numerical simulation and macroscopic model formulation for...

36
French-Vietnam Master in Applied Mathematics, Sept 23, 2017 1 Modeling and simulation of brain diffusion MRI Numerical simulation and macroscopic model formulation for diffusion magnetic resonance imaging in the brain Jing-Rebecca Li Equipe DEFI, CMAP, Ecole Polytechnique Institut national de recherche en informatique et en automatique (INRIA) Saclay, France L' HABILITATION À DIRIGL' HABILITATION À DIRIGER DES RECHEHERCHES

Upload: others

Post on 18-Feb-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

  • French-Vietnam Master in Applied Mathematics, Sept 23, 2017 1

    Modeling and simulation of brain diffusion MRI

    Numerical simulation and macroscopic model formulation

    for diffusion magnetic resonance imaging in the brain

    Jing-Rebecca Li Equipe DEFI, CMAP, Ecole Polytechnique

    Institut national de recherche en informatique et en automatique (INRIA) Saclay, France

    L' HABILITATION À DIRIGL' HABILITATION À DIRIGER DES RECHEHERCHES

  • French-Vietnam Master in Applied Mathematics, Sept 23, 2017 2

    Modeling and simulation of brain diffusion MRI

    DeFI

    Denis Le Bihan Cyril Poupon

    Luisa Ciobanu Khieu Van Nguyen (PhD) Hang Tuan Nguyen (PhD)

    Houssem Haddar Simona Schiavi (PhD)

    Gabrielle Fournet (PhD) Dang Van Nguyen (PhD)

    Julien Coatleven (Post-doc) Fabien Caubet (Post-doc)

    Master 2 interns

    Vu Duc Thach Son (April-August 2017), Hoang An Tran (April-August 2016), Hoang

    Trong An Tran (April-August 2015), Thi Minh Phuong Nguyen (April-August 2014),

    Khieu Van Nguyen (April 2013 - Aug 2013), Tri Tinh Nguyen (March 2011 - July

    2011), Thong Nguyen (March 2011 - July 2011), Cesar Retamal Bravo (March 2007

    - July 2007), Sonia Fliss (Sept. 2004 - Mar. 2005).

  • French-Vietnam Master in Applied Mathematics, Sept 23, 2017 3

    Modeling and simulation of brain diffusion MRI

    Outline

    1. Brain micro-structure is complex

    2. MRI using “diffusion encoding” to “see” micro-structure

    3. DMRI signal due to tissue (neurons+other cells)

    a) Full-scale numerical simulation

    b) Macroscopic model formulation via homogenization

    c) Experimental validation in simpler organism

  • French-Vietnam Master in Applied Mathematics, Sept 23, 2017 4

    Modeling and simulation of brain diffusion MRI

    MRI useful for studying

    Gray: cortical surface.

    Teal: fMRI activations

    Red: arteries in red

    Bright green: tumor

    Yellow: white matter fiber

    Diffusion Tensor and Functional

    MRI Fusion with Anatomical MRI

    for Image-Guided Neurosurgery.

    Sixth International Conference on

    Medical Image Computing and

    Computer-Assisted Intervention -

    MICCAI'03.

  • French-Vietnam Master in Applied Mathematics, Sept 23, 2017 5

    Modeling and simulation of brain diffusion MRI

    Large-scale electron

    microscopy of serial thin

    sections, mouse primary

    visual cortex.

    Pink: blood vessels

    Yellow: nucleoli,

    oligodendrocyte nuclei,

    and myelin

    Aqua: cell bodies

    and dendrites.

    Scale bars: a, b, 100 mm;

    c–e, 10mm; f, 1 mm. Bock et al. Nature 471, 177-182 (2011)

  • French-Vietnam Master in Applied Mathematics, Sept 23, 2017 6

    Modeling and simulation of brain diffusion MRI

    Magnetic resonance imaging (MRI)

    Non-invasive, in-vivo MRI signal: water proton magnetization over a volume called a voxel. To give image contrast, magnetization is weighted by some quantity of the local tissue environment.

