numerical methods - oridnary differential equations - 3

34
Numerical Methods Ordinary Differential Equations - 3 Dr. N. B. Vyas Department of Mathematics, Atmiya Institute of Technology & Science, Rajkot (Gujarat) - INDIA [email protected] Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3

Upload: dr-nirav-vyas

Post on 09-Jan-2017

599 views

Category:

Education


2 download

TRANSCRIPT

Page 1: Numerical Methods - Oridnary Differential Equations - 3

Numerical MethodsOrdinary Differential Equations - 3

Dr. N. B. Vyas

Department of Mathematics,Atmiya Institute of Technology & Science,

Rajkot (Gujarat) - [email protected]

Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3

Page 2: Numerical Methods - Oridnary Differential Equations - 3

Ordinary Differential Equations

Runge’s Method: (Runge-Kutta Method of 3rd Order)Named after German mathematicians CARL RUNGE(1856-1927) and WILHELM KUTTA (1867-1944)

Consider the differential Equationdy

dx= f(x, y), y(x0) = y0

Calculate successively

k1 = hf(x0, y0)

k2 = hf(x0 + h

2, y0 + k1

2

)k′ = hf (x0 + h, y0 + k1)

k3 = hf (x0 + h, y0 + k′)

Finally calculate

k = 16(k1 + 4k2 + k3)

required approximate value of y = y0 + k

Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3

Page 3: Numerical Methods - Oridnary Differential Equations - 3

Ordinary Differential Equations

Runge’s Method: (Runge-Kutta Method of 3rd Order)Named after German mathematicians CARL RUNGE(1856-1927) and WILHELM KUTTA (1867-1944)

Consider the differential Equationdy

dx= f(x, y), y(x0) = y0

Calculate successively

k1 = hf(x0, y0)

k2 = hf(x0 + h

2, y0 + k1

2

)k′ = hf (x0 + h, y0 + k1)

k3 = hf (x0 + h, y0 + k′)

Finally calculate

k = 16(k1 + 4k2 + k3)

required approximate value of y = y0 + k

Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3

Page 4: Numerical Methods - Oridnary Differential Equations - 3

Ordinary Differential Equations

Runge’s Method: (Runge-Kutta Method of 3rd Order)Named after German mathematicians CARL RUNGE(1856-1927) and WILHELM KUTTA (1867-1944)

Consider the differential Equationdy

dx= f(x, y), y(x0) = y0

Calculate successively

k1 = hf(x0, y0)

k2 = hf(x0 + h

2, y0 + k1

2

)

k′ = hf (x0 + h, y0 + k1)

k3 = hf (x0 + h, y0 + k′)

Finally calculate

k = 16(k1 + 4k2 + k3)

required approximate value of y = y0 + k

Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3

Page 5: Numerical Methods - Oridnary Differential Equations - 3

Ordinary Differential Equations

Runge’s Method: (Runge-Kutta Method of 3rd Order)Named after German mathematicians CARL RUNGE(1856-1927) and WILHELM KUTTA (1867-1944)

Consider the differential Equationdy

dx= f(x, y), y(x0) = y0

Calculate successively

k1 = hf(x0, y0)

k2 = hf(x0 + h

2, y0 + k1

2

)k′ = hf (x0 + h, y0 + k1)

k3 = hf (x0 + h, y0 + k′)

Finally calculate

k = 16(k1 + 4k2 + k3)

required approximate value of y = y0 + k

Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3

Page 6: Numerical Methods - Oridnary Differential Equations - 3

Ordinary Differential Equations

Runge’s Method: (Runge-Kutta Method of 3rd Order)Named after German mathematicians CARL RUNGE(1856-1927) and WILHELM KUTTA (1867-1944)

Consider the differential Equationdy

dx= f(x, y), y(x0) = y0

Calculate successively

k1 = hf(x0, y0)

k2 = hf(x0 + h

2, y0 + k1

2

)k′ = hf (x0 + h, y0 + k1)

k3 = hf (x0 + h, y0 + k′)

Finally calculate

k = 16(k1 + 4k2 + k3)

required approximate value of y = y0 + k

Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3

Page 7: Numerical Methods - Oridnary Differential Equations - 3

Ordinary Differential Equations

Runge’s Method: (Runge-Kutta Method of 3rd Order)Named after German mathematicians CARL RUNGE(1856-1927) and WILHELM KUTTA (1867-1944)

Consider the differential Equationdy

dx= f(x, y), y(x0) = y0

Calculate successively

k1 = hf(x0, y0)

k2 = hf(x0 + h

2, y0 + k1

2

)k′ = hf (x0 + h, y0 + k1)

k3 = hf (x0 + h, y0 + k′)

