odruch miotatyczny na rozciąganie

37
Odruch miotatyczny na rozciąganie

Upload: dayton

Post on 30-Jan-2016

39 views

Category:

Documents


0 download

DESCRIPTION

Odruch miotatyczny na rozciąganie. Odruchy mięśniowe i skórne. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Odruch miotatyczny na rozciąganie

Odruch miotatyczny na rozciąganie

Page 2: Odruch miotatyczny na rozciąganie

Odruchy mięśniowe i skórne

Badanie obwodów odruchów. Porównanie odpowiedzi w aksonie motoneuronu w rdzeniu kręgowym na stymulację włókna wrzecionka mięśniowego (włókna przewodzące szybkie) i włókna czuciowego skóry (włókna przewodzące wolne + droga polisynaptyczna).

Page 3: Odruch miotatyczny na rozciąganie

Rodzaje włókien nerwowych

Page 4: Odruch miotatyczny na rozciąganie

Połączenia monosynaptycze i polisynaptyczne

A. Badanie obwodów odruchów. B. Porównanie odpowiedzi w aksonie motoneuronu w rdzeniu kręgowym na stymulację wychodzących włókien mięśniowych.

Wnioski:

- aferenty Ia tworzą drogę pobudzającą monosynaptyczną z własnymi motoneuronami i dwusynaptyczna hamującą droge z motoneuronami antagonistycznymi

- aferenty II tworzą dwusynaptyczną pobudzającą drogę ze własnymi motorneuronami.

neuron pobudzający neuron hamujący

Page 5: Odruch miotatyczny na rozciąganie

Odruchy rdzeniowe

Page 6: Odruch miotatyczny na rozciąganie

Odruchy rdzeniowe i wyższe

Bodźce czuciowe wyzwalają refleksy poprzez obwody rdzenia i dłuższe obwody wyższe. Krótkie napięcie mięśnia kciuka powoduje szybką odpowiedź M1 w rozciąganym mięśniu i wolniejszą odpowiedź M2 biorącą się z obwodu zawierającego korę motoryczną.

Page 7: Odruch miotatyczny na rozciąganie

Koordynacja odruchów

Hamujące interneurony koordynują odruchy. A. Ia interneuron umożliwia koordynację mięśnia przeciwstawnego pojedynczym sygnałem. Dodatkowo, otrzymuje on wyjścia z obwodów wyższych dzięki czemu sygnał zstępujący aktywujący jedną grupę mięśni, automatycznie rozluźnia grupę przeciwstawną. Inne wejścia zstępujące tworzą połączenia hamujące i pobudzające, zwiększając możliwości kontroli.B. Komórki Renshawa tworzą hamowanie zwrotne z motoneuronami. Umożliwia to regulację pobudzenia motoneronów i stabilizację ich częstości odpalania. Wejścia zstępujące modulujące pobudzenie komórek Renshawa modulują pobudliwość motoneuronów w stawie.

Page 8: Odruch miotatyczny na rozciąganie

Lokomocja

Page 9: Odruch miotatyczny na rozciąganie

Eadweard Muybridge i zoopraxiskop (1879)

Page 10: Odruch miotatyczny na rozciąganie

Mody ruchowe i specjalizacje organów

Coelenterata – jamochłony, coelom – jama wypełniona płynem, annelid worms - pierścienice, molluscs – mięczaki, arthropods – stawonogi, vertebrates - kręgowce

Page 11: Odruch miotatyczny na rozciąganie

Neuronalne składowe systemów motorycznych

Główne komponenty większości systemów motorycznych: mięśnie, oscylator (aktywność rytmiczna) i ośrodki kontroli ruchu

Page 12: Odruch miotatyczny na rozciąganie

Centralne generatory wzorca

Centralny generator wzorca – mechanizm neuronalny generacji rytmicznych i skoordynowanych impulsów do motoneuronów

Podstawowe typu generatorów rytmu. Oznaczenia: D – driver, E – extensor motoneuron, F – flexor motoneuron, I – interneuron, P – pacemaker (generator rytmu).

