on the flow of avalanching snow - igsoc.org · on the flow of avalanching snow by m. heimgartner...

7
Journal oJGlaciologYI Val. 19, No. 81, 1977 ON THE FLOW OF AVALANCHING SNOW By M. HEIMGARTNER (E idge noss isc hes Institut fur Schnee- und Lawinenforsc hung , 7260 Wei ss fluhjoch jDavos, Switzerland ) ABSTRACT. Variation of fl ow de pth of a flowing avalanche ca used by a change in the slope angle is exa min ed using Bernoulli's ene rgy equation, u sed in hydraulics to dete rmine a non-unif o rm steady fl ow. This e qu ation is modified for a material with internal fri cti on and a s tr ongly curved tr ac k. The calculated fl ow de pths a re compar ed with those obtained by tes ts with a snow slide. In the flow mod el dry and turbul e nt fri ct ion are taken into acco unt. Friction coe ffi cien ts are es timat ed co mp a ring calculat ed a nd measured flow depths. It appears that in wet s now they diff er from those of dr y snow . Finally, this model is used to calcula te the runout distance of a n at ur al ava lanche. R EsuME. Sur le mouvemmt d'une avalanche eoulante. La variati on en e pai sse ur d' une ava lanc he co ulant e causee par un changement de pe nt e e,t examine e a u moyen de l' eq uation de Bern oulli qui est connu e en hydra uliqu e pour dete rmin er un ecoulement s tati o nn aire non unif o rme. Cette equat ion est adaptee a des materiaux possedan t un frott eme nt intern e et a un e trajecto ire forteme nt courbee. Les epaisseurs ainsi calculees so nt compare es a celles qui ont ete o bte nu es par d es essa is sur un e glissoire de ne ige. Dans le mod ele d 'ecouleme nt un fr otteme nt ind epe ndant de la vitesse et un frott eme nt turbul ent sont pris en compte. Les coefficie nts de frottement so nt estimes par co mparaison d e, e pais se urs ealcul ees et m es ur ees. Il apparai t qu'ils differe nt dans un e neige mouillee de ceux d' un e neige seche. Pour finir ce modele es t utilise pour calculer la distance d'arr et d' une avalanche natur elle. ZUSAMMENFASSUNG. Zur B ewegullg VOIl Fliesslawinen. Mit d er in der Hydraulik Ublichen Energiegleichung von Bernoulli fUr stationar unglei c hfiirmige AbflUsse, welche fUr ein Mat erial mit innerer Re ibung und stark gekrUmmt e Bahnkur ve n umgeformt wurde, wird die Fli ess hiihe nand e rung einer Fliess lawine nach einem Gefallsbru ch unt ersucht und mit Mess ungen auf einer Schneegleitbahn verglichen. Das Abflussmodell berUcksic htigt trockene und turbul e nt e R eibung , deren Koe ffizi e nt en aus Vergleich der gemessenen mit der gerechnete n Fli ess hii he abgeschatzt werden. Es zeigt sich, dass di ese K oe ffizi en ten fur trocken en und nassen Schnee verschieden sind. Abschliessend wird mit di esem Modell di e Auslaufstrecke einer natUrlichen Lawin e ma chger cc hn et. I. GENERALITIES AND ASSUMPTIONS In this pa per the motion ofjlowing avalanches is calculated using some methods of technical hydraulics. Avalanching snow behaves differently from water , hence, th e equations des- cribing th e flow model hav e to be adapted to the prop ert ies of snow. In doing so one has to consider th e r es trictions made by Salm ( 1968) : (I) Th e mat erial is id ea l elasto-plastic, similar to a dry sand. (2) Th e flow is bi-dimensional and steady, but non-uniform. This non-uniformity IS caused by a c han ge in th e slope angle. Furthermor e, we assume the friction forces T along the avalanche track to depend upon velocity v like T = aovo+azv z , wh ere the aj are constant s. The viscosity term a, v', is neglected (Salm, 1966). Th ese limitations allow us to describe a Bl)wing avalanche by th e Bernoulli equation of non -v isco us di sc har ge. 2. BASIC EQUATIONS 2. I. Ve locity distribution in a curved channel In a curved channel th e velocity is not constant over th e flow depth t, but changes with increasing z ( Fig. I), as shown by Franke ( 1971 ) : Ro v = Vo Ro± z. 35 7

