ocean tide modelling, part 1 - umawakes.uma.pt/cimar/partii_lecture1.pdf · ocean tide modelling,...

127
Ocean Tide Modelling, Part 1 M.S. Bos [email protected] Centro Interdisciplinar de Investigac ¸ ˜ ao Marinha e Ambiental (CIIMAR), University of Porto, Portugal Introduction to ocean tides – p. 1/57

Upload: others

Post on 31-May-2020

14 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Ocean Tide Modelling, Part 1

M.S. Bos

[email protected]

Centro Interdisciplinar de Investigacao Marinha e Ambiental (CIIMAR),

University of Porto, Portugal

Introduction to ocean tides – p. 1/57

Page 2: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Who’s your teacher today?

Ph.D. work performed at Proudman Oceanographic

Laboratory, Liverpool, United Kingdom under the

supervision of Prof. Trevor Baker.

Introduction to ocean tides – p. 2/57

Page 3: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Who’s your teacher today?

Ph.D. work performed at Proudman Oceanographic

Laboratory, Liverpool, United Kingdom under the

supervision of Prof. Trevor Baker.

Ph.D. subject: Ocean tide loading.

Introduction to ocean tides – p. 2/57

Page 4: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Who’s your teacher today?

Ph.D. work performed at Proudman Oceanographic

Laboratory, Liverpool, United Kingdom under the

supervision of Prof. Trevor Baker.

Ph.D. subject: Ocean tide loading.

I am more a geodesist than an oceanographer.

Introduction to ocean tides – p. 2/57

Page 5: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Overview of today’s lecture

Short historical overview of tidal research

Introduction to ocean tides – p. 3/57

Page 6: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Overview of today’s lecture

Short historical overview of tidal research

Derivation of the tidal potential

Introduction to ocean tides – p. 3/57

Page 7: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Overview of today’s lecture

Short historical overview of tidal research

Derivation of the tidal potential

Derivation of the Laplace Tidal Equations

Introduction to ocean tides – p. 3/57

Page 8: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Moon & Sun cause ocean tides

Introduction to ocean tides – p. 4/57

Page 9: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Tide gauge at Gibraltar

-0.2

0

0.2

0.4

0.6

0.8

1

12 13 14 15 16 17 18 19 20 21

tide

ga

ug

e (

m)

January 2009

observed

Introduction to ocean tides – p. 5/57

Page 10: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Isaac Newton (1687): Law of Gravity

Introduction to ocean tides – p. 6/57

Page 11: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

The gravitational tidal force

Earth

R

r

dMoon

ψ

P

aP = GMr2

Introduction to ocean tides – p. 7/57

Page 12: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

The gravitational tidal force

Earth

R

r

dMoon

ψ

P

aP = GMr2

aP = −∇GMr

Introduction to ocean tides – p. 7/57

Page 13: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

The gravitational tidal force

Earth

R

r

dMoon

ψ

P

aP = GMr2

aP = −∇GMr

aP = −∇(

GM√d2+R2

−2dR cosψ

)

Introduction to ocean tides – p. 7/57

Page 14: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

The gravitational tidal force

Earth

R

r

dMoon

ψ

P

aP = GMr2

aP = −∇GMr

aP = −∇(

GM√d2+R2

−2dR cosψ

)

aP = −GMd∇

∞∑

n=0

(

Rd

)nPn(cosψ)

Introduction to ocean tides – p. 7/57

Page 15: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

The gravitational tidal force

Earth

R

r

dMoon

ψ

P

aP = GMr2

aP = −∇GMr

aP = −∇(

GM√d2+R2

−2dR cosψ

)

aP = −GMd∇

∞∑

n=0

(

Rd

)nPn(cosψ)

aP = −∇∞∑

n=0

Un(cosψ)

Introduction to ocean tides – p. 7/57

Page 16: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

The gravitational tidal force

Earth

R

r

dMoon

ψ

P

aP = GMr2

aP = −∇GMr

aP = −∇(

GM√d2+R2

−2dR cosψ

)

aP = −GMd∇

∞∑

n=0

(

Rd

)nPn(cosψ)

aP = −∇∞∑

n=0

Un(cosψ)

Only U2 already describes 98% of the tides!

Introduction to ocean tides – p. 7/57

Page 17: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

?

Introduction to ocean tides – p. 8/57

Page 18: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Why work with the Tidal potential?

A force has a direction and a magnitude. This is called

a vector.

Introduction to ocean tides – p. 9/57

Page 19: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Why work with the Tidal potential?

A force has a direction and a magnitude. This is called

a vector.

The tidal potential only has a value, no direction.

Introduction to ocean tides – p. 9/57

Page 20: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Why work with the Tidal potential?

A force has a direction and a magnitude. This is called

a vector.

The tidal potential only has a value, no direction.

Its easier to work with a potential than with a vector.

Introduction to ocean tides – p. 9/57

Page 21: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Why work with the Tidal potential?

A force has a direction and a magnitude. This is called

a vector.