Page 13: Odruch miotatyczny na rozciąganie

CGW u bezkręgowców - ślimak morski

Tritonia festiva

DSI – dorsal swim interneuron

C2 – cerebral cells

VSI – ventral swim interneurons

I2 - interneurons

1. Pływanie rozpoczyna stymulacja sensoryczna komórek DSI

2. DSI hamuje VSI

3. Zarazem DSI pobudza C2

4. C2 pobudza VSI. Odpowiedź VIS jest opóźniona w wyniku hamowania przez DSI (VSI-A) lub aktywacji przejściowego prądu potasowego IA (VSI-B)

5. Odpalanie VSI hamuje C2

5A Oraz hamuje DSI

Dorsal – grzbietowyVentral - brzuszny

T – synapsy pobudzające - synapsy hamujące

Page 14: Odruch miotatyczny na rozciąganie

Pływanie u kręgowców - minóg

Układ pływania u minoga składa się z wyższych ośrodków w pniu mózgu i segmentów w części rdzeniowej. Każdy segment tworzy CGW. Podczas pływania sieci CGW są aktywowane przez system siatkowo-rdzeniowy (reticulospinal system). Najbardziej pobudliwe generatory wzorca znajdują się w przednim odcinku, co powoduje rozchodzenie się skurczu od przodu do tyłu. Połączenie pomiędzy segmentami zapewniają koordynację i opóźnienia (lag) pomiędzy kolejnymi CGW. Opóźnienie determinuje prędkość ruchu.

Minóg w trakcie pływania wykonuje falujące ruchy. Skurcz po prawej stronie powoduje wygięcie ciała w prawo, po lewej – w lewo. Fala skurczu rozchodzi się od głowy do ogona po obu stronach ciała. Fale po każdej stronie są względem siebie przesunięte w fazie.

Page 15: Odruch miotatyczny na rozciąganie

Segmentowy obwód CGW u minoga

MN – motoneurony, interneurony pobudzające (E), interneurony hamujące (L, I), pień mózgu pobudza wszystkie te elementy. Aktywność w każdym segmencie jest inicjowana poprzez pobudzenie z systemu siatkowo-rdzeniowego. Pobudzenie receptora NMDA powoduje aktywacja prądów Na+/Ca2+. Napływ Ca2+ wywołuje repolaryzacje poprzez IK(Ca). Pobudzenie receptora kainate/AMPA przyśpiesza cykl. Neurony pobudzające (E) pobudzają motoneurony oraz aktywują interneurony hamujące (L, I). Aksony interneuronów I hamują aktywność wszystkich komórek w kontralateralnej stronie segmentu, zapewniając przesuniecie w fazie aktywności po obu stronach o 180o.

Page 16: Odruch miotatyczny na rozciąganie

Od pływania do chodzenia

Nogi u płazów wyewoluowały z płetw u ryb. Poruszanie po lądzie odbywa się poprzez wyciągnięcie, podparcie i nacisk kończyn na podłoże w koordynacji z pływającymi ruchami ciała.

Pływanie ryby Chodzenie salamandry.

Page 17: Odruch miotatyczny na rozciąganie

..i biegania u jaszczurki

U płazów i gadów nogi zamocowane są bocznie (stabilność). U ptaków i ssaków – od dołu (prędkość). Niektóre gady mogą poruszać się bardzo szybko. Bazyliszek (basilisk lizard) osiąga prędkość 20 km/h (krok dwunożny)

Page 18: Odruch miotatyczny na rozciąganie

Bieganie po wodzie

Bieganie jaszczurki Basiliscus plumifrons po wodzie - analiza metodą DPIV (digital particle image velocimetry). S. Tonia Hsieh and George V. Lauder Running on water: Three-dimensional force generation by basilisk lizards. PNAS 2004;101;16784-16788

Page 19: Odruch miotatyczny na rozciąganie

Kroki

Porównanie kroków karalucha i kota. Stopa uniesiona Stopa na ziemi

Page 20: Odruch miotatyczny na rozciąganie

Kroki cd

Cykl kroku kota składa się z dwóch faz – zamachu i podparcia. Dolne przebiegi pokazują aktywność mięśni.

Page 21: Odruch miotatyczny na rozciąganie

Rdzeniowe mechanizmy chodzenia

Zapis elektromiogramu (EMG) z mięśni kota w stanie normalnym (A) i po przecięciu połączeń z mózgiem (B). Wzorzec podstawowy jest zachowany lecz staje się mniej stabilny i łatwo ustaje.

Page 22: Odruch miotatyczny na rozciąganie

Rdzeniowe mechanizmy chodzenia

Centralny generator wzorca generujący chodzenie u kota jest typu ‘half-center’ i zlokalizowany jest w rdzeniu.