Upload: vanxuyen

Post on 19-Apr-2018

215 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: ON THE FLOW OF AVALANCHING SNOW - igsoc.org · ON THE FLOW OF AVALANCHING SNOW By M. HEIMGARTNER (Eidgenossisches Institut fur Schnee- und Lawinenforschung, 7260 WeissfluhjochjDavos,

Journal oJGlaciologYI Val. 19, No. 81, 1977

ON THE FLOW OF AVALANCHING SNOW

By M. HEIMGARTNE R

(Eidgenoss isches Institut fur Schnee- und Lawinenforschung, 7260 Weiss fluhjoch jDavos, Switzerland)

ABSTRACT. Variation of flow depth of a flowing avalanche caused by a change in the slope angle is examined using Bernoulli's energy equation, used in hydraulics to d e termine a non-uniform steady flow. This equa tion is modified for a material with internal friction and a strongly curved t rack. The calcula ted fl ow d epths a re compared with those obtained by tes ts with a snow slide. In the flow model dry and turbulent fri ction a re taken into account. Friction coeffi cien ts are es timated compa ring calculated a nd measured flow depths. It appears that in wet snow they differ from those of dry snow. Finally, this model is used to calcula te the runout distance of a natura l avalanche.

REsuME. Sur le mouvemmt d'une avalanche eoulante. La variation e n epaisseur d 'une avalanche coulante causee par un changement d e pente e,t examinee a u moyen de l'equa tion de Bernoulli qui est connue en hydra ulique pour determiner un ecoulement stationnaire non unifo rme. Cette equation est adaptee a des materiaux possedan t un frottement interne e t a une trajectoire fortem ent courbee. L es epaisseurs ainsi calculees sont comparees a celles qui on t ete obtenues par des essa is sur une glissoire de neige. Dans le modele d 'ecoulem ent un frottem ent independant de la vitesse et un frottem ent turbulent sont pris en compte. Les coefficients de frottement sont estimes par comparaison de, epaisseurs ealculees et m esurees. Il apparai t qu'ils different dans une neige mouillee de ceux d 'une neige seche. Pour finir ce modele est utilise pour calculer la distance d'arret d 'une avalanche naturelle.

ZUSAMMENFASSUNG. Zur Bewegullg VO Il Fliesslawinen. Mit der in d e r Hydraulik Ublichen Energiegleichung von Bernoulli fUr stationar ungleichfiirmige AbflUsse, welche fUr ein Material mit innerer R e ibung und stark gekrUmmte Bahnkurven umgeformt wurde, wird die Fliesshiihenanderung einer Fliess lawine nach einem Gefallsbruch untersucht und mit Messungen auf einer Schneegleitbahn verglichen . Das Abflussmodell berUcksichtigt trockene und turbulente R eibung, deren Koeffizienten a us Vergleich d er gemessenen mit d er gerechneten Fliesshiihe abgeschatzt werden. Es zeigt sich, dass diese Koeffizien ten fur trockenen und nassen Schnee verschieden sind. Abschliessend wird mit diesem Modell die Auslaufstrecke einer na tUrlichen Lawine machgercchnet.

I . GENERALITIES AND ASSUMPTIONS

In this pa per the motion ofjlowing avalanches is calculated using some methods of technical hydraulics. Avalanching snow behaves differently from water, hence, the equations des­cribing the flow model have to be adapted to the properties of snow. In doing so one has to consider the restrictions made by Salm ( 1968) :

(I) The material is ideal elasto-plastic, similar to a dry sand. (2) The flow is bi-dimensional and steady, but non-uniform. This non-uniformity IS

caused by a change in the slope angle.