    Contrast: (tissue structure)

    1. Spin (water) density

    2. Relaxation (T1,T2,T2*)

    3. Water displacement (diffusion)

    in each voxel

    MRI

    Spatial resolution:

    One voxel = O(1 mm)

    Much bigger than micro-structure

  • French-Vietnam Master in Applied Mathematics, Sept 23, 2017 7

    Modeling and simulation of brain diffusion MRI

    ???

    o Standard MRI: T2 relaxation (T2 contrast)

    at different spatial positions of brain

    o In diffusion MRI (recently developed)

    magnetization is weighted by water

    displacement due to Brownian motion over

    10s of ms (called measured diffusion time).

    o Water displacement depends on local cell

    environment, hindered by cell membranes.

    o Right: T2 contrast does not show dendrite

    beading hours after stroke, diffusion weighted

    image (DWI) does.

  • French-Vietnam Master in Applied Mathematics, Sept 23, 2017 8

    Modeling and simulation of brain diffusion MRI

    DMRI measures incoherent water motion during “diffusion

    time” between 10-40ms.

    Root mean squared displacement: 6-13 mm

    Voxel : 2mm x 2mm x 2 mm (human, clinical scanner)

    100mm x 100mm x 100mm (small animal, high field scanner)

  • French-Vietnam Master in Applied Mathematics, Sept 23, 2017 9

    Modeling and simulation of brain diffusion MRI

    This problem difficult because:

    1. Dendrites (trees) and extra-cellular (EC) space (complement of densely

    packed dendrites) are anisotropic, numerically lower dimensional (dendrites

    1 dim, EC 2 dim).

    2. Multiple scales (5 orders of magnitude difference).

    3. Cell membranes are permeable to water. Cells must be coupled together.

    Extra-cellular

    space thickness

    10-30nm

    Soma diameter

    1-10mm

    Dendrite radius

    0.5-0.9 mm

    DMRI voxel

    2mm

    Goal: quantify dMRI contrast in terms of tissue micro-structure

  • French-Vietnam Master in Applied Mathematics, Sept 23, 2017 10

    Modeling and simulation of brain diffusion MRI

    Simple (original) model of dMRI

    Brain: 70 percent water

    Brownian motion of water molecules

    2

    4

    2

    0

    )4(

    )|,( 0,d

    Dt

    Dt

    xx

    extxu

    Mean-squared displacement Can be obtained by dMRI

    dDtdxxxxtxuMSD 2)|,( 200,

    D = 2 x 10-3 mm²/s if no cell membranes

    Experimentally measured = 1x10-3 mm²/s

    ../otherstalks/nbt929-S2.mov

  • French-Vietnam Master in Applied Mathematics, Sept 23, 2017 11

    Modeling and simulation of brain diffusion MRI

    Pulsed gradient spin echo (PGSE) sequence (Stejskal-Tanner-1965)

    D

    RF180

    d d g g

    Echo

    f(t)

    TE

    Diffusion time

    Gradient duration

    𝐵 𝐱, 𝑡 = 𝑓 𝑡 𝐠 ⋅ 𝐱

    How diffusion MRI assigns contrast to displacement

    Water 1H (hydrogen nuclei), spin ½

    Precession Larmor frequency:

    𝛾𝐵 𝐱, 𝑡 𝑑𝑡𝑡

    Proton: g/2 = 42.57 MHz / Tesla

  • French-Vietnam Master in Applied Mathematics, Sept 23, 2017 12

    Modeling and simulation of brain diffusion MRI

    𝑡 = 0: 𝑀𝛿 = 𝑀0𝑒−𝑖𝛾𝛿𝐠⋅ 𝐱0

    𝑡 = Δ + 𝛿,𝑀Δ+𝛿 = 𝑀0𝑒𝑖𝛾𝛿𝐠⋅ 𝐱𝚫+𝜹−𝐱0

  • French-Vietnam Master in Applied Mathematics, Sept 23, 2017 13

    Modeling and simulation of brain diffusion MRI

    𝑢 𝐱, 𝑡|𝐱0 =𝑒−| 𝐱−𝐱0|

    2

    4𝐷𝑡

    4𝜋𝐷𝑡32

    MSD = ADC*(2D)

    Brain gray matter: ADC around10-3 mm²/s

    Root MSD: 6-13 mm

    𝑆 𝑏 = 𝑢 𝐱, Δ + 𝛿|𝐱0 𝑒𝑖𝛾𝛿𝐠⋅ 𝐱 𝛥+𝛿 −𝐱 0 𝑑𝐱𝑑𝐱𝟎

    𝐱0∈𝑉𝐱∈𝑉

    = 𝑒−𝐷 𝛾2𝛿2 𝐠 2 Δ−

    𝛿3

    𝑏 𝐠, Δ, 𝛿 ≡ 𝛾2𝛿2 𝐠 2 Δ −𝛿

    3,

    Experimental

    parameters

    g D, d can be varied

    𝐴𝐷𝐶 ≡ −d

    dblog (𝑆 𝑏 ):

