nucleispecifiedby - universitetet i oslofolk.uio.no/farido/fys3510/nuclearphenomenology2.pdf ·...

48
Nuclei specified by Z– atomic number: number of protons N– neutron number: number of neutrons A = Z+N – mass/nucleon number: number of nucleons Nucleus charge: +Ze Nuclides: A Z Y –Y: chemical symbol for element Same Z isotopes ( 12 C, 13 C, 14 C: Z=6) Same N isotones Same A isobars 23/03/14 F. OuldSaada 1 Not necessary to consider nuclear physics in terms of quarks and gluons, even if protons and neutrons are made of quarks. In classical nuclear physics, the existence of quarks can be ignored as well as the existence of meson and hadron resonances. A nucleus consists of nucleons that somehow behave as almost free particles, although they are in a high density medium (about 10 38 nucleons/cm 3 ). Average kinetic energies of nucleons in the nucleus are of the order of 20MeV << energy scale of elementary particles

Upload: others

Post on 20-Jun-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  Nuclei  specified  by  §  Z  –  atomic  number:  number  of  

protons  §  N  –  neutron  number:  number  of  

neutrons  §  A  =  Z+N  –  mass/nucleon  number:  

number  of  nucleons  ¡  Nucleus  charge:  +Ze  ¡  Nuclides:  AZY  –  Y:  chemical  

symbol  for  element  §  Same  Z  à  isotopes  (12C,  13C,  14C:  

Z=6)  §  Same  N  à  isotones  §  Same  A  à  isobars  

23/03/14   F.  Ould-­‐Saada   1  

¡  Not  necessary  to  consider  nuclear  physics  in  terms  of  quarks  and  gluons,  even  if  protons  and  neutrons  are  made  of  quarks.  

¡  In  classical  nuclear  physics,  the  existence  of  quarks  can  be  ignored  as  well  as  the  existence  of  meson  and  hadron  resonances.    

¡  A  nucleus  consists  of  nucleons  that  somehow  behave  as  almost  free  particles,  although  they  are  in  a  high  density  medium  (about  1038  nucleons/cm3).  

¡  Average  kinetic  energies  of  nucleons  in  the  nucleus  are  of  the  order  of  20MeV  <<  energy  scale  of  elementary  particles  

Page 2: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  Nucleus  mass:    §  Fundamental  measurable  

quantity  uniquely  defining  nuclide  

§  As  test  of  nuclear  models  and  models  of  short-­‐lived  exotic  nuclei      

¡  Measure  of  mass  §  Deflection  spectrometers  §  Kinematic  analysis  §  Penning  Trap  

measurements  

23/03/14   F.  Ould-­‐Saada   2  

>1500  unstable  nuclei  

Page 3: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  Mass  measurement  by  passing  ion  beams  through  crossed  B,E  fields  

23/03/14   F.  Ould-­‐Saada   3  

! F = q! v ×

! B 1 + q

! E

! E ⊥! B 1⇒ F = qvB1 − qE

F = 0⇒ v =EB1

§  Isotopes  separated  and  focused  onto  a  detector  (photographic  plate)  

§  In  practice,  to  achieve  higher  accuracy,  measure  mass  differences    

§  ΔM/M  ~  10-­‐6  

mv 2

ρ= qvB2

qm

=E

B1B2ρ=

EB2ρ

Page 4: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  Masses  from  kinematics  of  nuclear  reactions  §  Inelastic  reaction  

A(a,a)A*  ,  short-­‐lived  nucleus  

§  Non-­‐relativistic  kinematics  à  mass  difference    ΔE  

¡  ΔE  iteratively  from  formula  from  measurements  of  kinetic  energies  Ei  and  Ef  è  mass  of  A*    

23/03/14   F.  Ould-­‐Saada   4  

a(Ei,!pi )+ A(mAc

2,!0)→ a(Ef ,

!pf )+ A*( !E, !"p)

Etot (initial) = Ei +mac2 +mAc

2

Etot ( final) = Ef + !E +mac2 + !mc2

ΔE ≡ ( !m−mA )c2 = Ei −Ef − !E =pi

2

2ma

−pf

2

2ma

−!p2

2 !mp− conservation→ pi = pf cosθ + !px; 0 = pf sinθ − !py

ΔE = Ei 1− ma

!m%

&'

(

)*−Ef 1+ ma

!m%

&'

