oct. 6, 2006 1 summary of the polarisation session j. clarke, g. moortgat-pick, s. riemann 10...

22
Oct. 6, 2006 1 Summary of the Polarisation Session J. Clarke, G. Moortgat-Pick, S. Riemann 10 November 2006, ECFA Workshop, Valencia

Upload: roberta-harper

Post on 13-Dec-2015

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Oct. 6, 2006 1 Summary of the Polarisation Session J. Clarke, G. Moortgat-Pick, S. Riemann 10 November 2006, ECFA Workshop, Valencia

Oct. 6, 2006 1

Summary of the Polarisation Session

J. Clarke, G. Moortgat-Pick, S. Riemann

10 November 2006, ECFA Workshop, Valencia

Page 2: Oct. 6, 2006 1 Summary of the Polarisation Session J. Clarke, G. Moortgat-Pick, S. Riemann 10 November 2006, ECFA Workshop, Valencia

Oct. 6 2006 2

Polarisation: Topics• Polarimetry at the IP

• polarized e+ source: GEANT4 with polarised processes: E166 Status and results target and radiation aspects

• Physics studies: Contactlike interactions radiative neutralino production

• Undulator source 30% e+ polarisation can be kept with spin rotators: Physics goal of Pe+ ~30

Page 3: Oct. 6, 2006 1 Summary of the Polarisation Session J. Clarke, G. Moortgat-Pick, S. Riemann 10 November 2006, ECFA Workshop, Valencia

Oct. 6 2006 3

Nello Paver: Identifying contactlike effective interactions

• Sensitivity to new physics ↔ deviations from predictions

• e+ polarisation enhances cross section higher sensitivity (N~[1+Pe+Pe-]; smaller P/P)

• Identification of new physics

e+ polarisation is essential smaller region of confusion

g/ Z’, leptoquarks, …

Page 4: Oct. 6, 2006 1 Summary of the Polarisation Session J. Clarke, G. Moortgat-Pick, S. Riemann 10 November 2006, ECFA Workshop, Valencia

Oct. 6 2006 4

Nello Paver: Identifying contactlike effective interactions

Page 5: Oct. 6, 2006 1 Summary of the Polarisation Session J. Clarke, G. Moortgat-Pick, S. Riemann 10 November 2006, ECFA Workshop, Valencia

Oct. 6 2006 5

Olaf Kittel: Polarisation aspects in radiative neutralino production

Discovery of R-parity conserving SUSY particles: indirect: missing energy direct: pair production of neutralinos, charginos, sleptons Process can be studied at ILC (not at LEP)

Page 6: Oct. 6, 2006 1 Summary of the Polarisation Session J. Clarke, G. Moortgat-Pick, S. Riemann 10 November 2006, ECFA Workshop, Valencia

Oct. 6 2006 6

Olaf Kittel: Polarisation aspects in radiative neutralino production

Page 7: Oct. 6, 2006 1 Summary of the Polarisation Session J. Clarke, G. Moortgat-Pick, S. Riemann 10 November 2006, ECFA Workshop, Valencia

Oct. 6 2006 7

Erez Reinherz-Aronis: Undulator-Based Production of Polarized Positrons

e+

Diag.

γDiag.

e-

Dump

46.6 GeV e-

W Target

10 MeV γ

Undulator

Spectrometer

e- to Dump

Bending magnets

preliminary

07.0

e

eee

P

AP

AsyP

Page 8: Oct. 6, 2006 1 Summary of the Polarisation Session J. Clarke, G. Moortgat-Pick, S. Riemann 10 November 2006, ECFA Workshop, Valencia

Oct. 6 2006 8

Erez Reinherz-Aronis: Results from E166

• Analyzing power determined by simulations

• e+ polarisation between 50% and 90 % depending on e+ energy

Preliminary

Page 9: Oct. 6, 2006 1 Summary of the Polarisation Session J. Clarke, G. Moortgat-Pick, S. Riemann 10 November 2006, ECFA Workshop, Valencia

Oct. 6 2006 9

Andreas Schaelicke: Polarisation in GEANT4

• Polarisation transfer

- in the E166 experiment

- Target studies• Polarimetry at low energies• Processes:

- Pair-production

- Bremsstrahlung

- Compton scattering QED

- Moller/Bhabha scattering

- Positron annihilation in flight

Use matrix formalism diff. xs, asymmetry, polarisation, depolarisation and polarisation transfer