Page 23: Odruch miotatyczny na rozciąganie

Pole motoryczne (motoneuron pool)

Pole motoryczne (pojęcie wprowadzone przez Charlesa Sherringtona) – dendryty i ciała komórkek ruchowych (motoneuronów) unerwiających jeden mięsień (linia przerywana). Linia ciągła - aksony komórek sensorycznych a i b oraz odpowiednie pola ich progu pobudzenia. W wyniku zachodzenia na siebie pól motoneuronów, jednoczesna aktywacja a i b nie daje liniowego sumowania aktywności pól.

Pole motoryczne

Aksony komóreksensorycznych

Ułamkowe porcje pola motorycznego

Page 24: Odruch miotatyczny na rozciąganie

Aktywacja mięśni - reguła rozmiaru

Opór wejściowy - kabel półnieskończony:

2/3)(

2/*2

a

RRRR im

NsemiN

Reguła rozmiaru. A. Trzy reprezentatywne motoneurony o rosnących rozmiarach. B. Elektrotoniczne modele neuronu (soma + kabel dendrytyczny) i aktywacja komórek identycznym wpływającym prądem synaptycznym. C. Wypływ prądu powoduje zmianę napięcia na błonie proporcjonalną do oporu wejściowego. Największa zmiana napięcia powstaje w komórkach najmniejszych. Komórki najmniejsze mają najmniejsza prędkość przewodzenia, a komórki największe, największą.

Page 25: Odruch miotatyczny na rozciąganie

Trzy rodzaje jednostek motorycznych

Mięśnie szkieletowe Motoneurony

Jednostki motoryczne

Page 26: Odruch miotatyczny na rozciąganie

Własności jednostek motorycznych

Page 27: Odruch miotatyczny na rozciąganie

Rekrutacja jednostek ruchowych

Zależność pomiędzy regułą rozmiaru a zachowaniem ruchowym. A. Trzy rodzaje motoneuronów otrzymują dwa rodzaje pobudzenia. Wejście A ma większą wydajność dla małych komórek (reguła rozmiaru), a wejście B ma dużą wydajność dla największych komórek. B. Rekrutacja motoneuronów w wyniku zwiększania pobudzenia typu A leży u podstaw zmian zachowania ruchowego od stania do galopu. Ekstremalna siła mięśnia np. podczas skoku jest rozwijana w wyniku pobudzenia typu B największych motoneuronów.

Page 28: Odruch miotatyczny na rozciąganie

Choroby jednostek motorycznych

Miastenie – zaburzenia transmisji złącza nerwowo-mięśniowego.

Miastenia Lamberta-Eatona – wytwarzane są autoprzeciwciała przeciw kanałom Ca2+, co zmniejsza ilość kanałów Ca2+ i ilość uwalnianej ACh (efekty presynaptyczny).

Miastenia gravis – wytwarzane są autoprzeciwciała przeciw cholinergicznym receptorom nikotynowym nAChR (efekty postsynaptyczny).

Dystrofie mięśniowe – zmiany we włóknach mięśniowych.

Dystrofia Duchenne’a – choroba związana z recesywnym chromosomem X. Białko cytoszkieletu (dystrofina) ulega zniekształceniu lub zanikowi. Włókna mięśniowe są słabe i ulegają uszkodzeniu przy normalnie działających siłach. Szybko produkowane nowe włókna przypominają włókna mięśniowe płodu – są małe i nie przewodzą wydajnie potencjałów czynnościowych.

Porażenie wiotkie - uszkodzenie nerwów obwodowych zawierających motoneurony. Nieużywanie mięśni prowadzi do ich zaniku (atrofia). Naprawa nerwu, może prowadzić do odzyskania utraconych funkcji.

Page 29: Odruch miotatyczny na rozciąganie

Piętrowa organizacja kontroli ruchów

Page 30: Odruch miotatyczny na rozciąganie

Hierarchiczna struktura organizacji kontroli ruchu - początki

Rdzeń kręgowy i pień mózgu

Kora mózgowa wzdłuż bruzdy Rolanda

Płat czołowy

John Hughlings Jackson (1835 - 1911) Na podstawie obserwacji pacjentów epileptycznych opracował koncepcję poziomów kontroli ruchów. Niższe poziomy kontrolują ruchy automatyczne, wyższe – ruchy zamierzone. Wyższe poziomy kontrolują też niższe poziomy poprzez hamowanie lub pobudzanie. Gdy wyższa funkcja jest uszkodzona, niższe poziomy ulegają ‘wyzwoleniu’ spod kontroli, co prowadzi do hyperaktywności.