(

)*+

2ma

!mEiEf cosθ

Page 5: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  General  reaction  A(a,b)B  à  mass  difference  with  Q  kinetic  energy  released  in  reaction  

¡  Kinetic  energies  in  formula  measured  in  Laboratory  frame  ¡  In  centre-­‐of-­‐mass  (See  appendix  B  for  CM  vs  Lab)  

23/03/14   F.  Ould-­‐Saada   5  

ΔE ≡ ( ˜ m −mA )c 2 = Ei 1−ma

˜ m %

& '

(

) * − E f 1+

ma

˜ m %

& '

(

) * +

2ma

˜ m EiE f cosθ

ΔE = Ei 1−ma

mB

$

% &

'

( ) − E f 1+

mb

mB

$

% &

'

( ) +

2mB

mambEiE f cosθ +Q€

ECM = Elab 1+ma

mA

"

# $

%

& '

−1

Page 6: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  Shape  and  size  of  Nucleus  obtained  from  scattering  experiments  §  Electrons  as  projectiles:  EM  force  à  Charge  distribution  §  Hadrons  as  projectiles:  nuclear  strong  interaction  in  addition  à  

Matter  density  ▪  Neutrons  à  EM  effects  absent    

▪  Let  us  first  derive  Rutherford  scattering  (Appendix  C)  

23/03/14   F.  Ould-­‐Saada   6  

Page 7: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  Momentum  &  energy  conservation  

23/03/14   F.  Ould-­‐Saada   7  

t = e⇒ mt =me <<mα ⇒ no large angle scattering (las)t = Au⇒ mt >>mα ⇒ LAS

Coulomb  scattering  neglected  

!vi =mα

!vf +mt!vt

mαvi2 =mαvf

2 +mtvt2

!"#

$#⇒

mαvi2 =mαvf

2 +mt2

vt2 + 2mt

!vf ⋅!vt( )

vt2 1− mt

(

)*

+

,-= 2!vf ⋅!vt

Page 8: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

23/03/14   F.  Ould-­‐Saada   8  

Coulomb  scattering:  M>>m  

b:  impact  parameter   py due to Coulomb force: F=dp/dt[ ]

⇒Δp = zZe2

4πε0r2 cosφ

−∞

+∞

∫ dt

(5) ⇒ 2mvsin(θ / 2) = zZe2

4πε0

1bv"

#$

%

&' cosφ−(π−θ )/2

+(π−θ )/2

∫ dφ Impact parameter: b = zZe2

8πε0

⋅1Ekin

cot θ2"

#$%

&'

Angular momentum conservation : mvb = mr2 dφdt

(5)

Scattering symmetric about y - axis →along y pi = −mv sin(θ /2) = −pf = p ⇒ Δp = 2mv sin(θ /2)

Page 9: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

23/03/14   F.  Ould-­‐Saada   9  

b =zZe2

8πε 0

⋅1Ekin

cot θ2&

' ( )

* +

⇒ dσdΩ&

' (

)

* + Rutherford

=zZe2

16πε 0Ekin

&

' (

)

* +

2

cosec4 θ2&

' ( )

* + =

zZe2

16πε 0Ekin

&

' (

)

* +

21

sin4 θ2&

' ( )

* +

initial flux of particles : Jintensity between b and b + db : 2πbJ dbequal to rate of scattered particles into dΩ = 2π sinθ dθdW = 2πbJ db

dW = 2πbJ dbsingle target particle : (see 1.60)

dW = J dσdΩ

dΩ = 2πJ sinθ dθ dσdΩ

dσdΩ

=b

sinθ⋅dbdθ

d(cot x) = −(sin x)−2dx

Page 10: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  Previous  (classical)  formula    adequate  for  α-­‐scattering  

¡  For  e-­‐  (z=-­‐1)  –Nucleus  (Z)  scattering,  quantum  mechanics  and  relativity  necessary  §  Use  eq.  1.69  –  neglecting  spin  

¡  integral  diverges  à  introduce  charge  screening  at  large  distances  through  term    e-λr    

§  Integral  twice  by  parts  §  and  let λ à  0  after  

integration  

23/03/14   F.  Ould-­‐Saada   10  

dσdΩ

=1

4π 2!4p'2

vv'M(" q 2)

2 " q = " p − " p '