    “apparent diffusion

    coefficient”

    Fitted at every voxel

  • French-Vietnam Master in Applied Mathematics, Sept 23, 2017 14

    Modeling and simulation of brain diffusion MRI

    2.5

    3

    3.5

    4

    4.5

    5

    0 1000 2000 3000 4000

    b value

    ln(s

    ign

    al)

    Human visual cortex (Le Bihan et al. PNAS 2006).

    bADCeS

    S )(

    0

    Log plot not a straight line.

    Simple model is “wrong”

    Physicists try a different

    simple model

    .0

    bDbD slowslow

    fastfast efef

    S

    S

    Diffusion is not Gaussian in biological tissues

    (In each voxel)

    Free diffusion:

    ln(S/S0) = -bD

    ffast= 65.9%, fslow= 34.1%

    Dfast = 1.39 10-3 mm²/s,

    Dslow = 3.25 10-4 mm²/s

  • French-Vietnam Master in Applied Mathematics, Sept 23, 2017 15

    Modeling and simulation of brain diffusion MRI

    DMRI signal due to tissue (neurons+other cells)

    A. Direct simulation of reference model (Bloch-Torrey PDE)

    oFinite elements + RKC time stepping (PhD Dang Van Nguyen)

    B. Asymptotic models using homogenization

    C. Experimental validation in simpler organism: Aplysia

  • French-Vietnam Master in Applied Mathematics, Sept 23, 2017 16

    Modeling and simulation of brain diffusion MRI

    Ω𝑖 , 𝐷 Ω𝑒 , 𝐷 𝜅𝑖𝑒

    Reference model: Bloch-Torrey PDE

    PDE with interface condition between cells and the extra-cellular space

    𝜕𝑀𝑗 𝐱, 𝑡 𝐠

    𝜕𝑡= 𝑖 𝛾𝑓 𝑡 𝐠 ⋅ 𝐱 𝑀𝑗 𝐱, 𝑡 𝐠 + 𝛻 ⋅ 𝐷 𝛻𝑀𝑗 𝐱, 𝑡 𝐠 , 𝐱 ∈ Ω𝑗 .

    𝐷 𝛻𝑀𝑗 𝐱, 𝑡 𝐠 ⋅ 𝐧j 𝐱 = −𝐷 𝛻𝑀𝑘 𝐱, 𝑡 𝐠 ⋅ 𝐧k(𝐱), 𝐱 ∈ Γ𝑗𝑘 ,

    𝐷 𝛻𝑀𝑗 𝐱, 𝑡 𝐠 ⋅ 𝐧j 𝐱 = 𝜿 𝑀𝑗 𝐱, 𝑡, 𝐠 − 𝑀𝑘 𝐱, 𝑡 𝐠 , 𝐱 ∈ Γ𝑗𝑘 ,

    M: magnetization

    g: magnetic field gradient

    Tend: diffusion time

    From signal, want to quantify

    cell geometry and membrane permeability.

    𝑀 𝑗 𝐠, 𝑡 = 𝑀𝑗 𝐱, 𝑡 𝐠 𝑑𝐱 .

    𝐱∈Ω𝑗

    𝑆 𝐠, 𝑇𝑒𝑛𝑑 = 𝑀 𝑗(𝑔, 𝑡)

    𝑗

    ≈ exp (−𝐴𝐷𝐶 𝑏𝑒𝑥𝑝𝑒𝑟𝑖)

  • French-Vietnam Master in Applied Mathematics, Sept 23, 2017 17

    Modeling and simulation of brain diffusion MRI

    M 𝐱, 𝑡 𝐠

    1. Numerical simulation of diffusion MRI signals using an adaptive time-

    stepping method, J.-R. Li, D. Calhoun, C. Poupon, D. Le Bihan. Physics in

    Medicine and Biology, 2013.

    2. A finite elements method to solve the Bloch-Torrey equation applied to

    diffusion magnetic resonance imaging, D.V. Nguyen, J.R. Li, D.

    Grebenkov, D. Le Bihan, Journal of Computational Physics, 2014.