The tidal potential only has a value, no direction.

Its easier to work with a potential than with a vector.

A large potential value means it can release a big force

(produce a lot of work)

Low potential

high potential

Introduction to ocean tides – p. 9/57

Page 22: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Shape of U2

2UEarth

Moon

+

− −−

− −

+

Introduction to ocean tides – p. 10/57

Page 23: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Tidal potential, degree 2: U2

ψθ

Λ−λ

δ

Equator

Pole

P

λ Λ

cosψ = sin θ sin δ + cos θ cos δ cos(Λ − λ)

Introduction to ocean tides – p. 11/57

Page 24: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Tidal potential, degree 2: U2

ψθ

Λ−λ

δ

Equator

Pole

P

λ Λ

cosψ = sin θ sin δ + cos θ cos δ cos(Λ − λ)

U2 = 34

GMd

(

Rd

)2 (

cos2 θ cos2 δ cos 2(Λ − λ)+

sin 2θ sin 2δ cos(Λ − λ) +

3(

sin2 θ − 13

) (

sin2 δ − 13

))

Introduction to ocean tides – p. 11/57

Page 25: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Rewrite of U2

D =3

4

GM

d

(

R

d

)2

Introduction to ocean tides – p. 12/57

Page 26: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Rewrite of U2

D =3

4

GM

d

(

R

d

)2

G0 =1

2D(1−3 sin2 θ), G1 = D sin 2θ, G2 = D cos2 θ

Introduction to ocean tides – p. 12/57

Page 27: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Rewrite of U2

D =3

4

GM

d

(

R

d

)2

G0 =1

2D(1−3 sin2 θ), G1 = D sin 2θ, G2 = D cos2 θ

U2 =2

3G0(1 − 3 sin2 δ) +G1 sin 2δ cos(Λ − λ)+

G2 cos2 δ cos 2(Λ − λ)

Introduction to ocean tides – p. 12/57

Page 28: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

What are we doing?

We derived the fact that the tidal forcing only depends

on the second degree of the tidal potential: U2.

Introduction to ocean tides – p. 13/57

Page 29: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

What are we doing?

We derived the fact that the tidal forcing only depends

on the second degree of the tidal potential: U2.

We rewrote U2 as the sum of three separate functions.

Introduction to ocean tides – p. 13/57

Page 30: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

What are we doing?

We derived the fact that the tidal forcing only depends

on the second degree of the tidal potential: U2.

We rewrote U2 as the sum of three separate functions.

A nice property of these three functions is that each

describes the long-period, diurnal and semi-diurnal

variations respectively.

Introduction to ocean tides – p. 13/57

Page 31: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

What are we doing?

We derived the fact that the tidal forcing only depends

on the second degree of the tidal potential: U2.

We rewrote U2 as the sum of three separate functions.

A nice property of these three functions is that each

describes the long-period, diurnal and semi-diurnal

variations respectively.

We still need a way to describe the variations in the

inclination and longitude of Sun/Moon.

Introduction to ocean tides – p. 13/57

Page 32: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Geodetic functions

−0.8 −0.4 0.0 0.4 0.8

Long period tides G 0

Introduction to ocean tides – p. 14/57

Page 33: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Geodetic functions

−0.8 −0.4 0.0 0.4 0.8

1G sin(lon)Diurnal tides

Introduction to ocean tides – p. 14/57

Page 34: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Geodetic functions

−0.8 −0.4 0.0 0.4 0.8

Semi−diurnal tides 2G cos(2lon)

Introduction to ocean tides – p. 14/57

Page 35: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Still rewriting U2: account for Λ and δ

U2i =∑

KABC·DEF Gi(θ, R)

cos, for i = 0, 2

sin, for i = 1

(Aτ + Bs + Ch + Dp + EN ′ + Fps)

K0,1,−1·2,−3,1 → 0τ + 1s − 1h + 2p − 3N ′ + 1ps

Introduction to ocean tides – p. 15/57

Page 36: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Still rewriting U2: account for Λ and δ

U2i =∑

KABC·DEF Gi(θ, R)

cos, for i = 0, 2

sin, for i = 1

(Aτ + Bs + Ch + Dp + EN ′ + Fps)

K0,1,−1·2,−3,1 → 0τ + 1s − 1h + 2p − 3N ′ + 1ps

Doodson angles:

τ = local mean lunar time p = perigee of Moon’s orbit

s = mean longitude of Moon N ′ = ascending node of Moon

h = mean longitude of Sun ps = perigee of the Sun

Introduction to ocean tides – p. 15/57

Page 37: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Tidal potential coefficients

Darwin Doodson Frequency

symbol number (cycles/day) K

Ssa 057 · 555 0.00548 0.072732

Mm 065 · 455 0.03629 0.082569

Mf 075 · 555 0.07320 0.156303

Q1 135 · 655 0.89324 0.072136

O1 145 · 555 0.92954 0.376763

P1 163 · 555 0.99726 0.175307

K1 165 · 555 1.00274 -0.529876

N2 245 · 655 1.89598 0.173881

M2 255 · 555 1.93227 0.908184

S2 273 · 555 2.00000 0.422535

K2 275 · 555 2.00548 0.114860

Introduction to ocean tides – p. 16/57

Page 38: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Sir George Howard Darwin

U2 =KM2G2 cos(ωM2

t+ χM2)+

KS2G2 cos(ωS2

t+ χS2)+

KO1G1 sin(ωO1

t+ χO1)+

KMfG0 cos(ωMf t+ χMf)+

. . .

