numerical tools for the computation of homoclinic/heteroclinic orbits

Upload: sean

Post on 14-Apr-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/30/2019 Numerical tools for the computation of homoclinic/heteroclinic orbits

    1/40

    Numerical tools

    Numerical tools for the computation of

    homoclinic/heteroclinic orbits

    E. Barrabs

    1

    J.M. Mondelo

    2

    M. Oll

    3

    1Dept. Informtica i Matemtica Aplicada

    Universitat de Girona

    2Dept. de Matemtiques

    Universitat Autnoma de Barcelona

    3Dept. de Matemtica Aplicada IUniversitat Politcnica de Catalunya

    New trends in astrodynamics and applications, Milan, June 30, July 1, 2,

    2008

    http://find/http://goback/
  • 7/30/2019 Numerical tools for the computation of homoclinic/heteroclinic orbits

    2/40

    Numerical tools

    Outline

    Context: the RTBP and the collinear points, motivation and applications Computation of objects: periodic orbits (PO), their invariant manifolds

    Homoclinic connections of PO: detection and continuation of families

    Some results

    http://find/
  • 7/30/2019 Numerical tools for the computation of homoclinic/heteroclinic orbits

    3/40

    Numerical tools

    Libration Point orbits

    The spatial, circular RTBP

    General framework. The RTBP

    r2

    r1

    3m = 0

    m =2

    m = 11

    P =( 1, 0, 0)2

    L2

    L1

    L3

    P =(x,y,z)

    O

    1

    P =( , 0, 0)

    y

    z

    x

    Differential equations of the

    Spatial Circular RTBP:

    x = px + y, px = H/x,

    y = py x, py = H/y,z = pz, pz = H/z,

    Mass ratio: =m2

    m1 + m2.

    Hamiltonian:

    H(x,y,z,pz,py,pz) = 12

    (p2x + p2y + p2z ) xpy + ypx 1 r1

    r2

    with r1 =

    (x )2 + y2 + z2, r2 =

    (x + 1)2 + y2 + z2.Jacobi constant:

    C = 2H+ (1 )

    http://find/
  • 7/30/2019 Numerical tools for the computation of homoclinic/heteroclinic orbits

    4/40

    Numerical tools

    Libration Point orbits

    The spatial, circular RTBP

    Collinear Libration Points

    The linear behavior near the collinear equilibrium points is of the type

    H2 = x1y1 +p2

    (x22 + y22) +

    v2

    (x23 + y23),

    Linear: saddle center center

    Non-linear: planar p.o. vertical p.o.

    Cantor set of 2D tori

    The saddle component makes direct numerical simulations problematic.

    y01

    y02

    y03

    y04

    http://find/
  • 7/30/2019 Numerical tools for the computation of homoclinic/heteroclinic orbits

    5/40

    Numerical tools

    Libration Point orbits

    The spatial, circular RTBP

    Libration point orbits

    Planar and vertical Lyapunov orbits

    -0.855-0.85

    -0.845-0.84

    -0.835-0.83

    -0.825

    -0.06-0.04

    -0.020

    0.020.04

    0.06

    -0.06

    -0.04

    -0.02

    0

    0.02

    0.040.06

    z

    xy

    z

    http://goforward/http://find/http://goback/
  • 7/30/2019 Numerical tools for the computation of homoclinic/heteroclinic orbits

    6/40

    Numerical tools

    Libration Point orbits

    The spatial, circular RTBP

    Libration point orbits

    From vertical to planar: Lissajous orbits

    -0.855-0.85

    -0.845-0.84

    -0.835-0.83

    -0.825

    -0.045-0.03

    -0.0150

    0.0150.03

    0.045

    -0.06

    -0.04

    -0.02

    0

    0.02

    0.04

    0.06

    z

    xy

    z

    http://find/
  • 7/30/2019 Numerical tools for the computation of homoclinic/heteroclinic orbits