Furthermore, we assume the friction forces T along the avalanche track to depend upon velocity v like T = aovo+azvz, where the aj are constants. The viscosity term a, v' , is neglected (Salm, 1966) . These limitations allow us to describe a Bl)wing avalanche by the Bernoulli equation of non-viscous discharge.

2. BASIC EQUATIONS

2. I . Velocity distribution in a curved channel

In a curved channel the velocity is not constant over the flow depth t, but changes with increasing z (Fig. I), as shown by Franke ( 1971 ) :

Ro v = Vo Ro± z.

357

Page 2: ON THE FLOW OF AVALANCHING SNOW - igsoc.org · ON THE FLOW OF AVALANCHING SNOW By M. HEIMGARTNER (Eidgenossisches Institut fur Schnee- und Lawinenforschung, 7260 WeissfluhjochjDavos,

JOURNAL OF GLACIOLOGY

Fig. I. Velocity distribution in curved channels.

Ro is the constant radius of curvature at the flow surface and Vo the surface velocity. The positive and negative signs are set for decreasing and increasing slope angles respectively. Equation ( I) is only valid with a positive denominator. Vo may be obtained from the con­tinuity equation

t t

g = f v dz = f v ~ d .. B 0 Ro±z "" o 0

where Q means the constant flow rate and B the flow width. Hence it follows that Q

Vo = ------'--R-=-o±-t ' BRo In-y-

and the velocity Vt at the depth z = t

when R = Ro±t.

o

Q Vt = ----=-::­R'

BRlnR' o

2.2. Friction forces on the suiface of the avalanche track

As suggested by Salm (1968), the shearing stress TXZ between the avalanching snow and the stationary underground is considered to depend linearly upon the normal stress CIz acting on the sliding plane, and also upon the square velocity vZ, the roughness of the avalanche track k- z, and the mean gravity of the moved snow y, in accordance with the equation of Chezy for turbulent flow. Thus we assume

where fL is a dry-friction coefficient. If the avalanche track is bent with an actual radius of curvature R, CIz is set to

( VtZ )

CIz = ty cos ifi+ Rg , (5)

where tP is the slope angle and g is the acceleration due to gravity. Equations (4) and (5) do not depend upon the material, the only material term being y,

thus these equations are valid for plastic and elastic materials. By inserting Equation (3) into Equation (5) we get

crz = ty [cos tP + g~3 (B In ~/Ro) r] (6)

The importance of the second term within the brackets grows with decreasing radius of curvature R.

Page 3: ON THE FLOW OF AVALANCHING SNOW - igsoc.org · ON THE FLOW OF AVALANCHING SNOW By M. HEIMGARTNER (Eidgenossisches Institut fur Schnee- und Lawinenforschung, 7260 WeissfluhjochjDavos,

ON THE FLOW OF AVALANCHING SNOW 359

2.3. Avalanching snow

In soil mechanics, soil yielding is often described by the Coulomb criterion for cohesive materials

Txz :::;;; Tf = C1z tan cp+c, (7)

where Txz is the shear stress and C1z the normal stress on a plane element. Tf stands for the shear strength, cp for the angle of internal friction and c for the cohesion of the considered material. As shown by Terzaghi (Terzaghi and Jelinek, 1954), Equation (7) leads to

(8)

in the case of plain strain. The directions of the stress symbols C1 and T are explained in Figure 2.

0,

112

. -[10, -Ox / 1 2] ',- --,-+ x,

i = 1,2

~ .. _/ ~ 0" , Oxp <' ' ''d'' ..

': .. , avalanche t,ack~

Fig. 2. Mohr-Coulomb hypothesis.

Equation (8) is perfectly compatible with general plasticity theory, as demonstrated by Drucker and Prager (1951).

A dry sand is not cohesive (c = 0), and in this case Equation (8) becomes

(9)

In an elastic material C1x is given by the confined three-dimensional stress state (Ziegler, 1962),

V C1x = -- C1z,

I-v

here v is Poisson's ratio. Equation (9) is restricted to non-curved tracks.