Introduction to ocean tides – p. 17/57

Page 39: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Tamura Tidal potential coefficients (K)

Introduction to ocean tides – p. 18/57

Page 40: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Tidal prediction

Now that we know how to write the tidal potential, we can

also model the tides in the harbour in the same way:

ζ =AM2G2 cos(ωM2

t + χM2+ βM2

)+

AO1G1 sin(ωO1

t + χO1+ βO1

)+

AMfG0 cos(ωMf t + χMf + βMf ) + . . .

Introduction to ocean tides – p. 19/57

Page 41: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Tidal prediction

Now that we know how to write the tidal potential, we can

also model the tides in the harbour in the same way:

ζ =AM2G2 cos(ωM2

t + χM2+ βM2

)+

AO1G1 sin(ωO1

t + χO1+ βO1

)+

AMfG0 cos(ωMf t + χMf + βMf ) + . . .

For each tide gauge, the values of A and β are given for

each harmonic.

Introduction to ocean tides – p. 19/57

Page 42: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Tidal prediction

Now that we know how to write the tidal potential, we can

also model the tides in the harbour in the same way:

ζ =AM2G2 cos(ωM2

t + χM2+ βM2

)+

AO1G1 sin(ωO1

t + χO1+ βO1

)+

AMfG0 cos(ωMf t + χMf + βMf ) + . . .

For each tide gauge, the values of A and β are given for

each harmonic.

The value for ω are known and the value of χ can be

computed.

Introduction to ocean tides – p. 19/57

Page 43: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Tidal values of tide gauge at Gribaltar

http://www.bodc.ac.uk/projects/international/woce/tidal_constants/

Introduction to ocean tides – p. 20/57

Page 44: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Predicted tides at Gibraltar

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

12 13 14 15 16 17 18 19 20 21 22

tid

e g

au

ge

(m

)

January 2009

M2

Introduction to ocean tides – p. 21/57

Page 45: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Predicted tides at Gibraltar

-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

12 13 14 15 16 17 18 19 20 21 22

tid

e g

au

ge

(m

)

January 2009

O1

Introduction to ocean tides – p. 21/57

Page 46: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Predicted tides at Gibraltar

-0.0025

-0.002

-0.0015

-0.001

-0.0005

0

0.0005

0.001

0.0015

12 13 14 15 16 17 18 19 20 21 22

tid

e g

au

ge

(m

)

January 2009

Mf

Introduction to ocean tides – p. 21/57

Page 47: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Predicted tides at Gibraltar

-0.2

0

0.2

0.4

0.6

0.8

1

12 13 14 15 16 17 18 19 20 21 22

tid

e g

au

ge

(m

)

January 2009

observedpredicted

Introduction to ocean tides – p. 21/57

Page 48: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Force due to Tidal potential

dU2

dz

dU2

dxρp+ g

ρ g

p

ρ

Moon

ρ

ρ

Introduction to ocean tides – p. 22/57

Page 49: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Force due to Tidal potential

dU2

dz

dU2

dx

p

ρ

ρ

ρ

dz

dx

Moon

p+ g

g

ρ

ρ

Hydrostatic equilibrium

Introduction to ocean tides – p. 22/57

Page 50: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Remember!

Ocean tides are caused by the horizontal gravitational

force of Moon and Sun, not the vertical force.

Introduction to ocean tides – p. 23/57

Page 51: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Remember!

Ocean tides are caused by the horizontal gravitational

force of Moon and Sun, not the vertical force.

Gravitational force acts on the whole water column.

Introduction to ocean tides – p. 23/57

Page 52: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Modelling the tides

So far, we only discussed the gravitational forcebut there are more forces influencing themodelling of the tides:

The Earth rotates so we have Corriolis forces

Introduction to ocean tides – p. 24/57

Page 53: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Modelling the tides

So far, we only discussed the gravitational forcebut there are more forces influencing themodelling of the tides:

The Earth rotates so we have Corriolis forces

A slope in the sea-surface also causes horizontal force.

Introduction to ocean tides – p. 24/57

Page 54: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Modelling the tides

So far, we only discussed the gravitational forcebut there are more forces influencing themodelling of the tides:

The Earth rotates so we have Corriolis forces

A slope in the sea-surface also causes horizontal force.

