numerical method for pde by finite difference

Upload: sarkawt-hamarahim-muhammad

Post on 05-Jul-2018

226 views

Category:

Documents


1 download

TRANSCRIPT

  • 8/16/2019 Numerical method for PDE by finite difference

    1/42

    LogoINRIA

    Overview 1   PDE 1-2   PDE 2   ODE 3   FD 4   FD 5   FD 6   FV 7-8   FV 8-9   FV 10

    Numerical Methods for PDE: Finite Differencesand Finites Volumes

    B. Nkonga

    JAD/INRIA

    Lectures Références:

    Roger Peyret (NICE ESSI : 89),Tim Warburton (Boston MIT : 03-05),

    Pierre Charrier (Bordeaux Matmeca 96-08)

    B. NkongaLectures Références: Roger Peyret (

    / 33

  • 8/16/2019 Numerical method for PDE by finite difference

    2/42

    LogoINRIA

    Overview 1   PDE 1-2   PDE 2   ODE 3   FD 4   FD 5   FD 6   FV 7-8   FV 8-9   FV 10

    1   Finite Difference(FD) and Finite volume(FV) : Overview

    2   Modelization and Simplified models of PDE.3   Scalar Advection-Diffusion Eqation.

    4   Approximation of a Scalar 1D ODE.

    5   FD for 1D scalar poisson equation (elliptic).

    6   FD for 1D scalar difusion equation (parabolic).

    7   FD for 1D scalar advection-diffusion equation.

    8   Scalar Nonlinear Conservation law : 1D (hyperbolic).

    9   FV for scalar nonlinear Conservation law : 1D

    10   Multi-Dimensional extensions

    B. NkongaLectures Références: Roger Peyret (

    / 33

  • 8/16/2019 Numerical method for PDE by finite difference

    3/42

    LogoINRIA

    Overview 1   PDE 1-2   PDE 2   ODE 3   FD 4   FD 5   FD 6   FV 7-8   FV 8-9   FV 10

    Plan

    1   Finite Difference(FD) and Finite volume(FV) : Overview2   Modelization and Simplified models of PDE.

    3   Scalar Advection-Diffusion Eqation.

    4   Approximation of a Scalar 1D ODE.

    5   FD for 1D scalar poisson equation (elliptic).

    6   FD for 1D scalar difusion equation (parabolic).

    7   FD for 1D scalar advection-diffusion equation.

    8   Scalar Nonlinear Conservation law : 1D (hyperbolic).

    9   FV for scalar nonlinear Conservation law : 1D

    10   Multi-Dimensional extensions

    B. NkongaLectures Références: Roger Peyret (

    / 33

  • 8/16/2019 Numerical method for PDE by finite difference

    4/42

    LogoINRIA

    Overview 1   PDE 1-2   PDE 2   ODE 3   FD 4   FD 5   FD 6   FV 7-8   FV 8-9   FV 10

    Introduction : Why we need computation ?

    To enjoy and understand !

    B. NkongaLectures Références: Roger Peyret (

    / 33

    O i 1 PDE 1 2 PDE 2 ODE 3 FD FD FD 6 FV 8 FV 8 9 FV 10

  • 8/16/2019 Numerical method for PDE by finite difference

    5/42

    LogoINRIA

    Overview 1   PDE 1-2   PDE 2   ODE 3   FD 4   FD 5   FD 6   FV 7-8   FV 8-9   FV 10

    Introduction : Why we need computation ?

    To prevent some humanity disaster, at least we hope so !B. Nkonga

    Lectures Références: Roger Peyret (/ 33

    O i 1 PDE 1 2 PDE 2 ODE 3 FD 4 FD 5 FD 6 FV 7 8 FV 8 9 FV 10

  • 8/16/2019 Numerical method for PDE by finite difference

    6/42

    LogoINRIA

    Overview 1   PDE 1-2   PDE 2   ODE 3   FD 4   FD 5   FD 6   FV 7-8   FV 8-9   FV 10

    Introduction : Why we need computation ?