    7/40

    Numerical tools

    Libration Point orbits

    The spatial, circular RTBP

    Libration point orbits

    From vertical to planar: Lissajous orbits

    -0.855-0.85

    -0.845-0.84

    -0.835-0.83

    -0.825

    -0.045-0.03

    -0.0150

    0.0150.03

    0.045

    -0.06

    -0.04

    -0.02

    0

    0.02

    0.04

    0.06

    z

    xy

    z

    http://find/
  • 7/30/2019 Numerical tools for the computation of homoclinic/heteroclinic orbits

    8/40

    Numerical tools

    Libration Point orbits

    The spatial, circular RTBP

    Libration point orbits

    From vertical to planar: Lissajous orbits

    -0.855-0.85

    -0.845-0.84

    -0.835-0.83

    -0.825

    -0.045-0.03

    -0.0150

    0.0150.03

    0.045

    -0.06

    -0.04

    -0.02

    0

    0.02

    0.04

    0.06

    z

    xy

    z

    http://find/
  • 7/30/2019 Numerical tools for the computation of homoclinic/heteroclinic orbits

    9/40

    Numerical tools

    Libration Point orbits

    The spatial, circular RTBP

    Libration point orbits

    From vertical to planar: Lissajous orbits

    -0.855-0.85

    -0.845-0.84

    -0.835-0.83

    -0.825

    -0.045-0.03

    -0.0150

    0.0150.03

    0.045

    -0.06

    -0.04

    -0.02

    0

    0.02

    0.04

    0.06

    z

    xy

    z

    N i l l

    http://find/
  • 7/30/2019 Numerical tools for the computation of homoclinic/heteroclinic orbits

    10/40

    Numerical tools

    Libration Point orbits

    The spatial, circular RTBP

    Libration point orbits

    From vertical to planar: Lissajous orbits

    -0.855-0.85

    -0.845-0.84

    -0.835-0.83

    -0.825

    -0.045-0.03

    -0.0150

    0.0150.03

    0.045

    -0.06

    -0.04

    -0.02

    0

    0.02

    0.04

    0.06

    z

    xy

    z

    N i l t l

    http://find/
  • 7/30/2019 Numerical tools for the computation of homoclinic/heteroclinic orbits

    11/40

    Numerical tools

    Libration Point orbits

    The spatial, circular RTBP

    Libration point orbits

    From vertical to planar: Lissajous orbits

    -0.855-0.85

    -0.845-0.84

    -0.835-0.83

    -0.825

    -0.045-0.03

    -0.0150

    0.0150.03

    0.045

    -0.06

    -0.04

    -0.02

    0

    0.02

    0.04

    0.06

    z

    xy

    z

    Numerical tools

    http://find/
  • 7/30/2019 Numerical tools for the computation of homoclinic/heteroclinic orbits

    12/40

    Numerical tools

    Libration Point orbits

    The spatial, circular RTBP

    Invariant manifolds associated with LPO

    -1.05-1

    -0.95-0.9

    -0.85-0.8-0.08-0.06

    -0.04-0.02

    00.02

    0.040.060.08

    -0.02-0.015-0.01

    -0.0050

    0.0050.01

    0.0150.020.025

    z

    x

    y

    z

    http://find/http://goback/
  • 7/30/2019 Numerical tools for the computation of homoclinic/heteroclinic orbits

    13/40

    Numerical tools

  • 7/30/2019 Numerical tools for the computation of homoclinic/heteroclinic orbits

    14/40

    Numerical tools

    Libration Point orbits

    The spatial, circular RTBP

    Motivation: Applications ofL1 and L2

    Mission analysis:

    Construct new spacecraft trajectories (low cost).

    The orbit of comet Oterma in the Sun-Jupiter rotating system followsclosely the invariant manifolds ofL1 and L2.

    Using Conley-McGehee tubes, homoclinic orbits allow to prescribe

    itineraries between the interior and exterior regions of a moon-planet

    system.

    Petit Grand Tour for the moons of Jupiter. Genesis discovery mission.