Page 10: Oct. 6, 2006 1 Summary of the Polarisation Session J. Clarke, G. Moortgat-Pick, S. Riemann 10 November 2006, ECFA Workshop, Valencia

Oct. 6 2006 10

Andreas Schaelicke: Polarisation in GEANT4

Page 11: Oct. 6, 2006 1 Summary of the Polarisation Session J. Clarke, G. Moortgat-Pick, S. Riemann 10 November 2006, ECFA Workshop, Valencia

Oct. 6 2006 11

A. Ushakov: Radiation and Target Aspects

UBS: undulator based source (150 GeV e-, Ti alloy)CS: conventional source (6.2 GeV e-, W-Re target)

Simulations done with FLUKA, SPECTER

Page 12: Oct. 6, 2006 1 Summary of the Polarisation Session J. Clarke, G. Moortgat-Pick, S. Riemann 10 November 2006, ECFA Workshop, Valencia

Oct. 6 2006 12

Ken Moffeit et al.: Performance of 14 mrad

Extraction Line at 500 GeV and 1 TeV

250 GeV

2 mrad energystripe

2 mradenergy stripe

BVEX1Ez=46.782 m

SynchrotronRadiation Shielding

for Cerenkov Detectorz=164.25

y=12.25cm

Energy Chicane Polarimeter Chicane

10 cm

10 meters

Synchrotron StripeDetector

z=147.682x=0 y= -19.85

Cerenkov Detectorz= ~175 m

Wiggler Magnets

25.1 GeV

BVEX2Ez=49.082 m

WEX1z=52.682 m

BVEX3Ez=55.282 m

BVEX4Ez=57.582 m

BVEX5Ez=59.882 m

BVEX6Ez=62.182 m

WEX2z=65.782 m

BVEX1Pz=120.682 m

BVEX2Pz=140.682 m

BVEX3Pz=152.682m

BVEX4Pz=172.682 m

Compton IP

31.2 GeV

Synchrotron StripeDetector z= 147.682 m

x=0 y=15.3cm

VacuumChamber

VacuumChamber

Synchrotron Radiation limit toCherenkov Detector

14

cm

17

.8 c

m

QDEX1Az=6.0 m

QDEX1Bz=7.941 m

QFEX2Az=9.881 m

QFEX2Bz=15.5 m

QFEX2Cz=17.943 m

QFEX2Dz=20.386 m

QDEX3Az=22.829 m

QDEX3Bz=25.235 m

QDEX3Cz=27.641 m

QDEX3Dz=30.047 m

QDEX3Ez=32.453 m

QFEX4Az=34.858 m

QFEX4Bz=37.103 m

QFEX4Cz=39.348 m

QFEX4Dz=41.593 m

IP

-0.75mrad

0.75mrad

QFEX4Ez=43.838 m

BVEX7Ez=68.382 m

BVEX1Ez=70.682 m

Page 13: Oct. 6, 2006 1 Summary of the Polarisation Session J. Clarke, G. Moortgat-Pick, S. Riemann 10 November 2006, ECFA Workshop, Valencia

Oct. 6 2006 13

Ken Moffeit: Conclusions

0.5 TeV CMS• Performance of Polarimeter Meets Goals

1 TeV CMS• Performance of Polarimeter Meets Goals• Large background from scattered synchrotron radiation photons at the Cherenkov Detector• Concern about large beam losses for Low Power beam parameters

Page 14: Oct. 6, 2006 1 Summary of the Polarisation Session J. Clarke, G. Moortgat-Pick, S. Riemann 10 November 2006, ECFA Workshop, Valencia

Oct. 6 2006 14

•Core of beam within +-100microns has 48% of the beam.

•The polarization projection at the Compton IP is in good agreement with the luminosity weighted polarization at the e+e- interaction region. A precision measurement of +-0.25% will be possible.

•No beam losses from e+e- IR to Compton detector plane out of 17.6 million beam tracks for Normal ILC and Large-y beam parameter data sets. The Low Power beam parameter data set has losses of 1.1 * 10-4.

•The collimator at z=164.25 meters needs to be designed. It absorbs the synchrotron radiation above the 0.75 mrad beam stay clear allowing the Cherenkov detector to begin at y~14 cm. Background from scattered synchrotron radiation occurs at the Cherenkov detector and will require careful design of the collimation and shielding.