    To prevent consequences of some natural disaster !B. Nkonga

    Lectures Références: Roger Peyret (/ 33

    Overview 1 PDE 1 2 PDE 2 ODE 3 FD 4 FD 5 FD 6 FV 7 8 FV 8 9 FV 10

  • 8/16/2019 Numerical method for PDE by finite difference

    7/42

    LogoINRIA

    Overview 1   PDE 1-2   PDE 2   ODE 3   FD 4   FD 5   FD 6   FV 7-8   FV 8-9   FV 10

    Introduction : Why we need computation ?

    ITER Int. Project.LMJ & NIF : Laser/plasmas

    To help meet mankind’s future energy needs : Fusion

    B. NkongaLectures Références: Roger Peyret (

    / 33

    Overview 1 PDE 1 2 PDE 2 ODE 3 FD 4 FD 5 FD 6 FV 7 8 FV 8 9 FV 10

  • 8/16/2019 Numerical method for PDE by finite difference

    8/42

    LogoINRIA

    Overview 1   PDE 1-2   PDE 2   ODE 3   FD 4   FD 5   FD 6   FV 7-8   FV 8-9   FV 10

    Are computations possibles ?

    Yes, Because we haveFundamental Laws

    Conservation of   mass,

    Momentum, Energy.Laws of the Thermodynamics :(1st, 2nd, 3th) Gauss, Ampère’s,Faraday Laws

    Computers are efficient

    Tera-FLOPS computersavailables  1012 FLoating pointOperations Per Second.

    Numerical approximation strategiesFinite volume, Finite element, Finite difference, Particles In Cells,..., structured/unstructured mesh, Parallel programming (MPI),

    B. NkongaLectures Références: Roger Peyret (

    / 33

    Overview 1 PDE 1-2 PDE 2 ODE 3 FD 4 FD 5 FD 6 FV 7-8 FV 8-9 FV 10

  • 8/16/2019 Numerical method for PDE by finite difference

    9/42

    LogoINRIA

    Overview 1   PDE 1-2   PDE 2   ODE 3   FD 4   FD 5   FD 6   FV 7-8   FV 8-9   FV 10

    Balance “relations” or equations !

    1 9 9 8

    2

    2S 

    v

    1v1

     P r e m i e r e  c o t e  d

     e

     B o r d e a u x

    Conservation Law : for Mass

    Mass fluctuation, in a controlvolume, is the sum of outgoingand incoming mass :

    Balance Relation

    m(t+dt) = m(t)+ρ1S 1v1

    −ρ2S 2v2

    Balance equation

    ∂ρ

    ∂t  + ∇ · (ρvvv) = 0

    B. NkongaLectures Références: Roger Peyret (

    / 33

    Overview 1 PDE 1-2 PDE 2 ODE 3 FD 4 FD 5 FD 6 FV 7-8 FV 8-9 FV 10

  • 8/16/2019 Numerical method for PDE by finite difference

    10/42

    LogoINRIA

    Overview 1   PDE 1 2   PDE 2   ODE 3   FD 4   FD 5   FD 6   FV 7 8   FV 8 9   FV 10

    Balance “relations” or equations !

    ρ (x+dx)

    ρ (x−dx)

    v(x+dx)

     x−dx   x+dx

     x

    v(x−dx)

    From relations to equations

    m(x, t + dt) = m(x, t) +S    t+dtt

    f (x − dx,s)ds

    −S    t+dtt

    f (x + dx, s)ds

    where the flux is defined by  f (x, t) = ρ(x, t)v(x, t)B. Nkonga

    Lectures Références: Roger Peyret (/ 33

    Overview 1   PDE 1-2   PDE 2   ODE 3   FD 4   FD 5   FD 6   FV 7-8   FV 8-9   FV 10

  • 8/16/2019 Numerical method for PDE by finite difference

    11/42

    LogoINRIA

    9

    Balance “relations” or equations !

    ρ (x+dx)

    ρ (x−dx)

    v(x+dx)

     x−dx   x+dx

     x

    v(x−dx)

    From relations to equations

    m(x, t + dt) = m(x, t) + Sdtf (x− dx,t)− Sdtf (x + dx, t)

    m(x, .) = 2Sdxρ(x, .)

    where the flux is defined by  f (x, t) = ρ(x, t)v(x, t)

    B. NkongaLectures Références: Roger Peyret (

    / 33

    Overview 1   PDE 1-2   PDE 2   ODE 3   FD 4   FD 5   FD 6   FV 7-8   FV 8-9   FV 10

  • 8/16/2019 Numerical method for PDE by finite difference

    12/42

    LogoINRIA

    Balance “relations” or equations !