    Numerical tools

    http://find/
  • 7/30/2019 Numerical tools for the computation of homoclinic/heteroclinic orbits

    15/40

    Libration Point orbits

    The spatial, circular RTBP

    Interest in L3

    L3 is responsible for horseshoe motion

    -1.5

    -1

    -0.5

    0

    0.5

    1

    1.5

    -1.5 -1 -0.5 0 0.5 1 1.5

    It is observed in:

    Janus and Epimetheus, coorbitals of Saturn, (Llibre & O, A & A 2001).

    Some near Earth Asteriods: 2002 AA29

    Numerical tools

    http://find/http://find/
  • 7/30/2019 Numerical tools for the computation of homoclinic/heteroclinic orbits

    16/40

    Libration Point orbits

    The spatial, circular RTBP

    Ambitious goal: Description (as global as possible) of a neighborhood (as

    large as possible) of the collinear points including homoclinic and

    heteroclinic phenomena.

    Particular goal: computation and continuation of homoclinic connections of

    LPO around Li, i = 1, 2, 3 for the planar RTBP.

    Semi-analytical procedures.

    Numerical methodology

    Numerical tools

    http://find/
  • 7/30/2019 Numerical tools for the computation of homoclinic/heteroclinic orbits

    17/40

    Libration Point orbits

    The spatial, circular RTBP

    Homoclinic and heteroclinic connections of LPO

    Semi-analytical procedures: normal forms and Lindstedt Poincar

    expansions.

    Advantage: high order approximation of the invariant objects.

    Drawback: only for L1 and L2. Developments are useful for small

    values of the energy.

    Numerical tools

    http://find/
  • 7/30/2019 Numerical tools for the computation of homoclinic/heteroclinic orbits

    18/40

    Libration Point orbits

    The spatial, circular RTBP

    Some papers:

    Comet transition (Belbruno & Marsden, Astron J. 1997, Lo and Ross,

    JPL IOM 1997)

    Existence of heteroclinic connections between orbits around L1 and L2in the planar RTBP (Koon et al, Chaos J. 2000)

    Study of homo and heteroclinic connections between planar Lyapunov

    p.o. in the planar RTBP (Canalias & Masdemont, DCDS 2006)

    Several individual homo and heteroclinic connections between lissajous

    and/or quasihalo orbits in the spatial RTBP (Gmez et al.

    Nonlinearity, 2004).

    Numerical tools

    http://find/
  • 7/30/2019 Numerical tools for the computation of homoclinic/heteroclinic orbits

    19/40

    Libration Point orbits

    The spatial, circular RTBP

    Numerical approach

    Direct computation of

    Poincar sections:

    periodic orbits (step 1) invariant manifolds (step 2)

    Wu/s j detection of homoclinic orbits (step 3)

    Continuation of families of homoclinic orbits (step 4)

    Tools valid for any Li, i = 1, 2, 3 and able to reach higher values of theenergy

    Numerical tools

    http://find/
  • 7/30/2019 Numerical tools for the computation of homoclinic/heteroclinic orbits

    20/40

    Computation of objects

    Periodic orbits

    1. Periodic orbits. The system of equations

    Let {g(x) = 0} define the Poincar

    section

    H be the Hamiltonian of the RTBP

    T its timeT flow.

    p.o.

    x Poincare sect.

    Unknowns:

    h, T,x,y,z,px,py,pz =:x

    Equations:

    H(x) = hg(x) = 0T(x) = x

    Fix h: the solution is a point (i.c. of the p.o. in the Poincar section).

    Leth

    free: the solution is the curve of i.c. on the fam. of p.o.

    Numerical tools

    http://find/
  • 7/30/2019 Numerical tools for the computation of homoclinic/heteroclinic orbits

    21/40

    Computation of objects

    Periodic orbits

    Multiple shooting

    High instability can be coped with using multiple shooting: search for

    several i.c. in the p.o. in order to reduce integration time.

    Unknowns:

    h, T, x0, x1, . . . , xm1

    Equations:

    H(x0) = hg(x0) = 0

    T/m(x0) = x1T

    /m(x1) = x2

    ...