  • French-Vietnam Master in Applied Mathematics, Sept 23, 2017 18

    Modeling and simulation of brain diffusion MRI

    To do:

    Define/segment -- mesh –

    solve Bloch-Torrey PDE on

    realistic brain tissue geometry

  • French-Vietnam Master in Applied Mathematics, Sept 23, 2017 19

    Modeling and simulation of brain diffusion MRI

    Asymptotic models of dMRI using periodic homogenization

    1. Coupled ODE model

    Works for large diffusion displacement and wide range of gradient amplitudes.

    (Post-doc Coatleven, PhD Hang Tuan Nguyen)

    2. Simpler PDE model for wide range of diffusion displacement and low gradient amplitudes (ADC).

    (Ph.D. Schiavi)

    Both are limited to low membrane permeability

  • French-Vietnam Master in Applied Mathematics, Sept 23, 2017 20

    Modeling and simulation of brain diffusion MRI

    Choose space and time scales

    Spatial scale

    membrane’s permeability

    coefficient

    Valid when diffusion displacement long

    compared to cell features. low membrane permeability.

    We fix a

    non-dimensional

    parameter ε

    which goes to 0

    intrinsic diffusion coefficient 𝜎 =

    𝜎𝑒 𝑖𝑛 𝑌𝑒𝜎𝑐 𝑖𝑛 𝑌𝑐

    𝐿 = 𝜀𝐿0

    𝜅 = 𝜀𝜅0

  • French-Vietnam Master in Applied Mathematics, Sept 23, 2017 21

    Modeling and simulation of brain diffusion MRI

    𝑀 =

    𝜖𝑖∞

    𝑖

    𝑀𝑖𝑒 𝐱, 𝐲, 𝑡 𝑖𝑛 Ω𝑒

    𝜀𝑖∞

    𝑖=1

    𝑀𝑖𝑐(𝐱, 𝐲, 𝑡) 𝑖𝑛 Ω𝑐

    Define two space scales: coarse and fine scales

    And expand magnetization in terms of

    𝐲 =𝐱

    ε

    Match powers (0,1,2) of using the PDE, get

    relationships between coefficient functions

  • French-Vietnam Master in Applied Mathematics, Sept 23, 2017 22

    Modeling and simulation of brain diffusion MRI

    𝜕𝑀 𝑂𝐷𝐸𝑒(𝐠, 𝑡)

    𝜕𝑡= −𝑐(𝑡)𝛾2𝐷 𝑒 ∥ 𝐠 ∥2 𝑀 𝑂𝐷𝐸

    𝑒(𝐠, 𝑡) −

    1

    𝜏𝑒𝑀 𝑂𝐷𝐸

    𝑒(𝐠, 𝑡) +

    1

    𝜏𝑖𝑀 𝑂𝐷𝐸

    𝑖(𝐠, 𝑡)

    𝜕𝑀 𝑂𝐷𝐸𝑖(𝐠, 𝑡)

    𝜕𝑡= −𝑐 𝑡 𝛾2𝐷 𝑖 ∥ 𝐠 ∥2 𝑀 𝑂𝐷𝐸

    𝑖(𝐠, 𝑡) −

    1

    𝜏𝑖𝑀 𝑂𝐷𝐸

    𝑖(𝐠, 𝑡) +

    1

    𝜏𝑒𝑀 𝑂𝐷𝐸

    𝑒(𝐠, 𝑡)

    𝑐(𝑡) = 𝑓 𝑠 𝑑𝑠𝑡

    0

    21

    𝜏𝑖 =𝜅|𝜕Ω𝑖|

    |Ω𝑖| , 𝜏𝑒 =

    |Ω𝑖|

    |Ω𝑒| 𝜏𝑖

    𝑆𝑂𝐷𝐸 𝑏 = 𝑀 𝑂𝐷𝐸 𝑗𝐠, 𝑡 ,

    𝑗

    Formulated macroscopic model for the compartment

    magnetizations for arbitrary pulse shape: is an ODE model

    D

    RF180

    d d g g Echo

    f(t)