    ρ (x+dx)

    ρ (x−dx)

    v(x+dx)

     x−dx   x+dx

     x

    v(x−dx)

    From relations to equations   dx → 0  and  dt → 0

    ρ(x, t + dt)− ρ(x, t)dt

      = −f (x + dx, t)− f (x − dx,t)2dx

    =⇒   ∂ρ∂t

      + ∂f 

    ∂x = 0 =⇒   ∂ρ

    ∂t  +

     ∂ (ρv)

    ∂x  = 0

    where the flux is defined by  f (x, t) = ρ(x, t)v(x, t)

    B. NkongaLectures Références: Roger Peyret (

    / 33

    Overview 1   PDE 1-2   PDE 2   ODE 3   FD 4   FD 5   FD 6   FV 7-8   FV 8-9   FV 10

  • 8/16/2019 Numerical method for PDE by finite difference

    13/42

    LogoINRIA

    Balance equations : general 1D case

    ∂ω

    ∂t  +

     ∂f (ω)

    ∂x  = S 

    where S  can be defined, for example, by the chemistry process,geometrical topology ...

    ω(x, t) =

    ρ

    ρY 

    ρu

    and   f (ω) =

    ρu

    ρY u

    ρu2 + p(E  + p)u

    B. NkongaLectures Références: Roger Peyret (

    / 33

    Overview 1   PDE 1-2   PDE 2   ODE 3   FD 4   FD 5   FD 6   FV 7-8   FV 8-9   FV 10

  • 8/16/2019 Numerical method for PDE by finite difference

    14/42

    LogoINRIA

    Balance equations : general 1D case

    ∂ω

    ∂t  +

     ∂f (ω)

    ∂x  = S 

    where

     S  can be defined, for example, by the chemistry process,

    geometrical topology ...

    ω(x, t) =

    ρ

    ρY 

    ρu

    and   f (ω) =

    ρu

    ρY u

    ρu2 + p

    (E  + p)u

    B. NkongaLectures Références: Roger Peyret (

    / 33

    Overview 1   PDE 1-2   PDE 2   ODE 3   FD 4   FD 5   FD 6   FV 7-8   FV 8-9   FV 10

  • 8/16/2019 Numerical method for PDE by finite difference

    15/42

    LogoINRIA

    Balance equations : general 1D case

    0 0

    0 0

    0 0

    0 0

    0 0

    0 0

    0 0

    0 0

    0 0

    0 0

    0 0

    0 0

    0 0

    0 0

    0 0

    0 0

    0 0

    1 1

    1 1

    1 1

    1 1

    1 1

    1 1

    1 1

    1 1

    1 1

    1 1

    1 1

    1 1

    1 1

    1 1

    1 1

    1 1

    1 1

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    S 1

    S 2v1

    v2

    ∂ω

    ∂t  +

     ∂f (ω)

    ∂x  = S 

    where S  can be defined, for example, by the chemistry process,geometrical topology ...

    ω(x, t) =

    ρ

    ρY 

    ρu

    and   f (ω) =

    ρu

    ρY u

    ρu2 + p(E  + p)u

    B. Nkonga

    Lectures Références: Roger Peyret (/ 33

    Overview 1   PDE 1-2   PDE 2   ODE 3   FD 4   FD 5   FD 6   FV 7-8   FV 8-9   FV 10

  • 8/16/2019 Numerical method for PDE by finite difference

    16/42

    LogoINRIA

    Finite volume Scheme : 1D case

    ∂ω

    ∂t  +

     ∂f (ω)

    ∂x  = S 

    Mesh and Control volumes

    B. NkongaLectures Références: Roger Peyret (

    / 33

    Overview 1   PDE 1-2   PDE 2   ODE 3   FD 4   FD 5   FD 6   FV 7-8   FV 8-9   FV 10

  • 8/16/2019 Numerical method for PDE by finite difference

    17/42

    LogoINRIA

    Finite volume Scheme : 1D case

    i

    i−1/2   i+1/2

    i+1i−1

    vin

    ∂ω

    ∂t  +

     ∂f (ω)