Ken Moffeit: Conclusions

14 mrad extraction line 0.5 TeV CMS

•Performance of Polarimeter Meets Goals

Page 15: Oct. 6, 2006 1 Summary of the Polarisation Session J. Clarke, G. Moortgat-Pick, S. Riemann 10 November 2006, ECFA Workshop, Valencia

Oct. 6 2006 15

•Core of beam within +-100microns has 43% of the beam. The large-y and low power parameter data sets have a lower Compton luminosity by a factor 2.

•The polarization projection at the Compton IP is in good agreement with the luminosity weighted polarization at the e+e- interaction region. A precision measurement of +-0.25% will be possible.

Beam losses of 1.8*10-5 occur between the e+e- IR and the Compton detector plane for the Normal ILC beam parameter data set. Beam losses are also small but not negligible for the Large-y beam parameter data set. There are large losses of 0.53% of the beam for the Low Power beam parameter data set that will require insertion of a new collimator between the e+e- IR and the Compton detector plane or an increase in the beam stay clear from 0.75 mrad.

•The collimator at z=164.25 meters absorbs the synchrotron radiation above the 0.75 mrad beam stay clear allowing the Cherenkov detector to begin at y~14 cm. Background from scattered synchrotron radiation is very large at the Cherenkov detector and will require careful design of the collimation and shielding.

1 TeV CMS Ken Moffeit: 14 mrad extraction line

•Performance of Polarimeter Meets Goals•Background from scattered synchrotron radiation photons at the Cherenkov Detector•Concern about large beam losses for Low Power beam parameters

Page 16: Oct. 6, 2006 1 Summary of the Polarisation Session J. Clarke, G. Moortgat-Pick, S. Riemann 10 November 2006, ECFA Workshop, Valencia

Oct. 6 2006 16

Jenny List: Detector development for High Energy Polarimetry

Page 17: Oct. 6, 2006 1 Summary of the Polarisation Session J. Clarke, G. Moortgat-Pick, S. Riemann 10 November 2006, ECFA Workshop, Valencia

Oct. 6 2006 17

With the helical undulator e+ source we could

have both beams polarised

avarage e+ polarisation:

≈30%

Page 18: Oct. 6, 2006 1 Summary of the Polarisation Session J. Clarke, G. Moortgat-Pick, S. Riemann 10 November 2006, ECFA Workshop, Valencia

Oct. 6 2006 18

Page 19: Oct. 6, 2006 1 Summary of the Polarisation Session J. Clarke, G. Moortgat-Pick, S. Riemann 10 November 2006, ECFA Workshop, Valencia

Oct. 6 2006 19With (80%, 30%) we expect a gain up to 2 compared to (80% ; 0%)

Page 20: Oct. 6, 2006 1 Summary of the Polarisation Session J. Clarke, G. Moortgat-Pick, S. Riemann 10 November 2006, ECFA Workshop, Valencia

Oct. 6 2006 20

Summary & Conclusion

Group covers wide range of physics, production and measurement of e+ polarisation With an undulator also the e+ beam is polarized! we could have a polarized machine from the beginning! To explore the polarisation spin rotators before (LTR) and after the DR (RTL) are needed (see SLAC-TN-05-045, EUROTeV-Report-2005-024-1) (spin-flip: pulse-to-pulse ?!) Polarimetry of e- and e+ at the IP Physics goal of 30% e+ polarisation: remember: first TESLA studies were done also with a 60/40 option; already 30% polarisation help to suppress background processes estimated improvement: factor ~2 details will be now considered

Page 21: Oct. 6, 2006 1 Summary of the Polarisation Session J. Clarke, G. Moortgat-Pick, S. Riemann 10 November 2006, ECFA Workshop, Valencia

Oct. 6 2006 21

Layout of positron damping ring system showing the parallel spin rotation beam lines for randomly selecting positron polarization direction. A pair of kicker magnets is turned on between pulse-trains to deflect the beam to the spin rotation solenoids with negative B-field.

space for spin rotators must be foreseen

Page 22: Oct. 6, 2006 1 Summary of the Polarisation Session J. Clarke, G. Moortgat-Pick, S. Riemann 10 November 2006, ECFA Workshop, Valencia

Oct. 6 2006 22To do !