Piętra kontroli ruchu wg. Jacksona:

Page 31: Odruch miotatyczny na rozciąganie

Hierarchiczna struktura organizacji kontroli ruchu

Układy motoryczne mają trzy poziomy kontroli – rdzeń kręgowy, pień mózgu i przodomózgowie. Wszystkie trzy poziomy układu motorycznego dostają wejścia sensoryczne i są dodatkowo pod wpływem dwóch struktur podkorowych – zwojów podstawy i móżdżku.

Page 32: Odruch miotatyczny na rozciąganie

Hierarchiczna struktura organizacji kontroli ruchu

1. Aparat rdzeniowy kontrolowany poprzez motoryczne obszary kory i pnia mózgu (poziom środkowy Jacksona).

2. Kora i pień mózgu kontrolowane poprzez różne obszary (np. móżdżek, zwoje podstawy), a nie tylko przez korę przednią.

3. Kontrola nie jest stricte hierarchiczna (np. drogi równoległe, nie tylko szeregowe).

4. Połączenia zwrotne, również do najwyższego poziomu.

Page 33: Odruch miotatyczny na rozciąganie

Dwa rodzaje kontroli

A. W układzie z kontrolą zwrotną, sygnał z sensora jest porównywany z sygnałem odniesienia. Różnica jest przekazywana do kontrolera i wywołuje odpowiednią reakcje mięśni.

B. Kontrola torująca opiera się na informacji otrzymanej przed aktywacją sensora kontroli zwrotnej. Mechanizm ma zasadnicze znaczenie dla ruchów szybkich.

Page 34: Odruch miotatyczny na rozciąganie

Dwa rodzaje kontroli

A. Układ eksperymentalny łapania piłki.

B. Średnia odpowiedź człowieka łapiącego piłkę puszczoną z 0.8 m. Zapisy od góry do dołu pokazują: kąt łokcia, kąt nadgarstka, zapis EMG z bicepsa, tricepsa, flexor carpi radialis (FCR)i extensor carpi radialis (ECR). Widoczna aktywacja mięśni zarówno przed, jak i po, złapaniu piłki.

Page 35: Odruch miotatyczny na rozciąganie

Kontrola ruchu – ośrodki pnia mózgu

Przyśrodkowe i boczne drogi zstępujące z pnia mózgu kontrolują różne grupy neuronów i mięśni. A. Głównymi składowymi drogi przyśrodkowej są droga siatkowo-rdzeniowa, boczna i przyśrodkowa droga przedsionkowo-rdzeniowa i droga pokrywkowo-rdzeniowa. Szlaki te dochodzą do części brzusznej rdzenia kręgowego i kontrolują mięśnie tułowia (postura). B. Główną składową drogi bocznej jest droga czerwienno-rdzeniowa zaczynająca się w wielkokomórkowej części jądra czerwiennego. Droga czerwienno-rdzeniowa opada w kontralateralnej kolumnie grzbietowej i dochodzi do części grzbietowej rdzenia kręgowego unerwiając motoneurony dystalnych (dalszych) części kończyn (manipulacja).

Page 36: Odruch miotatyczny na rozciąganie

Ośrodki pnia mózgu inicjują lokomocję i kontrolują jej prędkość

Wzrost pobudzenia elektrycznego przyłożonego do mesencephalic locomotor region (MLR) u kotów z przeciętym połączeniem do kory mózgowej, zmienia krok i prędkość chodu. W miarę wzrostu prędkości, tylne łapy zmieniają krok z naprzemiennego na równoczesne zgięcia i wyprosty.

Page 37: Odruch miotatyczny na rozciąganie

Kontrola chodzenia - trzy ośrodki pnia mózgu

Aktywność neuronów w trzech ośrodkach pnia mózgu podczas chodzenia. A. Komórki siatkowato – rdzeniowe zwiększają odpalanie w fazie zginania. Usunięcie móżdżku znacznie redukuje tę aktywność – spada napięcie mięśni koordynacja kończyn. B. Aktywność neuronów przedsionkowo-rdzeniowych osiąga maksimum w fazie podparcia. C. Aktywność neuronów czerwienno -rdzeniowych osiąga maksimum w fazie zgięcia. Wniosek: ośrodki pnia mózgu kontrolują generatory rdzenia kręgowego poprzez i) ogólną aktywację i ii) modulowaną aktywność torującą poszczególne fazy kroku