    T/m(xm1) = x0

    Numerical tools

    C i f bj

    http://find/
  • 7/30/2019 Numerical tools for the computation of homoclinic/heteroclinic orbits

    22/40

    Computation of objects

    Periodic orbits

    2., 3., 4. HomoclinicsGeneral procedure:

    X invariant hyperbolic object, Wu/s(X) invariant manifolds (twobranches)

    fixed section

    Wu/s(X) k

    homoclinic orbit Wu i Wu j

    X

    Wu

    Ws

    Numerical tools

    Comp tation of objects

    http://find/
  • 7/30/2019 Numerical tools for the computation of homoclinic/heteroclinic orbits

    23/40

    Computation of objects

    Homoclinic connections ofLi , i = 1, 2, 3

    Example. Homoclinic orbits connecting collinear points

    invariant manifolds are 1 dimensional

    exploration varying

    -1.5

    -1

    -0.5

    0

    0.5

    1

    1.5

    -1.5 -1 -0.5 0 0.5 1 1.5

    -3

    -2

    -1

    0

    1

    2

    3

    -3 -2 -1 0 1 2 3

    = 0.0010015432 = 0.012143988024852

    = {x = 1/2}, L3

    Numerical tools

    Computation of objects

    http://find/
  • 7/30/2019 Numerical tools for the computation of homoclinic/heteroclinic orbits

    24/40

    Computation of objects

    Homoclinic orbits to Lyapunov orbits

    2. Invariant manifolds of planar Lyapunov orbits

    invariant manifolds are 2 dimensional

    exploration for a fixed value of and energy h

    -1

    -0.5

    0

    0.5

    1

    -1 -0.5 0 0.5 1

    -1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    -1 -0.5 0 0.5 1

    h = 1.50041149280247 h = 1.49952788314423

    = {x = 1/2},L3, = SJ

    Numerical tools

    Computation of objects

    http://find/
  • 7/30/2019 Numerical tools for the computation of homoclinic/heteroclinic orbits

    25/40

    Computation of objects

    Homoclinic orbits to Lyapunov orbits

    2. Invariant manifolds of planar Lyapunov orbits

    invariant manifolds are 2 dimensional

    exploration for a fixed value of and energy h

    -0.12

    -0.1

    -0.08

    -0.06

    -0.04

    -0.02

    0

    0.02

    0.04

    0.06

    0.08

    0.1

    -1.2 -1.15 -1.1 -1.05 -1 -0.95 -0.9-6

    -4

    -2

    0

    2

    4

    6

    -6 -5 -4 -3 -2 -1 0 1 2 3 4

    = {x = 1} = {x = 0}h = 1.58463932117689 h = 1.57485608553295

    L2 and = EM

    Numerical tools

    Computation of objects

    http://find/
  • 7/30/2019 Numerical tools for the computation of homoclinic/heteroclinic orbits

    26/40

    Computation of objects

    Homoclinic orbits to Lyapunov orbits

    3. Finding homoclinic orbits. Section curves Wu/s k

    X planar Lyapunov orbit, Wu/s(X) invariant manifolds

    S = Wu/s(X) k is 1 dimensional

    H = h is constant S represented in a plane

    -0.467

    -0.466

    -0.465

    -0.464

    -0.463

    -0.462

    -0.461

    -0.46

    -0.459

    -0.929 -0.928 -0.927 -0.926 -0.925 -0.924 -0.923

    suitable h

    = {x = 1/2}, (y,py)-plane, h = 1.500474767L3 and = SJ

    Numerical tools

    Computation of objects

    http://find/
  • 7/30/2019 Numerical tools for the computation of homoclinic/heteroclinic orbits

    27/40

    p j

    Homoclinic orbits to Lyapunov orbits

    Intersections Wu/s k

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    -1.1 -1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    -1.1 -1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2

    h = 1.52753129112358 h = 1.50625846902364

    Curves Wu 1 and Ws 2

    = {x = 0},(px,py) planeL2 and = EM

    Numerical tools

    Computation of objects

    http://find/http://goback/
  • 7/30/2019 Numerical tools for the computation of homoclinic/heteroclinic orbits

    28/40

    Homoclinic orbits to Lyapunov orbits

    Numerical computation of a section curve

    Given (, ) a parametrisation of the inv. manifold

    To compute the intersection between the manifold and : {g(x

    ) = 0}, weneed to continue the solution curve of

    g((, )) = 0

    in (, ).