    TE Diffusion time

    Gradient duration

  • French-Vietnam Master in Applied Mathematics, Sept 23, 2017 23

    Modeling and simulation of brain diffusion MRI

    𝛿 = 40𝑚𝑠, Δ = 40𝑚𝑠

    Simulation box 7.5 mm x 14 mm x 7.5 mm

    Membrane permeability k= 1e-5 m/s

  • French-Vietnam Master in Applied Mathematics, Sept 23, 2017 24

    Modeling and simulation of brain diffusion MRI

    Spatial scale

    membrane’s permeability

    coefficient

    Time scale

    gradient strength

    intrinsic diffusion coefficient 𝜎 =

    𝜎𝑒 𝑖𝑛 𝑌𝑒𝜎𝑐 𝑖𝑛 𝑌𝑐

    𝐿 = 𝜀𝐿0

    𝜅 = 𝜀𝜅0

    𝑡 = 𝜀2𝑡0

    q =𝑞0

    𝜀2

    Diffusion displacement not long w.r.t. cell features

  • French-Vietnam Master in Applied Mathematics, Sept 23, 2017 25

    Modeling and simulation of brain diffusion MRI

    Homogenized model for Deff

    𝐹 𝑡 = 𝑓 𝑠 𝑑𝑠𝑡

    0

    𝐷𝑒𝑓𝑓𝑖𝑙

    𝜎≔ 𝑒𝑖 ⋅ 𝑒𝑙 −

    1

    𝛿2 Δ −𝛿3

    𝐹 𝑡 𝑝𝑖𝑙(𝑡) Δ+𝛿

    0

    𝑝𝑖𝑙 𝑡 ≔ 1

    𝑌 𝜕

    𝜕𝑥𝑖

    𝑌

    𝜔𝑙(𝐱, 𝑡)

    D

    RF180

    d d

    Echo

    F(t)

    TE

    Diffusion time

    Gradient duration

    d

    𝐴𝐷𝐶𝑛𝑒𝑤 ≔ 𝐃𝐞𝐟𝐟𝐮𝑔 ⋅ 𝐮𝑔

  • French-Vietnam Master in Applied Mathematics, Sept 23, 2017 26

    Modeling and simulation of brain diffusion MRI

    Homogeneous diffusion equation

    with constant coefficient and

    Neumann boundary condition on the

    interface

    Need to analyze

    𝑝𝑖𝑙 𝑡 ≔ 1

    𝑌 𝜕

    𝜕𝑥𝑖

    𝑌

    𝜔𝑙(⋅, 𝑡)

    Homogenized model for Deff

    𝜕

    𝜕𝑡𝜔𝑙 − 𝑑𝑖𝑣 𝜎𝛻𝜔𝑙 = 0 𝑖𝑛 𝑌 × 0, 𝑇

    𝜎𝛻𝜔𝑙(⋅, 𝑡) ∙ 𝜈 = 𝐹(𝑡)𝜎𝑒𝑙 ∙ 𝜈 𝑜𝑛 Γ × 0, 𝑇

    𝜔𝑙 ∙, 0 = 0 𝑖𝑛 𝑌

    𝜔𝑙 𝑖𝑠 𝑌 𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐

  • French-Vietnam Master in Applied Mathematics, Sept 23, 2017 27

    Modeling and simulation of brain diffusion MRI

    𝜕

    𝜕𝑡𝜔1 − 𝑑𝑖𝑣 𝜎𝛻𝜔1 = 0 𝑖𝑛 𝑌 × 0, 𝛿

    𝜎𝛻𝜔1 ∙ 𝜈 = 𝑡𝜎𝑒1 ∙ 𝜈 ≔ 𝑔 ⋅, 𝑡 𝑜𝑛 Γ × 0, 𝛿

    𝜔1 ∙, 0 = 0 𝑖𝑛 𝑌

    𝜔1 ⋅, 𝑡 = 𝑆𝐿 ⋅, 𝑡 = 𝐺 𝐱 − 𝐲, 𝑡 − 𝜏 𝜇 𝐲, 𝜏 𝑑𝑠𝐲𝑑𝜏

    Γ

    𝑡

    0

    𝐹𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

    𝐺 𝐱, 𝑡 = (4𝜋𝜎𝑡)−𝑑2𝑒−

    𝐱 2

    4𝜎𝑡

    𝜎

    2𝜇 𝐱𝟎, 𝑡 + 𝜎𝐾∗ 𝜇 𝐱𝟎, 𝑡 = 𝑔(𝐱𝟎, 𝑡)