Bottom friction and/or lateral eddy dissipation

Introduction to ocean tides – p. 24/57

Page 55: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Force due to slope in sea-level

d ζ

dx

ρ

p

p

ζ +

p+F

ρp+ g

p

d ζ

dx

Introduction to ocean tides – p. 25/57

Page 56: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Force due to slope in sea-level

d ζ

dx

d ζ

dx

ρ

p

p

ζ

p+F

x

ρp+ g

p

ρF = g+

d ζ

dx

Introduction to ocean tides – p. 25/57

Page 57: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Force due to slope in sea-level

d ζ

dx

d ζ

dx

xp+F

xp’+F

ρp+ g d ζ

dx

ρ

p

p

ζ

ζx

p

ρF = g+

p’

p’

Introduction to ocean tides – p. 25/57

Page 58: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Conservation of mass

θdy (=Rd )

u

u+du

ζ

v+dv

D

v

λθdx (=R cos d )Introduction to ocean tides – p. 26/57

Page 59: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Conservation of mass

θdy (=Rd )

u

u+du

ζ

v+dv

D

v

λθdx (=R cos d )

Introduction to ocean tides – p. 26/57

Page 60: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Pierre-Simon Laplace (1776)

Laplace derived the differential

equations for a thin fluid on a

sphere with no vertical motion,

only horizontal motions.

Introduction to ocean tides – p. 27/57

Page 61: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Pierre-Simon Laplace (1776)

Laplace derived the differential

equations for a thin fluid on a

sphere with no vertical motion,

only horizontal motions.

This depth integrated model is

also called a barotropic model.

Introduction to ocean tides – p. 27/57

Page 62: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Laplace Tidal Equations

∂u

∂t+ u · ∇u + f × u = −g∇ζ

U

T

U 2

LfU g

H

L

D

Dt=

∂t+

u

R cos θ

∂λ+v

R

∂θ

Introduction to ocean tides – p. 28/57

Page 63: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Laplace Tidal Equations

Equations of motion in θ and λ direction:

∂u

∂t− (2Ω sin θ)v = − g

R cos θ

∂λ

(

ζ − U2

g

)

+Fλ

ρD

∂v

∂t+ (2Ω sin θ)u = − g

R

∂θ

(

ζ − U2

g

)

+Fθ

ρD

Introduction to ocean tides – p. 29/57

Page 64: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Laplace Tidal Equations

Equations of motion in θ and λ direction:

∂u

∂t− (2Ω sin θ)v = − g

R cos θ

∂λ

(

ζ − U2

g

)

+Fλ

ρD

∂v

∂t+ (2Ω sin θ)u = − g

R

∂θ

(

ζ − U2

g

)

+Fθ

ρD

Conservation of mass:

∂ζ

∂t+

D

R cos θ

(

∂u

∂λ+

∂(v cos θ)

∂θ

)

= 0

Introduction to ocean tides – p. 29/57

Page 65: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

What do we have?

A set of ordinary differential equations (ODE’s).

Introduction to ocean tides – p. 30/57

Page 66: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

What do we have?

A set of ordinary differential equations (ODE’s).

To solve them, we need boundary conditions.

Introduction to ocean tides – p. 30/57

Page 67: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

What do we have?

A set of ordinary differential equations (ODE’s).

To solve them, we need boundary conditions.

Here, it is assumed we have no flow through land,

u = v = 0 at the coast.

Introduction to ocean tides – p. 30/57

Page 68: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

What do we have?

A set of ordinary differential equations (ODE’s).

To solve them, we need boundary conditions.

Here, it is assumed we have no flow through land,

u = v = 0 at the coast.

A fact from physics: if a system is influenced by a

periodic force, its reponse will also be periodic.

Introduction to ocean tides – p. 30/57

Page 69: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

What do we have?

A set of ordinary differential equations (ODE’s).

To solve them, we need boundary conditions.

Here, it is assumed we have no flow through land,

u = v = 0 at the coast.

A fact from physics: if a system is influenced by a

periodic force, its reponse will also be periodic.

Consequence: We can compute the tides for each

harmonic separately!

Introduction to ocean tides – p. 30/57

Page 70: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

LTE in frequency domain

Tides are periodic:

U2(t) = U2eiωt, ζ(t) = ζeiωt, u(t) = ueiωt, v(t) = iveiωt

Introduction to ocean tides – p. 31/57

Page 71: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

LTE in frequency domain

Tides are periodic:

U2(t) = U2eiωt, ζ(t) = ζeiωt, u(t) = ueiωt, v(t) = iveiωt

Equations of motion in θ and λ direction:

ωu − (2Ω sin θ)v =gi

R cos θ

∂λ

(

ζ − U2

g

)

ωv − (2Ω sin θ)u = − g

R

∂θ

(

ζ − U2

g

)

Introduction to ocean tides – p. 31/57

Page 72: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

LTE in frequency domain

Tides are periodic:

U2(t) = U2eiωt, ζ(t) = ζeiωt, u(t) = ueiωt, v(t) = iveiωt

Equations of motion in θ and λ direction:

ωu − (2Ω sin θ)v =gi

R cos θ

∂λ

(

ζ − U2

g

)

ωv − (2Ω sin θ)u = − g

R

∂θ

(

ζ − U2

g

)

Conservation of mass:

iωζ +D

R cos φ

∂u

∂λ+

D

R

∂iv

∂φ− ivD sinφ

R cos φ= 0

Introduction to ocean tides – p. 31/57

Page 73: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

What’s our proges sofar?