    ∂x  = S 

    Balance relations on a Control volume

    ωn+1i   − ωnitn+1 − tn   +

    φmi+1

    2

    − φmi− 1

    2

    xi+12

    − xi− 12

    = S mi

    B. NkongaLectures Références: Roger Peyret (

    / 33

    Overview 1   PDE 1-2   PDE 2   ODE 3   FD 4   FD 5   FD 6   FV 7-8   FV 8-9   FV 10

  • 8/16/2019 Numerical method for PDE by finite difference

    18/42

    LogoINRIA

    Finite volume Scheme : 1D case

    i

    i−1/2   i+1/2

    i+1i−1

    vin

    ωn+1i   − ωnitn+1 − tn   +

    φmi+12− φmi− 1

    2

    xi+12

    − xi− 12

    = S mi

    How to define the numericalflux  φ f B. Nkonga

    Lectures Références: Roger Peyret (/ 33

    Overview 1   PDE 1-2   PDE 2   ODE 3   FD 4   FD 5   FD 6   FV 7-8   FV 8-9   FV 10

  • 8/16/2019 Numerical method for PDE by finite difference

    19/42

    LogoINRIA

    Finite volume Scheme : 1D case

    i

    i−1/2   i+1/2

    i+1i−1

    vin

    ωn+1i   − ωnitn+1

    − tn

      +φmi+1

    2

    − φmi− 1

    2

    xi+12 − xi− 12=

    S mi

    Centered scheme :

    φi+12

    =f i + f i+1

    2

    Accurate but Unstable !

    B. NkongaLectures Références: Roger Peyret (

    / 33

    Overview 1   PDE 1-2   PDE 2   ODE 3   FD 4   FD 5   FD 6   FV 7-8   FV 8-9   FV 10

  • 8/16/2019 Numerical method for PDE by finite difference

    20/42

    LogoINRIA

    Finite volume Scheme : 1D case

    i

    i−1/2   i+1/2

    i+1i−1

    vin

    ωn+1i   − ωnitn+1 − tn

      +φmi+1

    2

    − φmi− 1

    2

    xi+12 − xi− 12=S mi

    Upwind scheme ( in this case) :

    φi+12

    = f i   and   φi−12

    = f i−1

    Less accurate but Stable √ 

    B. NkongaLectures Références: Roger Peyret (

    / 33

    Overview 1   PDE 1-2   PDE 2   ODE 3   FD 4   FD 5   FD 6   FV 7-8   FV 8-9   FV 10

  • 8/16/2019 Numerical method for PDE by finite difference

    21/42

    LogoINRIA

    Finite volume Scheme : 1D case

    i

    i−1/2   i+1/2

    i+1i−1

    vin

    ωn+1

    i   − ωn

    i

    tn+1 − tn   +φm

    i+1

    2 −φm

    i−1

    2

    xi+12

    − xi− 12

    = S mi

    General rule :The numerical flux should be consistent with the physicsUpwind : Follows information traveling in thecorrect direction.

    B. NkongaLectures Références: Roger Peyret (

    / 33

    Overview 1   PDE 1-2   PDE 2   ODE 3   FD 4   FD 5   FD 6   FV 7-8   FV 8-9   FV 10

  • 8/16/2019 Numerical method for PDE by finite difference

    22/42

    LogoINRIA

    Finite volume Scheme : 2D case

    n3

    n1v1

    i

    n2

    2v

    v3

    aiωn+1i   − ωnitn+1 − tn   = −

     j∈ϑ(i)

    Φi,j

    φi,j  is now the flux crossing an interface from the cell  i  to  j.B. Nkonga

    Lectures Références: Roger Peyret (/ 33

    Overview 1   PDE 1-2   PDE 2   ODE 3   FD 4   FD 5   FD 6   FV 7-8   FV 8-9   FV 10

  • 8/16/2019 Numerical method for PDE by finite difference

    23/42

    LogoINRIA

    Need properties for Numerical Scheme

    φi,j  = φ(ωi, ω j)Properties we want the numerical approximation to satisfy are :

    Consistency, Stability, Convergence

    Accuracy : have a better result with a given mesh.Positivity and maximum principles  ρ ≥ 0, ||v|| ≤ c.Second thermodynamic law (entropy production) : Nonlinearcases.