    Numerical tools

    Computation of objects

    http://find/
  • 7/30/2019 Numerical tools for the computation of homoclinic/heteroclinic orbits

    29/40

    Families of homoclinic orbits: continuation method

    4. Families of homoclinic orbits: continuation method

    Fixed a p.o. given by an initial condition x0, compute a homoclinic

    orbit using the variables

    u, s, Tu, Ts

    x0

    s

    Ts

    Tu

    u

    Numerical tools

    Computation of objects

    http://find/
  • 7/30/2019 Numerical tools for the computation of homoclinic/heteroclinic orbits

    30/40

    Families of homoclinic orbits: continuation method

    Continuation of a family of homoclinic orbits

    Idea: put all the unknowns into the equations

    the energy

    the periodic orbit and its period

    the eigenvalues and eigenvectors

    u

    ,

    s

    Tu, Ts

    Numerical tools

    Computation of objects

    http://find/
  • 7/30/2019 Numerical tools for the computation of homoclinic/heteroclinic orbits

    31/40

    Families of homoclinic orbits: continuation method

    To find or to continuate an homoclinic connection of a p.o., we can solve

    H(x) h = 0g1(x) = 0

    T(x) x = 0

    vu2 1 = 0 vs2 1 = 0

    DT(x)vu uvu = 0 DT(x)vs svs = 0

    g2

    Tu

    u(u, small)

    = 0

    g2

    Ts

    s(s, small)

    = 0

    Tu

    u(u, small)

    Ts

    s(s, small)

    = 0

    + multiple shooting if necessary

    h as a parameter: we find a family of homoclinic connections

    Numerical tools

    Results

    http://find/
  • 7/30/2019 Numerical tools for the computation of homoclinic/heteroclinic orbits

    32/40

    Homoclinic connections of L.O. around L3

    Connections of Lyapunov orbits around L3 ( = SJ)

    -1.1

    -1.05

    -1

    -0.95

    -0.9

    -1.502 -1.499 -1.496 -1.493 -1.49

    yf

    h

    Hn1 Hn2

    Examples

    Numerical tools

    Results

    http://find/
  • 7/30/2019 Numerical tools for the computation of homoclinic/heteroclinic orbits

    33/40

    Homoclinic connections to L.O. around L1 and L2

    Connections to Lyapunov orbits around L2 ( = EM)

    loops around Moon

    -0.2

    -0.15

    -0.1

    -0.05

    0

    0.05

    0.1

    0.15

    -1.59 -1.58 -1.57 -1.56 -1.55 -1.54 -1.53 -1.52

    Hi11

    Hi21

    Hi12

    Hi32

    Hi42

    Examples

    loops around Moon and Earth

    1.1

    1.2

    1.3

    1.4

    1.5

    1.6

    1.7

    1.8

    1.9

    2

    2.1

    -1.56 -1.55 -1.54 -1.53 -1.52 -1.51 -1.5 -1.49 -1.48

    Ho11

    Ho21

    Ho31

    Ho41

    Ho51

    Ho61

    Ho71

    Ho81

    Ho91

    Ho101

    Ho111

    Ho121

    Examples

    Numerical tools

    Results

    S d W k i

    http://find/http://find/http://find/
  • 7/30/2019 Numerical tools for the computation of homoclinic/heteroclinic orbits

    34/40

    Summary and Work in progress

    Summary

    Numerical tools that allow to describe the dynamics related to Li

    parameterizations of invariant manifolds

    homoclinic (and heteroclinic) connections

    some results obtained

    Work in progres

    heteroclinic connections between LPO

    homoclinic/heteroclinic connections of invariant tori

    Numerical tools

    Results

    References

    http://find/
  • 7/30/2019 Numerical tools for the computation of homoclinic/heteroclinic orbits

    35/40

    References

    E. Belbruno & B. Marsden.

    Resonance hopping in cometsAstron. J., 1997.