The terms with ∂∂t

have disappeared. No more

derivatives with respect to time.

Introduction to ocean tides – p. 32/57

Page 74: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

What’s our proges sofar?

The terms with ∂∂t

have disappeared. No more

derivatives with respect to time.

By writing all derivatives of the form ∂yi

∂xas yi+1−yi

∆x, we

transform the ODE’s into a set of linear equations.

Introduction to ocean tides – p. 32/57

Page 75: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

What’s our proges sofar?

The terms with ∂∂t

have disappeared. No more

derivatives with respect to time.

By writing all derivatives of the form ∂yi

∂xas yi+1−yi

∆x, we

transform the ODE’s into a set of linear equations.

The set of linear equations can be solved easily.

Introduction to ocean tides – p. 32/57

Page 76: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

What’s our proges sofar?

The terms with ∂∂t

have disappeared. No more

derivatives with respect to time.

By writing all derivatives of the form ∂yi

∂xas yi+1−yi

∆x, we

transform the ODE’s into a set of linear equations.

The set of linear equations can be solved easily.

We will call this program BOTM: Basic Ocean Tide

Model.

Introduction to ocean tides – p. 32/57

Page 77: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Solution for a non-rotating Earth

Semidiurnal Tides (G2):

ζ = −KU22

Diurnal Tides (G1):

ζ = −KU21

Long period Tides (G0):

ζ = KU20

K =6gD

ω2R2 − 6gD

Introduction to ocean tides – p. 33/57

Page 78: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Staggered C-grid

v

ζu

Introduction to ocean tides – p. 34/57

Page 79: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Staggered C-grid

Introduction to ocean tides – p. 34/57

Page 80: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Staggered C-grid

0˚ 90˚ 180˚ 270˚

−45˚

45˚

Introduction to ocean tides – p. 34/57

Page 81: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Why study Earth without topography?

To verify that our BOTM gives reasonable results

Introduction to ocean tides – p. 35/57

Page 82: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Why study Earth without topography?

To verify that our BOTM gives reasonable results

If you program your own ocean tide model, or start

using a model from someone else, you must always,

always, check if it gives good results for cases for

which you know already the answer!

Introduction to ocean tides – p. 35/57

Page 83: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Theoretical versus BOTM

M2

0˚ 90˚ 180˚ 270˚

−45˚

45˚

−60 −40 −20 0 20 40 60

mm

0˚ 90˚ 180˚ 270˚ 0˚

−45˚

45˚

−60 −40 −20 0 20 40 60

mm

Theoretical BOTM

Introduction to ocean tides – p. 36/57

Page 84: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Theoretical versus BOTM

O1

0˚ 90˚ 180˚ 270˚

−45˚

45˚

−2.0 −1.6 −1.2 −0.8 −0.4 0.0 0.4 0.8 1.2 1.6 2.0

m

0˚ 90˚ 180˚ 270˚ 0˚

−45˚

45˚

−2.0 −1.6 −1.2 −0.8 −0.4 0.0 0.4 0.8 1.2 1.6 2.0

m

Theoretical BOTM

Introduction to ocean tides – p. 36/57

Page 85: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Theoretical versus BOTM

Mf

0˚ 90˚ 180˚ 270˚

−45˚

45˚

−80 −40 0 40 80

mm

0˚ 90˚ 180˚ 270˚ 0˚

−45˚

45˚

−80 −40 0 40 80

mm

Theoretical BOTM

Introduction to ocean tides – p. 36/57

Page 86: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Sinning Earth

What happens if we now let the Earth spin on ourocean covered Earth?

Introduction to ocean tides – p. 37/57

Page 87: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

M2 tide on an ocean covered Earth

45˚ 90˚ 135˚ 180˚ 225˚ 270˚ 315˚

−45˚

45˚

−1

80

−1

80

−1

80

−1

80

−1

80

−1

80

−1

80

−1

80

−1

80

−1

80

−1

80

−1

80

−1

20

−120

−120

−120

−1

20

−120

−120

−120

−1

20

−120

−120

−120

−1

20

−120

−120

−120

−120

−120

−120

−120−

60

−60

−60

−60 −60

−60

−60

−6

0−

60

−60

−60 −60

−6

0

−60

−60

−60

−6

0−

60

−60

−60

−60

−60

−60

−60−60

00

0

00

00

00

00

0

00

00

60

60

60

606

060

60

60

60

60

60

60

60

60

60

6060 60

60 60

12

0120

120

120

12

0120

120

120

12

0120

120

120

12

0120

120

120120

120

120

120

120

120

120

120

0.0 0.1 0.2 0.3 0.4 0.5 0.6

m

Introduction to ocean tides – p. 38/57

Page 88: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Amplitude and Phase-lag