( 10)

As long as the stresses C1z, C1x, TxZ, calculated from Equations (5), ( 10) and (4), do not fulfil the yield criterion (Equation (9)), the material remains elastic, but as soon as the left side of Equation (9) equals the right-hand side, Equation (10) is invalidated and C1x is obtained from Equation (9) :

TXZ where cc = 2 - .

C1z

_ [1 + sin2cp ((I + sin2cp)2_cos2cp+ct.2)i] C1x - crz A. ± A. A.'

I, Z cos2 't' cos2 't' cos2 't'

Page 4: ON THE FLOW OF AVALANCHING SNOW - igsoc.org · ON THE FLOW OF AVALANCHING SNOW By M. HEIMGARTNER (Eidgenossisches Institut fur Schnee- und Lawinenforschung, 7260 WeissfluhjochjDavos,

JOURNAL OF GLAC10LOGY

The positive sign gives the maximum value crXI' corresponding to the passive stress state of Rankine, and the negative sign the minimum value crX2 corresponding to Rankine's active stress state (Fig. 2) .

3. BERNOULLl'S EQUATION

Flow depths of non-uniform steady flow are generally calculated stepwise using Bernoulli's equation

u2 p H=- +- +w, 2g y

H denotes the energy head, p the pressure in flow direction x on the sliding plane, and w the geometrical head.

A friction force T per unit volume, divided by y , is obtained from Equation (4) :

T Txz fLcr z UZ

-y = -:yt = -yt+tkz · (13)

Tfy corresponds to the gradient of the total head, and may be written as

T ilwe ilwe cos I/J -y = t:.x = t:.u

from which we obtain

t:.We = c~u I/J (fL;Z + t~Zz) ,

t:.we is the energy loss per length t:.u. When the pressure p at the slip plane is replaced by crx cos I/J (Salm,

of non-uniform steady flow of avalanching snow becomes, 1968), the equation

Vu2 crxu VIZ crxl H = wu+- + - cos I/Ju = Wl + - +- cos I/J1 + t:.We,

2g y 2g Y ( 15)

using Equations ( I I ) (plastic case) and (10) (elastic case). Here the index u refers to an upper and the index l to a lower cross-section of the avalanche track (Fig. 3) .

W

H

:i£ 2g

Pu Oxu .I. y=ycos,+,u

l1We

u

~ 2 9

El= ~COS 4J1 Y Y

Fig. 3. Bernoulli's equation modified for avalanches.

t er

H e mm

Fig. 4. SPecific energy versus flow depth.

Page 5: ON THE FLOW OF AVALANCHING SNOW - igsoc.org · ON THE FLOW OF AVALANCHING SNOW By M. HEIMGARTNER (Eidgenossisches Institut fur Schnee- und Lawinenforschung, 7260 WeissfluhjochjDavos,

ON THE FLOW OF AVALANCHING SNOW

Plotting the specific energy H e against flow depth t (Fig. 4), where

crx Q2 V2 crx H e = - cos .J1+- - = - +- cos .p,

y 2gF2 2g Y

and F is a cross-section of the avalanche track, we obtain a minimum He for a critical value i er . If, in a given flow, t > ter , this flow is called "streaming", if t < ter, it is "shooting". A streaming flow changes continuously to a shooting one, this happens inversely in a "hydraulic jump". Hydraulic jumps are calculated with the momentum theorem; in the <:ontinuous changes Equation ( 15) may be used as follows.

I. Calculate H at the first (known) point (Equation (15)) . 2. Take next point: use geometry and an assumed value for t. 3· Calculate crz, crx (elastic) , and T xZ (Equations (6), (10), and (4)). 4. Is the yielding function (Equation (9)) fulfilled?

If yes then continue. If no then go to step 6.

5. Calculate crx (Equation ( I I )) . 6. Calculate ~we (Equation (14)) , 7. Calculate H at the second point (Equation ( 15)). 8. Is Equation ( 15) fulfilled?