    Lax Theorem for conservative systems

    Consistency + Stability = Convergence

    B. NkongaLectures Références: Roger Peyret (

    / 33

    Overview 1   PDE 1-2   PDE 2   ODE 3   FD 4   FD 5   FD 6   FV 7-8   FV 8-9   FV 10

  • 8/16/2019 Numerical method for PDE by finite difference

    24/42

    LogoINRIA

    Low Mach interface flow with surface Tension

     100110

     100111

     100112

     100113

     100114

     100115

     100116

     100117

     100118

     100119

     100120

     0 0.005 0.01 0.015 0.02 0.025

    ’Simulation’

    ’Exact’T= 120 ms

    Laplace Law Recovered :  δp = σκ

    Initial Interface

    T= 210 ms T= 690 ms

    B. NkongaLectures Références: Roger Peyret (

    / 33

    Overview 1   PDE 1-2   PDE 2   ODE 3   FD 4   FD 5   FD 6   FV 7-8   FV 8-9   FV 10

  • 8/16/2019 Numerical method for PDE by finite difference

    25/42

    LogoINRIA

    Water drop in air, gravity and Surface tension

    B. NkongaLectures Références: Roger Peyret (

    / 33

    Overview 1   PDE 1-2   PDE 2   ODE 3   FD 4   FD 5   FD 6   FV 7-8   FV 8-9   FV 10

  • 8/16/2019 Numerical method for PDE by finite difference

    26/42

    LogoINRIA

    Water drop in air, gravity and Surface tension

    B. NkongaLectures Références: Roger Peyret (

    / 33

    Overview 1   PDE 1-2   PDE 2   ODE 3   FD 4   FD 5   FD 6   FV 7-8   FV 8-9   FV 10

  • 8/16/2019 Numerical method for PDE by finite difference

    27/42

    LogoINRIA

    Dam Break : Shallow water and Multiphase flow

    B. NkongaLectures Références: Roger Peyret (

    / 33

    Overview 1   PDE 1-2   PDE 2   ODE 3   FD 4   FD 5   FD 6   FV 7-8   FV 8-9   FV 10

  • 8/16/2019 Numerical method for PDE by finite difference

    28/42

    LogoINRIA

    Shallow water and Multiphase flow

    B. NkongaLectures Références: Roger Peyret (

    / 33

    Overview 1   PDE 1-2   PDE 2   ODE 3   FD 4   FD 5   FD 6   FV 7-8   FV 8-9   FV 10

  • 8/16/2019 Numerical method for PDE by finite difference

    29/42

    LogoINRIA

    Explosion and propagation : Mesh follows the shock font.

    B. NkongaLectures Références: Roger Peyret (

    / 33

    Overview 1   PDE 1-2   PDE 2   ODE 3   FD 4   FD 5   FD 6   FV 7-8   FV 8-9   FV 10

  • 8/16/2019 Numerical method for PDE by finite difference

    30/42

    LogoINRIA

    Laser / Plasmas Interactions for Nuclear Fusion

    B. NkongaLectures Références: Roger Peyret (

    / 33

    Overview 1   PDE 1-2   PDE 2   ODE 3   FD 4   FD 5   FD 6   FV 7-8   FV 8-9   FV 10

  • 8/16/2019 Numerical method for PDE by finite difference

    31/42

    LogoINRIA

    Computation and reality : Aerodynamic flow

    B. NkongaLectures Références: Roger Peyret (

    / 33

    Overview 1   PDE 1-2   PDE 2   ODE 3   FD 4   FD 5   FD 6   FV 7-8   FV 8-9   FV 10

  • 8/16/2019 Numerical method for PDE by finite difference

    32/42

    LogoINRIA

    High speed aerodynamics : Shock and condensation

    Condensation gives a view

    of the shock wave profileB. NkongaLectures Références: Roger Peyret (

    / 33

    Overview 1   PDE 1-2   PDE 2   ODE 3   FD 4   FD 5   FD 6   FV 7-8   FV 8-9   FV 10