    M. Lo & S. Ross.

    Surfing in the Solar System: invariant manifolds and the dynamics of

    the Solar System

    JPL IOM 312/97, 2-4, 1997.

    M. Lo & S. Ross.

    Low energy interplanetary transfers using invariant manifolds of L1, L2and halo orbits

    AAS-AIAA Space flight meeting, Monterey, 1998.

    W.S. Koon et al.

    Heteroclinic connections between periodic orbits and resonance

    transitions in celestial mechanics

    Chaos J., 2000.

    Numerical tools

    Results

    References

    http://find/
  • 7/30/2019 Numerical tools for the computation of homoclinic/heteroclinic orbits

    36/40

    References

    A. Jorba & J.M. Masdemont.

    Dynamics in the center manifold of the collinear points of the restricted

    three body problem

    Phys. D., 1999.

    G. Gmez & J.M. Mondelo.

    The dynamics around the collinear equilibrium points of the RTBP

    Phys. D., 2001.

    G. Gmez el al.

    Connecting orbits and invariant manifolds in the spatial restricted

    three-body problem

    Nonlinearity, 2004.G. Gmez, M. Marcote, & J.M. Mondelo.

    The invariant manifold structure of the spatial Hills problem

    Dyn. Syst., 2005.

    Numerical tools

    Results

    References

    http://find/
  • 7/30/2019 Numerical tools for the computation of homoclinic/heteroclinic orbits

    37/40

    References

    E. Barrabs & M.Oll.

    Invariant manifolds of L3 and horseshoe motion in the restrictedthree-body problem

    Nonlinearity, 2006

    E. Canalies & J.M. Masdemont.

    Homoclinic and heteroclinic transfer trajectories between planar

    Lyapunov orbits in the sun-earth and earth-moon systemsDisc. Cont. Dyn. Syst., 2006.

    M. Gidea & J.M. Masdemont.

    Geometry of homoclinic connections in a planar circular restricted

    three-body problem

    Int. J. Bif. Chaos, 2006.

    E. Barrabs, J.M.M. Mondelo & M. Oll.

    Numerical continuation of families of homoclinic connections of

    periodic orbits

    Preprint, 2008

    Numerical tools

    http://find/
  • 7/30/2019 Numerical tools for the computation of homoclinic/heteroclinic orbits

    38/40

    -1.2

    -1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2

    -1.2

    -1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    -1.5 -1 -0.5 0 0.5 1 1.5

    Numerical tools

    http://find/
  • 7/30/2019 Numerical tools for the computation of homoclinic/heteroclinic orbits

    39/40

    -0.2

    -0.1

    0

    0.1

    0.2

    -1.25 -1.2 -1.15 -1.1 -1.05 -1 -0.95 -0.9

    -0.2

    -0.1

    0

    0.1

    0.2

    -1.25 -1.2 -1.15 -1.1 -1.05 -1 -0.95 -0.9

    -0.2

    -0.1

    0

    0.1

    0.2

    -1.25 -1.2 -1.15 -1.1 -1.05 -1 -0.95 -0.9

    -0.2

    -0.1

    0

    0.1

    0.2

    -1.25 -1.2 -1.15 -1.1 -1.05 -1 -0.95 -0.9

    Numerical tools

    http://find/http://goback/
  • 7/30/2019 Numerical tools for the computation of homoclinic/heteroclinic orbits

    40/40

    -2

    -1.5

    -1

    -0.5

    0

    0.5

    1

    1.5

    2

    -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

    -2

    -1.5

    -1

    -0.5

    0

    0.5

    1

    1.5

    2

    -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

    -3

    -2

    -1

    0

    1

    2

    3

    -3 -2 -1 0 1 2 3

    -3

    -2

    -1

    0

    1

    2

    3

    -3 -2 -1 0 1 2 3

    http://find/