    𝐾∗ 𝜇 (𝐱𝟎, 𝑡) ≔ 𝜕

    𝜕𝑛𝐱𝟎𝐺 𝐱𝟎 − 𝐲, 𝑡 − 𝜏 𝜇 𝐲, 𝜏 𝑑𝑠𝐲𝑑𝜏

    Γ

    𝑡

    0

    𝑝11 𝑡 ≔ 1

    𝑌 𝜕

    𝜕𝑥

    𝑌

    𝜔𝑙(⋅, 𝑡) ≈4

    3 𝜋𝜎𝑆𝐴𝑥𝑉𝑂𝐿

    𝑡32

    First Pulse: 𝑡 ∈ 0, 𝛿 , single layer potential

    𝑆𝐴𝑥𝑉𝑂𝐿

    ≔1

    |𝑌| 𝑛𝑥

    2 Γ

  • French-Vietnam Master in Applied Mathematics, Sept 23, 2017 28

    Modeling and simulation of brain diffusion MRI

    𝜕

    𝜕𝑡𝜔1 − 𝑑𝑖𝑣 𝜎𝑐𝛻𝜔1 = 0 𝑖𝑛 𝑌𝑐 × 𝛿, Δ

    𝜎𝛻𝜔1 ∙ 𝜈 = 𝛿𝜎𝑒1 ∙ 𝜈 𝑜𝑛 Γ × 𝛿, Δ

    𝜔1 ∙, 𝛿 = 𝑆𝐿 ⋅, 𝛿 𝑖𝑛 𝑌

    𝜕

    𝜕𝑡𝜔1 − 𝑑𝑖𝑣 𝜎𝛻𝜔1 = 0 𝑖𝑛 𝑌 × 𝛿, Δ

    𝜎𝛻𝜔1 ∙ 𝜈 = 0 𝑜𝑛 Γ × 𝛿, Δ

    𝜔1 ∙, 𝛿 = 𝑆𝐿 ⋅, 𝛿 − 𝛿𝑥 𝑖𝑛 𝑌

    𝜔1 ⋅, 𝑡 ≔ 𝜔1 +𝛿𝑥

    𝜔1 ⋅, 𝑡 = 𝛿𝑥 + 𝑐𝑛𝜙𝑛 ⋅ 𝑒−𝜆𝑛𝜎(𝑡−𝛿)

    𝑛=1

    Between pulses: 𝑡 ∈ [𝛿, Δ], eigenfunction expansion

  • French-Vietnam Master in Applied Mathematics, Sept 23, 2017 29

    Modeling and simulation of brain diffusion MRI

    𝜔1 ⋅, 𝑡 = 𝛿𝑥 + (𝑏𝑛 + 𝛿𝑎𝑛)𝜙𝑛 ⋅ 𝑒−𝜆𝑛𝜎(𝑡−𝛿)

    𝑛=1

    Between pulses: 𝑡 ∈ [𝛿, Δ] eigenfunction expansion

    𝑝11 𝑡 =1

    𝑌 𝜕

    𝜕𝑥

    𝑌

    𝜔1(⋅, 𝑡) ≔ 𝛿 + 𝛿𝑎𝑛 + 𝑏𝑛 ℎ𝑖𝑛𝑒−𝜆𝑛𝜎(𝑡−𝛿)

    𝑛=1

    ℎ𝑖𝑛 ≔1

    |𝑌| 𝜕𝜙𝑛 ⋅

    𝜕𝑥

    𝑏𝑛 ≔ 𝑆𝐿 ⋅, 𝛿 𝜙𝑛 ⋅

    𝑌

    𝑎𝑛 ≔ 𝑥 𝜙𝑛(⋅)

    𝑌

    𝑎𝑛 are the first moment

    of the eigenfunctions.