    Sh k D d

  • 8/16/2019 Numerical method for PDE by finite difference

    33/42

    LogoINRIA

    Shock waves interactions : Diamond structure

    FluidBox

    B. NkongaLectures Références: Roger Peyret (

    / 33

    Overview 1   PDE 1-2   PDE 2   ODE 3   FD 4   FD 5   FD 6   FV 7-8   FV 8-9   FV 10

    Pl

  • 8/16/2019 Numerical method for PDE by finite difference

    34/42

    LogoINRIA

    Plan

    1   Finite Difference(FD) and Finite volume(FV) : Overview

    2   Modelization and Simplified models of PDE.

    3   Scalar Advection-Diffusion Eqation.

    4   Approximation of a Scalar 1D ODE.

    5   FD for 1D scalar poisson equation (elliptic).

    6   FD for 1D scalar difusion equation (parabolic).

    7   FD for 1D scalar advection-diffusion equation.

    8   Scalar Nonlinear Conservation law : 1D (hyperbolic).

    9   FV for scalar nonlinear Conservation law : 1D

    10   Multi-Dimensional extensions

    B. NkongaLectures Références: Roger Peyret (

    / 33

    Overview 1   PDE 1-2   PDE 2   ODE 3   FD 4   FD 5   FD 6   FV 7-8   FV 8-9   FV 10

    Pl

  • 8/16/2019 Numerical method for PDE by finite difference

    35/42

    LogoINRIA

    Plan

    1   Finite Difference(FD) and Finite volume(FV) : Overview

    2   Modelization and Simplified models of PDE.

    3   Scalar Advection-Diffusion Eqation.

    4   Approximation of a Scalar 1D ODE.

    5   FD for 1D scalar poisson equation (elliptic).

    6   FD for 1D scalar difusion equation (parabolic).

    7   FD for 1D scalar advection-diffusion equation.

    8   Scalar Nonlinear Conservation law : 1D (hyperbolic).

    9   FV for scalar nonlinear Conservation law : 1D

    10   Multi-Dimensional extensions

    B. NkongaLectures Références: Roger Peyret (

    / 33

    Overview 1   PDE 1-2   PDE 2   ODE 3   FD 4   FD 5   FD 6   FV 7-8   FV 8-9   FV 10

    Pl

  • 8/16/2019 Numerical method for PDE by finite difference

    36/42

    LogoINRIA

    Plan

    1   Finite Difference(FD) and Finite volume(FV) : Overview

    2   Modelization and Simplified models of PDE.

    3   Scalar Advection-Diffusion Eqation.

    4   Approximation of a Scalar 1D ODE.

    5   FD for 1D scalar poisson equation (elliptic).

    6   FD for 1D scalar difusion equation (parabolic).

    7   FD for 1D scalar advection-diffusion equation.

    8   Scalar Nonlinear Conservation law : 1D (hyperbolic).

    9   FV for scalar nonlinear Conservation law : 1D

    10   Multi-Dimensional extensions

    B. NkongaLectures Références: Roger Peyret (

    / 33

    Overview 1   PDE 1-2   PDE 2   ODE 3   FD 4   FD 5   FD 6   FV 7-8   FV 8-9   FV 10

    Pl

  • 8/16/2019 Numerical method for PDE by finite difference

    37/42

    LogoINRIA

    Plan

    1   Finite Difference(FD) and Finite volume(FV) : Overview

    2   Modelization and Simplified models of PDE.

    3   Scalar Advection-Diffusion Eqation.

    4   Approximation of a Scalar 1D ODE.

    5   FD for 1D scalar poisson equation (elliptic).

    6   FD for 1D scalar difusion equation (parabolic).

    7   FD for 1D scalar advection-diffusion equation.

    8   Scalar Nonlinear Conservation law : 1D (hyperbolic).

    9   FV for scalar nonlinear Conservation law : 1D

    10   Multi-Dimensional extensions

    B. NkongaLectures Références: Roger Peyret (

    / 33

    Overview 1   PDE 1-2   PDE 2   ODE 3   FD 4   FD 5   FD 6   FV 7-8   FV 8-9   FV 10