Finally calculate

k = 16(k1 + 4k2 + k3)

required approximate value of y = y0 + k

Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3

Page 8: Numerical Methods - Oridnary Differential Equations - 3

Ordinary Differential Equations

Runge’s Method: (Runge-Kutta Method of 3rd Order)Named after German mathematicians CARL RUNGE(1856-1927) and WILHELM KUTTA (1867-1944)

Consider the differential Equationdy

dx= f(x, y), y(x0) = y0

Calculate successively

k1 = hf(x0, y0)

k2 = hf(x0 + h

2, y0 + k1

2

)k′ = hf (x0 + h, y0 + k1)

k3 = hf (x0 + h, y0 + k′)

Finally calculate

k = 16(k1 + 4k2 + k3)

required approximate value of y = y0 + k

Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3

Page 9: Numerical Methods - Oridnary Differential Equations - 3

Ordinary Differential Equations

Runge’s Method: (Runge-Kutta Method of 3rd Order)Named after German mathematicians CARL RUNGE(1856-1927) and WILHELM KUTTA (1867-1944)

Consider the differential Equationdy

dx= f(x, y), y(x0) = y0

Calculate successively

k1 = hf(x0, y0)

k2 = hf(x0 + h

2, y0 + k1

2

)k′ = hf (x0 + h, y0 + k1)

k3 = hf (x0 + h, y0 + k′)

Finally calculate

k = 16(k1 + 4k2 + k3)

required approximate value of y = y0 + k

Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3

Page 10: Numerical Methods - Oridnary Differential Equations - 3

Runge’s Method

Ex. Use Runge’s method to approximate y whenx = 1.1 given that y = 1.2 when x = 1 anddy

dx= 3x + y2

Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3

Page 11: Numerical Methods - Oridnary Differential Equations - 3

Runge’s Method

Sol. We havedy

dx= 3x + y2 , ∴ f(x, y) = 3x + y2

x0 = 1, y0 = 1.2 and h = 0.1

k1 = hf(x0, y0) = 0.444

k2 = hf(x0 + h

2 , y0 + k12

)= 0.51721

k′ = hf (x0 + h, y0 + k1) = 0.60027

k3 = hf (x0 + h, y0 + k′) = 0.65411

Hence k = 16(k1 + 4k2 + k3) = 0.5278

∴ approximate value of y = y0 + k = 1.7278

Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3

Page 12: Numerical Methods - Oridnary Differential Equations - 3

Runge’s Method

Sol. We havedy

dx= 3x + y2 , ∴ f(x, y) = 3x + y2

x0 = 1, y0 = 1.2 and h = 0.1

k1 = hf(x0, y0) = 0.444

k2 = hf(x0 + h

2 , y0 + k12

)= 0.51721

k′ = hf (x0 + h, y0 + k1) = 0.60027

k3 = hf (x0 + h, y0 + k′) = 0.65411

Hence k = 16(k1 + 4k2 + k3) = 0.5278

∴ approximate value of y = y0 + k = 1.7278

Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3

Page 13: Numerical Methods - Oridnary Differential Equations - 3

Runge’s Method

Sol. We havedy

dx= 3x + y2 , ∴ f(x, y) = 3x + y2

x0 = 1, y0 = 1.2 and h = 0.1

k1 = hf(x0, y0)

= 0.444

k2 = hf(x0 + h

2 , y0 + k12

)= 0.51721

k′ = hf (x0 + h, y0 + k1) = 0.60027

k3 = hf (x0 + h, y0 + k′) = 0.65411

Hence k = 16(k1 + 4k2 + k3) = 0.5278

∴ approximate value of y = y0 + k = 1.7278

Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3

Page 14: Numerical Methods - Oridnary Differential Equations - 3

Runge’s Method

Sol. We havedy

dx= 3x + y2 , ∴ f(x, y) = 3x + y2

x0 = 1, y0 = 1.2 and h = 0.1

k1 = hf(x0, y0) = 0.444

k2 = hf(x0 + h

2 , y0 + k12

)

= 0.51721

k′ = hf (x0 + h, y0 + k1) = 0.60027

k3 = hf (x0 + h, y0 + k′) = 0.65411

Hence k = 16(k1 + 4k2 + k3) = 0.5278

∴ approximate value of y = y0 + k = 1.7278

Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3

Page 15: Numerical Methods - Oridnary Differential Equations - 3

Runge’s Method

Sol. We havedy

dx= 3x + y2 , ∴ f(x, y) = 3x + y2

x0 = 1, y0 = 1.2 and h = 0.1

k1 = hf(x0, y0) = 0.444

k2 = hf(x0 + h

2 , y0 + k12

)= 0.51721

k′ = hf (x0 + h, y0 + k1)