Colour indicates the size of the amplitude.

amplitude

time

phase−lag

Introduction to ocean tides – p. 39/57

Page 89: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Amplitude and Phase-lag

Colour indicates the size of the amplitude.

contour line indicates how much the tidal signal is

delayed with respect to the phase of the tidal potential.

amplitude

time

phase−lag

Introduction to ocean tides – p. 39/57

Page 90: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

tidal ellipses of flow (M2)

0˚ 45˚ 90˚ 135˚ 180˚ 225˚ 270˚ 315˚

−45˚

45˚

Introduction to ocean tides – p. 40/57

Page 91: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

M2 tide on an ocean covered Earth

45˚ 90˚ 135˚ 180˚ 225˚ 270˚ 315˚

−45˚

45˚

−1

80

−1

80

−1

80

−1

80

−1

80

−1

80

−1

80

−1

80

−1

80

−1

80

−1

80

−1

80

−1

20

−120

−120

−120

−1

20

−120

−120

−120

−1

20

−120

−120

−120

−1

20

−120

−120

−120

−120

−120

−120

−120−

60

−60

−60

−60 −60

−60

−60

−6

0−

60

−60

−60 −60

−6

0

−60

−60

−60

−6

0−

60

−60

−60

−60

−60

−60

−60−60

00

0

00

00

00

00

0

00

00

60

60

60

606

060

60

60

60

60

60

60

60

60

60

6060 60

60 60

12

0120

120

120

12

0120

120

120

12

0120

120

120

12

0120

120

120120

120

120

120

120

120

120

120

0.0 0.1 0.2 0.3 0.4 0.5 0.6

m

Introduction to ocean tides – p. 41/57

Page 92: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Snapshot of sea-level due ove time (M2)t = 0 hours

45˚ 90˚ 135˚ 180˚ 225˚ 270˚ 315˚

−45˚

45˚

−0.4 −0.2 0.0 0.2 0.4

m

Introduction to ocean tides – p. 42/57

Page 93: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Snapshot of sea-level due ove time (M2)t = 0.7 hours

45˚ 90˚ 135˚ 180˚ 225˚ 270˚ 315˚

−45˚

45˚

−0.4 −0.2 0.0 0.2 0.4

m

Introduction to ocean tides – p. 42/57

Page 94: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Snapshot of sea-level due ove time (M2)t = 1.4 hours

45˚ 90˚ 135˚ 180˚ 225˚ 270˚ 315˚

−45˚

45˚

−0.4 −0.2 0.0 0.2 0.4

m

Introduction to ocean tides – p. 42/57

Page 95: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Snapshot of sea-level due ove time (M2)t = 2.1 hours

45˚ 90˚ 135˚ 180˚ 225˚ 270˚ 315˚

−45˚

45˚

−0.4 −0.2 0.0 0.2 0.4

m

Introduction to ocean tides – p. 42/57

Page 96: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Snapshot of sea-level due ove time (M2)t = 2.8 hours

45˚ 90˚ 135˚ 180˚ 225˚ 270˚ 315˚

−45˚

45˚

−0.4 −0.2 0.0 0.2 0.4

m

Introduction to ocean tides – p. 42/57

Page 97: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Snapshot of sea-level due ove time (M2)t = 3.4 hours

45˚ 90˚ 135˚ 180˚ 225˚ 270˚ 315˚

−45˚

45˚

−0.4 −0.2 0.0 0.2 0.4

m

Introduction to ocean tides – p. 42/57

Page 98: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Snapshot of sea-level due ove time (M2)t = 4.1 hours

45˚ 90˚ 135˚ 180˚ 225˚ 270˚ 315˚

−45˚

45˚

−0.4 −0.2 0.0 0.2 0.4

m

Introduction to ocean tides – p. 42/57

Page 99: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Snapshot of sea-level due ove time (M2)t = 4.8 hours

45˚ 90˚ 135˚ 180˚ 225˚ 270˚ 315˚

−45˚

45˚

−0.4 −0.2 0.0 0.2 0.4

m

Introduction to ocean tides – p. 42/57

Page 100: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Snapshot of sea-level due ove time (M2)t = 5.5 hours

45˚ 90˚ 135˚ 180˚ 225˚ 270˚ 315˚

−45˚

45˚

−0.4 −0.2 0.0 0.2 0.4

m

Introduction to ocean tides – p. 42/57

Page 101: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Snapshot of sea-level due ove time (M2)t = 6.2 hours

45˚ 90˚ 135˚ 180˚ 225˚ 270˚ 315˚

−45˚

45˚

−0.4 −0.2 0.0 0.2 0.4

m

Introduction to ocean tides – p. 42/57

Page 102: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Snapshot of sea-level due ove time (M2)t = 6.9 hours