    Plan

  • 8/16/2019 Numerical method for PDE by finite difference

    38/42

    LogoINRIA

    Plan

    1   Finite Difference(FD) and Finite volume(FV) : Overview

    2   Modelization and Simplified models of PDE.

    3   Scalar Advection-Diffusion Eqation.

    4   Approximation of a Scalar 1D ODE.

    5   FD for 1D scalar poisson equation (elliptic).

    6   FD for 1D scalar difusion equation (parabolic).

    7   FD for 1D scalar advection-diffusion equation.

    8   Scalar Nonlinear Conservation law : 1D (hyperbolic).

    9   FV for scalar nonlinear Conservation law : 1D

    10   Multi-Dimensional extensions

    B. NkongaLectures Références: Roger Peyret (

    / 33

    Overview 1   PDE 1-2   PDE 2   ODE 3   FD 4   FD 5   FD 6   FV 7-8   FV 8-9   FV 10

    Plan

  • 8/16/2019 Numerical method for PDE by finite difference

    39/42

    LogoINRIA

    Plan

    1   Finite Difference(FD) and Finite volume(FV) : Overview

    2   Modelization and Simplified models of PDE.

    3   Scalar Advection-Diffusion Eqation.

    4   Approximation of a Scalar 1D ODE.

    5   FD for 1D scalar poisson equation (elliptic).

    6   FD for 1D scalar difusion equation (parabolic).

    7   FD for 1D scalar advection-diffusion equation.

    8   Scalar Nonlinear Conservation law : 1D (hyperbolic).

    9   FV for scalar nonlinear Conservation law : 1D

    10   Multi-Dimensional extensions

    B. NkongaLectures Références: Roger Peyret (

    / 33

    Overview 1   PDE 1-2   PDE 2   ODE 3   FD 4   FD 5   FD 6   FV 7-8   FV 8-9   FV 10

    Plan

  • 8/16/2019 Numerical method for PDE by finite difference

    40/42

    LogoINRIA

    Plan

    1   Finite Difference(FD) and Finite volume(FV) : Overview

    2   Modelization and Simplified models of PDE.

    3   Scalar Advection-Diffusion Eqation.

    4   Approximation of a Scalar 1D ODE.

    5   FD for 1D scalar poisson equation (elliptic).

    6   FD for 1D scalar difusion equation (parabolic).

    7   FD for 1D scalar advection-diffusion equation.

    8   Scalar Nonlinear Conservation law : 1D (hyperbolic).

    9   FV for scalar nonlinear Conservation law : 1D

    10   Multi-Dimensional extensions

    B. NkongaLectures Références: Roger Peyret (

    / 33

    Overview 1   PDE 1-2   PDE 2   ODE 3   FD 4   FD 5   FD 6   FV 7-8   FV 8-9   FV 10

    Plan

  • 8/16/2019 Numerical method for PDE by finite difference

    41/42

    LogoINRIA

    Plan

    1   Finite Difference(FD) and Finite volume(FV) : Overview

    2   Modelization and Simplified models of PDE.

    3   Scalar Advection-Diffusion Eqation.

    4   Approximation of a Scalar 1D ODE.

    5   FD for 1D scalar poisson equation (elliptic).

    6   FD for 1D scalar difusion equation (parabolic).

    7   FD for 1D scalar advection-diffusion equation.

    8   Scalar Nonlinear Conservation law : 1D (hyperbolic).

    9   FV for scalar nonlinear Conservation law : 1D

    10   Multi-Dimensional extensions

    B. NkongaLectures Références: Roger Peyret (

    / 33

    Overview 1   PDE 1-2   PDE 2   ODE 3   FD 4   FD 5   FD 6   FV 7-8   FV 8-9   FV 10

    Plan

  • 8/16/2019 Numerical method for PDE by finite difference

    42/42

    LogoINRIA

    Plan

    1   Finite Difference(FD) and Finite volume(FV) : Overview

    2   Modelization and Simplified models of PDE.

    3   Scalar Advection-Diffusion Eqation.

    4   Approximation of a Scalar 1D ODE.

    5   FD for 1D scalar poisson equation (elliptic).

    6   FD for 1D scalar difusion equation (parabolic).

    7   FD for 1D scalar advection-diffusion equation.

    8   Scalar Nonlinear Conservation law : 1D (hyperbolic).

    9   FV for scalar nonlinear Conservation law : 1D

    10   Multi-Dimensional extensions

    B. NkongaLectures Références: Roger Peyret (

    / 33