= 0.60027

k3 = hf (x0 + h, y0 + k′) = 0.65411

Hence k = 16(k1 + 4k2 + k3) = 0.5278

∴ approximate value of y = y0 + k = 1.7278

Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3

Page 16: Numerical Methods - Oridnary Differential Equations - 3

Runge’s Method

Sol. We havedy

dx= 3x + y2 , ∴ f(x, y) = 3x + y2

x0 = 1, y0 = 1.2 and h = 0.1

k1 = hf(x0, y0) = 0.444

k2 = hf(x0 + h

2 , y0 + k12

)= 0.51721

k′ = hf (x0 + h, y0 + k1) = 0.60027

k3 = hf (x0 + h, y0 + k′)

= 0.65411

Hence k = 16(k1 + 4k2 + k3) = 0.5278

∴ approximate value of y = y0 + k = 1.7278

Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3

Page 17: Numerical Methods - Oridnary Differential Equations - 3

Runge’s Method

Sol. We havedy

dx= 3x + y2 , ∴ f(x, y) = 3x + y2

x0 = 1, y0 = 1.2 and h = 0.1

k1 = hf(x0, y0) = 0.444

k2 = hf(x0 + h

2 , y0 + k12

)= 0.51721

k′ = hf (x0 + h, y0 + k1) = 0.60027

k3 = hf (x0 + h, y0 + k′) = 0.65411

Hence k = 16(k1 + 4k2 + k3)

= 0.5278

∴ approximate value of y = y0 + k = 1.7278

Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3

Page 18: Numerical Methods - Oridnary Differential Equations - 3

Runge’s Method

Sol. We havedy

dx= 3x + y2 , ∴ f(x, y) = 3x + y2

x0 = 1, y0 = 1.2 and h = 0.1

k1 = hf(x0, y0) = 0.444

k2 = hf(x0 + h

2 , y0 + k12

)= 0.51721

k′ = hf (x0 + h, y0 + k1) = 0.60027

k3 = hf (x0 + h, y0 + k′) = 0.65411

Hence k = 16(k1 + 4k2 + k3) = 0.5278

∴ approximate value of y = y0 + k

= 1.7278

Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3

Page 19: Numerical Methods - Oridnary Differential Equations - 3

Runge’s Method

Sol. We havedy

dx= 3x + y2 , ∴ f(x, y) = 3x + y2

x0 = 1, y0 = 1.2 and h = 0.1

k1 = hf(x0, y0) = 0.444

k2 = hf(x0 + h

2 , y0 + k12

)= 0.51721

k′ = hf (x0 + h, y0 + k1) = 0.60027

k3 = hf (x0 + h, y0 + k′) = 0.65411

Hence k = 16(k1 + 4k2 + k3) = 0.5278

∴ approximate value of y = y0 + k = 1.7278

Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3

Page 20: Numerical Methods - Oridnary Differential Equations - 3

Ordinary Differential Equations

Runge-Kutta Method of 2nd Order:

Consider the differential Equationdy

dx= f(x, y), y(x0) = y0

Calculate successively

k1 = hf(x0, y0)

k2 = hf (x0 + h, y0 + k1)

Find k =1

2(k1 + k2)

∴ y1 = y0 + k

Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3

Page 21: Numerical Methods - Oridnary Differential Equations - 3

Ordinary Differential Equations

Runge-Kutta Method of 2nd Order:

Consider the differential Equationdy

dx= f(x, y), y(x0) = y0

Calculate successively

k1 = hf(x0, y0)

k2 = hf (x0 + h, y0 + k1)

Find k =1

2(k1 + k2)

∴ y1 = y0 + k

Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3

Page 22: Numerical Methods - Oridnary Differential Equations - 3

Ordinary Differential Equations

Runge-Kutta Method of 2nd Order:

Consider the differential Equationdy

dx= f(x, y), y(x0) = y0

Calculate successively

k1 = hf(x0, y0)

k2 = hf (x0 + h, y0 + k1)

Find k =1

2(k1 + k2)

∴ y1 = y0 + k

Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3

Page 23: Numerical Methods - Oridnary Differential Equations - 3

Ordinary Differential Equations

Runge-Kutta Method of 2nd Order:

Consider the differential Equationdy

dx= f(x, y), y(x0) = y0

Calculate successively

k1 = hf(x0, y0)

k2 = hf (x0 + h, y0 + k1)

Find k =1

2(k1 + k2)

∴ y1 = y0 + k

Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3

Page 24: Numerical Methods - Oridnary Differential Equations - 3

Ordinary Differential Equations

Runge-Kutta Method of 2nd Order:

Consider the differential Equationdy

dx= f(x, y), y(x0) = y0

Calculate successively

k1 = hf(x0, y0)

k2 = hf (x0 + h, y0 + k1)

Find k =1

2(k1 + k2)

∴ y1 = y0 + kDr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3

Page 25: Numerical Methods - Oridnary Differential Equations - 3

Ordinary Differential Equations

Runge-Kutta Method of 4th Order:

Consider the differential Equationdy

dx= f(x, y), y(x0) = y0

Calculate successively

k1 = hf(x0, y0)

k2 = hf(x0 + h

2 , y0 + k12

)k3 = hf

(x0 + h

2 , y0 + k22

)k4 = hf(x0 + h, y0 + k3)

Find k =1

6(k1 + 2k2 + 2k3 + k4)

∴ y1 = y0 + k and x1 = x0 + h

Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3

Page 26: Numerical Methods - Oridnary Differential Equations - 3

Ordinary Differential Equations

Runge-Kutta Method of 4th Order:

Consider the differential Equationdy

dx= f(x, y), y(x0) = y0

Calculate successively

k1 = hf(x0, y0)

k2 = hf(x0 + h

2 , y0 + k12

)k3 = hf

(x0 + h

2 , y0 + k22

)k4 = hf(x0 + h, y0 + k3)

Find k =1

6(k1 + 2k2 + 2k3 + k4)

∴ y1 = y0 + k and x1 = x0 + h

Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3

Page 27: Numerical Methods - Oridnary Differential Equations - 3

Ordinary Differential Equations

Runge-Kutta Method of 4th Order:

Consider the differential Equationdy

dx= f(x, y), y(x0) = y0

Calculate successively

k1 = hf(x0, y0)

k2 = hf(x0 + h

2 , y0 + k12

)

k3 = hf(x0 + h

2 , y0 + k22

)k4 = hf(x0 + h, y0 + k3)

Find k =1

6(k1 + 2k2 + 2k3 + k4)

∴ y1 = y0 + k and x1 = x0 + h

Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3

Page 28: Numerical Methods - Oridnary Differential Equations - 3

Ordinary Differential Equations

Runge-Kutta Method of 4th Order:

Consider the differential Equationdy

dx= f(x, y), y(x0) = y0

Calculate successively

k1 = hf(x0, y0)

k2 = hf(x0 + h

2 , y0 + k12

)k3 = hf

(x0 + h

2 , y0 + k22

)

k4 = hf(x0 + h, y0 + k3)

Find k =1

6(k1 + 2k2 + 2k3 + k4)

∴ y1 = y0 + k and x1 = x0 + h

Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3

Page 29: Numerical Methods - Oridnary Differential Equations - 3

Ordinary Differential Equations

Runge-Kutta Method of 4th Order:

Consider the differential Equationdy

dx= f(x, y), y(x0) = y0

Calculate successively

k1 = hf(x0, y0)

k2 = hf(x0 + h

2 , y0 + k12

)k3 = hf

(x0 + h

2 , y0 + k22

)k4 = hf(x0 + h, y0 + k3)

Find k =1

6(k1 + 2k2 + 2k3 + k4)

∴ y1 = y0 + k and x1 = x0 + h

Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3

Page 30: Numerical Methods - Oridnary Differential Equations - 3

Ordinary Differential Equations

Runge-Kutta Method of 4th Order:

Consider the differential Equationdy

dx= f(x, y), y(x0) = y0

Calculate successively

k1 = hf(x0, y0)

k2 = hf(x0 + h

2 , y0 + k12

)k3 = hf

(x0 + h

2 , y0 + k22

)k4 = hf(x0 + h, y0 + k3)

Find k =1

6(k1 + 2k2 + 2k3 + k4)

∴ y1 = y0 + k and x1 = x0 + h

Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3

Page 31: Numerical Methods - Oridnary Differential Equations - 3

Ordinary Differential Equations

Runge-Kutta Method of 4th Order:

Consider the differential Equationdy

dx= f(x, y), y(x0) = y0

Calculate successively

k1 = hf(x0, y0)

k2 = hf(x0 + h

2 , y0 + k12

)k3 = hf

(x0 + h

2 , y0 + k22

)k4 = hf(x0 + h, y0 + k3)

Find k =1

6(k1 + 2k2 + 2k3 + k4)

∴ y1 = y0 + k and x1 = x0 + h

Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3

Page 32: Numerical Methods - Oridnary Differential Equations - 3

Runge-Kutta Method of 2nd Order

Ex. Use Runge-kutta second order method to findthe approximate value of y(0.2) given thatdy

dx= x− y2 and y(0) = 1 and h = 0.1

Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3

Page 33: Numerical Methods - Oridnary Differential Equations - 3

Runge-Kutta Method of 2nd Order

Ex. Use 4th order Runge-kutta method to solvedy

dx= x2 + y2, y(0) = 1. Find y(0.2) with h = 0.1.

Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3

Page 34: Numerical Methods - Oridnary Differential Equations - 3

Runge-Kutta Method of 2nd Order

Ex. Determine y(0.1) and y(0.2) correct to four

decimal places fromdy

dx= 2x + y, y(0) = 1. Use

fourth order Runge-Kutta method

Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3