45˚ 90˚ 135˚ 180˚ 225˚ 270˚ 315˚

−45˚

45˚

−0.4 −0.2 0.0 0.2 0.4

m

Introduction to ocean tides – p. 42/57

Page 103: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Snapshot of sea-level due ove time (M2)t = 7.6 hours

45˚ 90˚ 135˚ 180˚ 225˚ 270˚ 315˚

−45˚

45˚

−0.4 −0.2 0.0 0.2 0.4

m

Introduction to ocean tides – p. 42/57

Page 104: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Snapshot of sea-level due ove time (M2)t = 8.3 hours

45˚ 90˚ 135˚ 180˚ 225˚ 270˚ 315˚

−45˚

45˚

−0.4 −0.2 0.0 0.2 0.4

m

Introduction to ocean tides – p. 42/57

Page 105: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Snapshot of sea-level due ove time (M2)t = 9.0 hours

45˚ 90˚ 135˚ 180˚ 225˚ 270˚ 315˚

−45˚

45˚

−0.4 −0.2 0.0 0.2 0.4

m

Introduction to ocean tides – p. 42/57

Page 106: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Snapshot of sea-level due ove time (M2)t = 9.6 hours

45˚ 90˚ 135˚ 180˚ 225˚ 270˚ 315˚

−45˚

45˚

−0.4 −0.2 0.0 0.2 0.4

m

Introduction to ocean tides – p. 42/57

Page 107: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Snapshot of sea-level due ove time (M2)t = 10.3 hours

45˚ 90˚ 135˚ 180˚ 225˚ 270˚ 315˚

−45˚

45˚

−0.4 −0.2 0.0 0.2 0.4

m

Introduction to ocean tides – p. 42/57

Page 108: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Snapshot of sea-level due ove time (M2)t = 11.0 hours

45˚ 90˚ 135˚ 180˚ 225˚ 270˚ 315˚

−45˚

45˚

−0.4 −0.2 0.0 0.2 0.4

m

Introduction to ocean tides – p. 42/57

Page 109: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Snapshot of sea-level due ove time (M2)t = 11.7 hours

45˚ 90˚ 135˚ 180˚ 225˚ 270˚ 315˚

−45˚

45˚

−0.4 −0.2 0.0 0.2 0.4

m

Introduction to ocean tides – p. 42/57

Page 110: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Snapshot of sea-level due ove time (M2)t = 12.4 hours

45˚ 90˚ 135˚ 180˚ 225˚ 270˚ 315˚

−45˚

45˚

−0.4 −0.2 0.0 0.2 0.4

m

Introduction to ocean tides – p. 42/57

Page 111: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

O1 tide on an ocean covered Earth

45˚ 90˚ 135˚ 180˚ 225˚ 270˚ 315˚

−45˚

45˚

−150

−150

−150 −150

−150

−150

−1

50

−1

50

−150

−150 −150

−150

−150

−1

50

−150

−150

−120

−120

−120

−120

−1

20

−120 −120

−120

−120

−120

−120

−1

20

−120 −120−90 −90 −90 −90 −90 −90

−60−

60

−60

−60

−6

0

−60−60 −60 −60 −60 −60 −60 −60

−30−30

−30

−30

−30

−3

0

−3

0

−30 −30

−30

−30 −30 −30

−30

−30 −30 −30 −30 −30 −30

000 0000

00

00

0 0 0

000

0 0 0

0 0 0

00

0 0 0 0 0 0 0

30

3030

30

30

30

30

30

3030 30 30 3030 30 30 30 30 30

30

30

30

30

3030

6060

60

60

60

60 60 60 6060 60 60 60 60

60

60

60

60

60

90 90 9090 90 90

90

90

90

90

90

120

120

120

120

12

0

120120120 120

12

0120

120

120

120150

150

150

150

150

150

150

150

150

150

150 150

0.0 0.1 0.2 0.3 0.4 0.5 0.6

m

Introduction to ocean tides – p. 43/57

Page 112: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

tidal ellipses of flow (O2)

0˚ 45˚ 90˚ 135˚ 180˚ 225˚ 270˚ 315˚

−45˚

45˚

Introduction to ocean tides – p. 44/57

Page 113: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Mf tide on an ocean covered Earth

45˚ 90˚ 135˚ 180˚ 225˚ 270˚ 315˚

−45˚

45˚

0.0 0.1 0.2 0.3 0.4 0.5 0.6

m

180

0

0

Introduction to ocean tides – p. 45/57

Page 114: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

tidal ellipses of flow (Mf )

0˚ 45˚ 90˚ 135˚ 180˚ 225˚ 270˚ 315˚

−45˚

45˚

Introduction to ocean tides – p. 46/57

Page 115: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Example, Ocean tides around UK

Introduction to ocean tides – p. 47/57

Page 116: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Example, Ocean tides around UK

Introduction to ocean tides – p. 48/57

Page 117: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Example, Ocean tides around UK

Introduction to ocean tides – p. 49/57

Page 118: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Example, Ocean tides around UK

Introduction to ocean tides – p. 49/57

Page 119: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Topography/bathymetry of the Earth

