numerical simulations of particle deposition on super-heaters

17
Numerical simulations of particle deposition on super-heaters A fundamental study Oslo, 2010.02.16 Nils Erland L. Haugen

Upload: menefer

Post on 14-Jan-2016

39 views

Category:

Documents


0 download

DESCRIPTION

Numerical simulations of particle deposition on super-heaters. A fundamental study Oslo, 2010.02.16 Nils Erland L. Haugen. Introduction. Main focus: Particle inertial impaction No thermophoresis, eddy diffusion or Brownian motions This work has been done under the NextGenBioWaste project. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Numerical simulations of particle deposition on super-heaters

Numerical simulations of particle deposition on super-

heatersA fundamental study

Oslo, 2010.02.16Nils Erland L. Haugen

Page 2: Numerical simulations of particle deposition on super-heaters

Introduction

• Main focus: Particle inertial impaction– No thermophoresis, eddy diffusion or

Brownian motions

• This work has been done under the NextGenBioWaste project

Page 3: Numerical simulations of particle deposition on super-heaters

Simulations

• Direct Numerical Simulations (DNS) are used– No modeling– No filtering– All space and time scales are resolved

• Including the thin but important boundary layer around the cylinder

• The Pencil-Code• 128 CPUs

Page 4: Numerical simulations of particle deposition on super-heaters

The Stokes number

D

udSt

f

p

f

p

9

2

viscosityKinematic :

itymean veloc Fluid :

diameterCylinder :

diameter Particle :

density Fluid :

density Particle :

u

D

d

f

p

Page 5: Numerical simulations of particle deposition on super-heaters

Particle impaction (0.01<St<0.3)Re=20 Re=420 Re=6600

Page 6: Numerical simulations of particle deposition on super-heaters

Front side impaction efficiency

Page 7: Numerical simulations of particle deposition on super-heaters

Front side impaction efficiency

Classical impaction

Boun

dary

sto

ppin

g

Boundary interception

Page 8: Numerical simulations of particle deposition on super-heaters

Back side impaction

Page 9: Numerical simulations of particle deposition on super-heaters

GKS (MSWI in Schweinfurt, Germany)

1685

mm 733

/sm 10

C600

m/s 5

24-

v

ud

d

T

u

Re

.

Super heater fluid specifications:

Page 10: Numerical simulations of particle deposition on super-heaters

GKS particle impactionRe=20 Re=420 Re=1685

Page 11: Numerical simulations of particle deposition on super-heaters

Impaction efficiency as function of particle diameter

Three ordersof magnitude

Page 12: Numerical simulations of particle deposition on super-heaters

Impaction rate

Particle mass densitypr. bin (independent of bin size)

Page 13: Numerical simulations of particle deposition on super-heaters

Conclusion

• DNS is required in order to resolve the important boundary layer

• Both the front and the back side impaction depends strongly on Reynolds number

• The total mass impaction rate at the super-heater of the GKS plant is totally dominated by particles larger than ~30 microns

Page 14: Numerical simulations of particle deposition on super-heaters

Turbulence

Page 15: Numerical simulations of particle deposition on super-heaters

Single cylinder vorticityRe=20 Re=420 Re=6600

Page 16: Numerical simulations of particle deposition on super-heaters

Particle impaction (0.4<St<40)Re=20 Re=420 Re=6600

Page 17: Numerical simulations of particle deposition on super-heaters

Alternative to the Stokes number

f

pSt