM and temperature in coronal structures

• Fig. 4 shows that the PEA is hotter than the surroundings. The formation of polar PEA is similar to that in regular flares

Figure 5.  Locations of prominence eruptions detected by automatically in SDO and STEREO 304 Å images. The HL activity ended in the northern hemisphere and the polarity reversed. More HL activity is expected from the southern hemisphere. We plan to perform statistical analysis of the polar CMEs and the associated PEAs using these data

Summary

We reported on a polar CMEs, which has a post‐eruption arcade (PEA) observed in soft X‐ray and EUV wavelengths.  We find 

• the polar CME has the usual 3‐part structure of low‐latitude (LL) CMEs • the PEA intensity variation is similar to that of the CME speed • the time derivative of the PEA intensity is similar to CME acceleration• the initial CME acceleration is ~150 m/s2, typical of PE‐related CMEs• the acceleration is much bigger than the slow‐wind acceleration• the mass (1.7x1015 g) and kinetic energy (3.4x1030 erg) are also typical of LL CMEs

• the free energy in the source is more than enough to power the CME• the ratio of the thermal energy content of PEA to the CME kinetic energy is very similar to that from low‐latitude CMEs. 

Thus, we conclude that the polar‐crown CME is fundamentally similar to the low‐latitude CMEs and hence may have similar eruption mechanism.

SPD 2013Session 100

00:00 01:00 02:00 03:00 04:000

1

2

3

4

5

Hei

gh

t [R

s]

CME LECME Core

PE

h-t

Speed

0

200

400

600

800

1000

Sp

eed

[km

/s]

AIA/304 2012/03/12 00:56

STB/304 2012/03/12 00:56

AIA/193 2012/03/12 03:36

-800 -400 0

STB/195 2012/03/12 03:36

0 400 800

-1000

-600

-200

-1000

-600

-200

0 400 800

-1000

-600

-200

-1000

-600

-200

-800 -400 0

PE

PE

Arcade

Arcade

(a)

(c)

(b)

(d)

(e)

Start Time (12-Mar-12 00:00:00)

[m/s

2 ]A

ccel

.

00:00 01:00 02:00 03:00 04:00

Ave

. In

ten

sity

in t

he

Box

[D

N]

100

200

300

400(f) SDO

STB 4

-0.02

-0.01

0.00

0.01

0.02

0.03

dI/d

t

Accel.

Intensity

dI/dt

CME LE CME CorePE -100 0 100

• The CME speed increased from 400 km/s (COR1) to 746 km/s (LASCO).

• The initial acceleration  was 150 km/s2, typical of PE CMEs

• The acceleration typically peaks around 2.5 Rs, as in regular CMEs 

• The CME mass from LASCO images: is 1.7x1015 g

• The CME kinetic energy is 3.4x1030 erg

• The speed and acceleration are more than an order of magnitude greater than the mass expansion rates.  

• The mass and kinetic energy are slightly above those of the general population

HMI Radial Synoptic Chart of Carrington Rotation 2121

90 120 150 180 210 240 270Carrington Longitude [deg]

S90

S30

0

Lat

itu

de

[deg

]

AIA Two RibbonsSTB Two RibbonsArea of Negative Polarity

Thermal Energy Content of the PEA

From the computed temperature and emission measure, we estimated thethermal energy content of the arcade as 7.3x1028 erg. The PEA thermal energy is 2.2% of the CME kinetic energy, not too different from the values 0.5% to 10% (mean 3.2%) for major flares (Emslie et al. 2012)

Future WorkPE Latitudes from SDO

2007 2008 2009 2010 2011 2012−100

−50

0

50

100

Lat

itu

de

[deg

]

PE Latitudes from STEREO−A

2007 2008 2009 2010 2011 2012−100

−50

0

50

100

Lat

itu

de

[deg

]

Aschwanden, M. J., et al. Solar Phys. 283, 5, 2013Emslie, A. G.,  et al., ApJ, 759, 71, 2012

Gosling, J. T., AGU Monograph 58, 343, 1990Antiochos, S. K. et al.  ApJ, 510, 485, 1999Sheeley, N. R. et al., ApJ 484, 472, 1997Uchida, Y. et al., PASJ 44, L155

Gopalswamy, N.  et al., ApJ  598, L63, 2003Gopalswamy, N., Solar Wind 13, AIP Conf Proc 1539, 5, 2013