If yes then take the next point. If no then go to step 2.

4. EXPERIMENTS WITH THE TEST SLIDE

The same tests as those described by Salm ( 1968) were made, but with a modified snow ,collector which could contain 25 m 3 of snow. A steady flow was maintained for more than '0.7 s with this modification. Every experiment was filmed , this allowed a measurement of the flow depths behind the deflection point.

TABLE 1. M EASURED AND CALCULATE D FLOW DEPTHS FO R tu = I.om

M ean snow t2 t, Fitted friction T est temperature Vo Y measured calculated coifficients 1'0*

QC m/s N /m3 m m 1'0 k ml/s

2/74 - 3 10.2 3492 1.09 I.og 0 .32 2g 0.25 5/74 - 4 10. 1 3414 1.05 I.og 0 .32 2g 0 .25 6/74 - 4 10·3 3 600 1.07 LOg 0·33 31 0 .22

12/74 - 5 9·5 2531 LOg I. 12 0·33 28 0·34 7/74 - 2 10·9 3 630 1.15 1.10 0.27 33 0.14

14/75 ± o 10.6 457 1 1.12 1. I I 0.27 31 0. 19 16/75 ± o 10.2 4405 1. I 7 1. 13 0.28 33 0.25

Table I compares some test data from the slide inclined at 45 ° with the results of a step-by­step calculation using Equation ( 15) ' Two points 0 and 2 were calculated as shown in Figure 5, starting at the end of the acceleration part of the test slide and using measured values of velocity and flow depth. The calculations were made with friction coefficients fL and k as parameters, other values were <p = 26° and v = 0.25. The calculated flow depths at point 2 are those which give the best fit with the measured values. The corresponding friction coefficients are also shown.

We can divide these experiments up into two groups. The first 4 tests in Table I were made at low snow and air temperatures, without snow melting. The slide is dry and the friction is high. The remaining tests were carried out at temperatures near o°C . The high temperature means that a thin layer of melted snow covers the test slide; this reduces friction.

Page 6: ON THE FLOW OF AVALANCHING SNOW - igsoc.org · ON THE FLOW OF AVALANCHING SNOW By M. HEIMGARTNER (Eidgenossisches Institut fur Schnee- und Lawinenforschung, 7260 WeissfluhjochjDavos,

JOURNAL OF GLACIOLOGY

R: 10'000 m

2

dead "s now

Fig. 5. Flow on test slide at Weissjluhjoch.

The values of ft". were calculated using the known velocity Vo, for the acceleration part of the slide (without turbulent friction k- Z).

Plots of He (Equation ( 16)), show a critical flow depth ler > 1.5 m. All tests began with 10 = 1.0 m, Table I shows that in all cases 12 < 1.20 m. Thus, we conclude that in these tests a continuous flow-depth change in shooting flow occurred without hydraulic jumps; this is confirmed by the cine film.

5. "SKILEHRERHALDE" AVALANCHE IN PARSENN AREA

The validity of our conclusions was tested with an artificially released avalanche near our institute; this has been described by Frutiger (1975). Geometrical data for these calculations were obtained by fitting a cubic parabola to the natural avalanche track (Fig. 6).

Friction parameters were set to ft = 0.18 and kz = I 700 m /52 • Q was calculated with the formula given by Salm (Salm, 1972).

A formula for the runout distance Xr can be derived from Equation ( IS) .

The velocity head VU2 / 2g and the pressure head crx u cos .pu/y disappear within the distance Xr = wu /sin tPm due to friction ~we. Thus we write

and

I

~ I I

H el = 0,

RUNOUT ZONE

336m

Fig. 6. Track section of "Skilehrerhalde" avalanche, 20 January 1974, Weissjluhjoch jDavos.