  • French-Vietnam Master in Applied Mathematics, Sept 23, 2017 30

    Modeling and simulation of brain diffusion MRI

    𝜕

    𝜕𝑡𝜔1 − 𝑑𝑖𝑣 𝜎𝛻𝜔1 = 0 𝑖𝑛 𝑌 × Δ, Δ + 𝛿

    𝜎𝛻𝜔1 ∙ 𝜈 = Δ + 𝛿 − 𝑡 𝜎𝑒1 ∙ 𝜈 𝑜𝑛 Γ × Δ, Δ + 𝛿

    𝜔1 ∙, Δ = 𝜔1 ⋅, Δ 𝑖𝑛 𝑌

    𝜕

    𝜕𝑡𝜔1 − 𝑑𝑖𝑣 𝜎𝛻𝜔1 = 0 𝑖𝑛 𝑌 × 0, 𝛿

    𝜎𝑐𝛻𝜔1𝑐 ∙ 𝜈 = −𝑡𝜎𝑐𝑒1 ∙ 𝜈 𝑜𝑛 Γ × 0, 𝛿

    𝜔1𝑐 ∙, 0 = 0 𝑖𝑛 𝑌𝑐

    𝜔1 ⋅, 𝑡 = 𝜔1(⋅, Δ) − 𝑆𝐿 ⋅, 𝑡 − Δ

    Second Pulse: 𝑡 ∈ [Δ, Δ + 𝛿] single layer potential

    𝑝11 𝑡 = 𝛿 + 𝛿𝑎𝑛 + 𝑏𝑛 ℎ𝑖𝑛𝑒−𝜆𝑛𝜎(Δ−𝛿)

    𝑛=1

    −4

    3 𝜋𝜎𝑆𝐴𝑥𝑉𝑂𝐿

    𝑡32

  • French-Vietnam Master in Applied Mathematics, Sept 23, 2017 31

    Modeling and simulation of brain diffusion MRI

    𝐷𝑒𝑓𝑓11

    𝜎≔ 1 −

    1

    𝛿2 Δ −𝛿3

    𝐼 + 𝐼𝐼 + 𝐼𝐼𝐼

    𝐼𝐼𝐼 =𝛿3

    2+𝛿2

    2 𝛿𝑎𝑛 + 𝑏𝑛 ℎ𝑖𝑛 (𝑒

    −𝜆𝑛𝜎 Δ−𝛿 )

    𝑛=1

    + 4

    3 𝜋𝜎𝑆𝐴𝑥𝑉𝑂𝐿

    −2

    5𝛿72 +2

    7𝛿72

    𝐼 ≔ 𝐹 𝑡 𝑝𝑖𝑙 𝑡 𝛿

    0

    = 8

    21 𝜋𝜎𝑆𝐴𝑥𝑉𝑂𝐿

    𝛿72

    𝐼𝐼 ≔ 𝐹 𝑡 𝑝𝑖𝑙 𝑡 Δ

    𝛿

    = 𝛿2 Δ − 𝛿 + 𝛿 (𝛿𝑎𝑛 + 𝑏𝑛)ℎ𝑖𝑛1

    𝜆𝑛𝜎(1 − 𝑒−𝜆𝑛𝜎(Δ−𝛿))

    𝑛=1

    𝑎𝑛 are the first moment

    of the eigenfunctions.

    ℎ𝑖𝑛 ≔1

    |𝑌| 𝜕𝜙𝑛 ⋅

    𝜕𝑥

    𝑏𝑛 ≔ 𝑆𝐿 ⋅, 𝛿 𝜙𝑛 ⋅

    𝑌

    𝑆𝐴𝑥𝑉𝑂𝐿

    ≔1

    |𝑌| 𝑛𝑥

    2 Γ

    Homogenized model for Deff

  • French-Vietnam Master in Applied Mathematics, Sept 23, 2017 32

    Modeling and simulation of brain diffusion MRI

    Numerical results

  • French-Vietnam Master in Applied Mathematics, Sept 23, 2017 33

    Modeling and simulation of brain diffusion MRI

    To do: Model is not so simple like ODE, must work to simplify it to

    make it numerically efficient for parameter estimation.

    Use mix of layer potentials and eigenfunctions

    Account for multiple scales and anisotropic shape of neurons.

  • French-Vietnam Master in Applied Mathematics, Sept 23, 2017 34

    Modeling and simulation of brain diffusion MRI

    Estimating cell size and membrane permeability using reference PDE model in neuron network of the Aplysia (sea slug).

    (Ph.D. Khieu Van Nguyen)

    Cells are really big.

  • French-Vietnam Master in Applied Mathematics, Sept 23, 2017 35

    Modeling and simulation of brain diffusion MRI

    o Segment high resolution T2 image of buccal ganglia.

    o Use literature values of feathers that cannot be seen in T2 image

    o Simulate Bloch-Torrey PDE

    o Obtain diffusion images

    Carlo Musio et al. Zoomorphology. 1990;110:17-26

  • French-Vietnam Master in Applied Mathematics, Sept 23, 2017 36

    Modeling and simulation of brain diffusion MRI

    Thank you for your attention!