0˚ 45˚ 90˚ 135˚ 180˚ 225˚ 270˚ 315˚ 0˚−90˚

−45˚

45˚

90˚

−10 −8 −6 −4 −2 0 2 4 6 8 10

km

Introduction to ocean tides – p. 50/57

Page 120: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Staggered C-grid of the Earth

0˚ 90˚ 180˚ 270˚

−45˚

45˚

Introduction to ocean tides – p. 51/57

Page 121: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Staggered C-grid of the Earth

90˚ 180˚−45˚

Introduction to ocean tides – p. 51/57

Page 122: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

M2 tide of BOTM

90˚ 180˚ 270˚

−45˚

45˚

−150

−150

−150

−150−150

−120

−120

−120−120

−90

−90

−90−90

−90

−90

−60

−60

−60

−60

−60−60

−60

−30

−30

−30

−30

−30

−30 −30 −30

−30

−30

0

0

0

30

30

30

60

60

60

60

60

60

90

90

90

90

90

9090

90

90

90 90

120

120

120

120

120

120

120120

120

120

120

150

150

150

150

150

150

150

150

150

0.0 0.1 0.2 0.3 0.5 0.8 4.5

m

Introduction to ocean tides – p. 52/57

Page 123: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

tidal ellipses of flow (M2)

0˚ 45˚ 90˚ 135˚ 180˚ 225˚ 270˚ 315˚

−45˚

45˚

Introduction to ocean tides – p. 53/57

Page 124: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

M2 BOTM versus FES99

0˚ 90˚ 180˚ 270˚

−45˚

45˚

0

60

60

60

90

9090

90

120

120

150

150

180210210

240

240

0.0 0.1 0.2 0.3 0.5 0.8 4.5

m

90˚ 180˚ 270˚

−45˚

45˚

−150

−150

−150

−150−150

−120

−120

−120−120

−90

−90

−90

−90

−90

−90

−60

−60

−60

−60

−60−60

−60

−30

−30

−30

−30

−30

−30 −30 −30

−30

−30

0

0

0

30

30

30

60

60

60

60

60

60

90

90

90

90

90

90

90

90

90

90 90

120

120

120

120

120

120

120

120

120

120

120

150

150

150

150

150

150

150

150

150

0.0 0.1 0.2 0.3 0.5 0.8 4.5

m

BOTM FES99

Introduction to ocean tides – p. 54/57

Page 125: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

O1 BOTM versus FES99

0˚ 90˚ 180˚ 270˚

−45˚

45˚

0

30

3060

606

0

60

90

90120

150

150

180

210

210

210

240

240

240

240

270300

0.0 0.1 0.2 0.3 0.5 0.8 4.5

m

90˚ 180˚ 270˚

−45˚

45˚

−150

−150

−150

−150

−150

−120

−120

−120−90

−90

−90

−90

−90

−90

−60

−60

−60

−60

−30

−30

−30

−30

−30

00

00

0

30

30

30

60

60

60

60

60

60

60

90

90

90

120

120

120

120

150

150

150

150

150

150

150

0.0 0.1 0.2 0.3 0.5 0.8 4.5

m

BOTM FES99

Introduction to ocean tides – p. 55/57

Page 126: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Mf BOTM versus FES99

0˚ 90˚ 180˚ 270˚

−45˚

45˚

0

00

00

0

000

0

3030

303030

30

30

30

60

60

90

90

120

120

150

150 180

180

180180

180

180

180

180

180

180180

180 180180180180180

180180180

180 180180

210210

210 210

210

0.00 0.01 0.02 0.03 0.04 0.05 0.06

m

90˚ 180˚ 270˚

−45˚

45˚

−150

−150 −150

−150

−150−150−

150−

150

−150

−150

−150

−150

−120

−120

−120

−120

−120

−120

−120

−120 −120

−90

−90

−90

−90

−90−90 −

90

−60

−60

−60

−60

−60

−60

−60−60

−60−60

−60

−60−

60

−30

−30

−30 −30

−30

−30

−30

−30

−30 −3

0 −30

−30−30

−30 −30

0

0

0

0

000

0

0

00

0

0

0

0

00

0

0

30

30

30

30

30

303030

30

30

30

30

30 30

303030

3030

30

3030

60

60

6060

60

60

60

6060

60 60

60

60

60

60

60

60

60

60

90

90

90

90

90

90

90 90

90

90

90

90

90

120

120

120 1

20

120

120

120

120

120

120

120 120

150

150

150 150

150

150

150

150

150150

150

150

0.0 0.1 0.2 0.3 0.5 0.8 4.5

m

BOTM FES99

Introduction to ocean tides – p. 56/57

Page 127: Ocean Tide Modelling, Part 1 - UMawakes.uma.pt/cimar/PartII_lecture1.pdf · Ocean Tide Modelling, Part 1 M.S. Bos mbos@ciimar.up.pt Centro Interdisciplinar de Investigac¸ao Marinha

Introduction to ocean tides – p. 57/57