Page 7: ON THE FLOW OF AVALANCHING SNOW - igsoc.org · ON THE FLOW OF AVALANCHING SNOW By M. HEIMGARTNER (Eidgenossisches Institut fur Schnee- und Lawinenforschung, 7260 WeissfluhjochjDavos,

ON THE FLOW OF AVALANCHING SN OW

Inserting Equation (14) we get

yVuz+ 2gcrxu cos .pu [( vrnZRom2) vrnz . ] 2gy--- = Xr fL cos.prn+ gRm 3 + trnkZ- sm.pm. (17 )

The steady-state equation of Bernoulli is not exactly valid for this case because velocity v is time-dependent. For this reason we have to calculate with mean values.

The quantities labelled with index m denote such values in the runout process. Assuming that the square of velocity decreases linearly along runout Xr , as suggested by Voellmy (1955) and Salm (1966), we get

and

Xr

VU Z

vmz - 2 '

2yg [fL (cos .pm + RVuz

) + VU2

k2 -sin .prn] 2 1IIg 2tm

The value in Table II was calculated with this formula and agrees well with the measured value of 224 m.

TABLE 11. OBSERVATIONS AND D ERIVED DATA FROM THE ARTIFICIALLY­

RELEASED AVALANCHE

Point

I

2

rn 0·74 0.68

b m 122 107

Q = 1244 ml ls

V m

rnls 13.8 17. 1

Uz

Pa 1600 I 560

Runout distance X r = 210 m.

T XZ

Pa 590

700

H

m 80.8 59.8

T he va lues in T able II were obtained frc m Equation ( 15), the influence of the curved track is negligible.

REFERENCES

Drucker, D. c., and Prager, W. 1951. Soil mech a nics and plas ti c a nalysis or limit design. Quarterly of Applied M echanics, Vo!. 10, No. 2 , p . 157- 65.

Franke, P.-G. 197 I. Stationiir ungleiclifiirmiger Abjluss in Freispiegelgerinnen. Wiesbaden und Berlin , Bauverlag. (Abriss d er Hydraulik, Bd. 7.)

Frutiger, H. 1975. Die Lawine a uf der Skilehrerhalde/Davos vom 20. J a nua r 1974. Berechnung zur Lawinen­dynamik. ltItemer Bericht des Eidg. Institutesfur Schnee- und Lawinenforschung, Nr. 543.

Salm, B. 1966. Contribution to avalanche dynamics. Union de Geodesie et Geophysiqlle Intemationale. Association bItemationale d'HydTologie Scientifiqlle. Commission pour la Neige et la Glace. Division Neige Saisonnihe et AvalarIches. Symposium international SlIT les aspects scimtifiqlles des avalanches de neige, 5- J 0 avril 1965, Davos, Suisse, p. I 99- 2 14. (Publica tion No. 69 de I' Association Internationale d'Hydrologie Scientifique. )

Salm, B. 1968. On nonuniform steady flow of a valanching snow. Union de Geodesie et Geoplzysique Internationale. Association Internationale d'HydTologie Scimtijique. AssembLee genera le de B eTlle, 25 sept.-7 oct. 1967. [Commission de Xeiges et Glaces.] RapPoTts et discussions, p . 19- 29. (Publica tion No. 79 de l'Association Interna tionale d'Hydrologie Scientifique.)

Salm, B. 1972. Grundlagen des Lawinenverbaues. Bundnerwald, Beiheft Nr. 9, p. 67- 81. T erzaghi, K. , and Jelinek, R . 1954. Theoretische Bodenmechanik. Berlin , etc. : Springer Verlag. Voellmy, A. 1955. Ober die Zerstiirungskraft von Lawinen. Schweizerische Bauzeitung, 73. Jahrg. , Ht. 12 ,

p. 159- 62; Ht. 15, p. 212- 17; Ht. 17, p. 246- 49; Ht. 19, p. 280- 85. Ziegler, H . 1962. M eclzanik. I. Basel und Stuttga rt, Birkhliuser Verlag.

DISCUSSION

M. R. DE QUERVAIN: How did you introduce the radius R = 4 m in the test slide?

M. HEIMGARTNER: It was the minimum value we could introduce with our device.