M(" q ) = V (" r )ei" q ⋅" r !∫ d3" r

V (" r ) = VC (" r ) = −

αZ(!c)r

MC (! q ) = limλ→ 0

−αZ("c)e−λr

r&

' (

)

* + e

i! q ⋅! r "∫ d3! r

! q along z − axis : ! q ⋅ ! r = qrcosθ

MC (! q ) = −4π ("c)αZ"

qlimλ→ 0

e−λr sin(qr"

)dr0

MC (! q ) = −4π ("c)αZ"2

q2

Page 11: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  Rutherford  formula  §  Scattering  angle  θ  small  

23/03/14   F.  Ould-­‐Saada   11  

dσdΩ

=1

4π 2!4p '2

vv 'M ("q2 )

2MC (!q) = − 4π ("c)αZ"

2

q2

⇒dσdΩ

= 4Z 2α 2(!c)2 p'2

vv'q4

p2 = p'2 = 2mEkin ; v = v '= 2Ekin /m ; q = 2psin(θ /2)⇒ previous Rutherford formula (C.13)p = p';E = E ';v = v'≈ c;E ≈ pc

⇒dσdΩ(

) *

+

, - Rutherford

=Z 2α 2 !c( )2

4E 2 sin4 θ /2( )

Page 12: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  EM  scattering  of  a  charged  particle  in  the  Born  approximation  à  Appendix  C  §  Assume  Zα=1  and  use  plane  waves  for  initial  and  final  

states  §  Single  photon  exchange:  à  α2    §  Rutherford:  scattering  of  spin-­‐0  point-­‐like  projectile  of  

unit  charge  from  fixed  point-­‐like  target  with  charge  Ze  (charge  distribution  of  target  neglected)  

§  Take  into  account  electron-­‐spin  à  Mott  

§  Recoil  of  target  at  HE  (factor  E’/E)  à  spin-­‐1/2  formula  

23/03/14   F.  Ould-­‐Saada   12  

dσdΩ$

% &

'

( )

spin−1/ 2

=dσdΩ$

% &

'

( )

Mott

E 'E

1+ 2τ tan2 θ2$

% & '

( )

-

. /

0

1 2

τ = −q2

4M 2c 2 ; M target - mass

q2 = p − p'( )2= 2me

2c 2 − 2(EE ' /c 2 −! p ! p ' cosθ )

me ≈ 0 → pc ≈ E ⇒ q2 ≈ −4EE '

c 2 sin2 θ2$

% & '

( )

Q2 = −q2

dσdΩ$

% &

'

( ) Rutherford

=Z 2α 2 !c( )2

4E 2 sin4 θ2$

% & '

( )

dσdΩ$

% &

'

( ) Mott

=dσdΩ$

% &

'

( ) Rutherford

1− β2 sin2 θ2$

% & '

( )

.

/ 0

1

2 3

β = v /c

Nucleus P =Mc!P

!

"#

$

%& ; electron p =

E / c!p!

"#

$

%& ; p ' =

E '/ c!p '!

"#

$

%&

4−momentum transfer q2 = p− p '( )2

Page 13: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  Summary     ¡     

23/03/14   F.  Ould-­‐Saada   13  

Page 14: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  Spherically  symmetric  charge  distribution  §  integrate  over  angles  à  radial  ρ(r)    

¡  Final  form  of  experimental  cross-­‐section  takes  into  account  form  factor  due  to  spatial  extension  of  nucleus  §  charge  distribution  within  nucleus  f(r)  §  form  factor  as  Fourier  transform  (magnetic  interaction  neglected  here)  

23/03/14   F.  Ould-­‐Saada   14  

F(! q 2) ≡ 1Ze

ei! q ⋅! r " f (! r )d3! r ∫

Ze = f (! r )d3! r ∫

dσdΩ$

% &

'

( ) exp t

=dσdΩ$

% &

'

( )

Mott

F(! q 2)2

d3! r = r2drsinθdθdφ

F(! q 2) ≡ 4π"Zeq

rρ(r)sin qr"

'

( )

*

+ , dr

0

Page 15: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

23/03/14   F.  Ould-­‐Saada   15  

From  Thomson  

Page 16: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  Spherically  symmetric  charge  distribution  §  integrate  over  angles  à  radial  ρ(r)    

è  minima  in  elastic  cross-­‐sections  

23/03/14   F.  Ould-­‐Saada   16  

Simple example, hard sphereρ(r) = constant , r ≤ a = 0 , r > a⇒ F(! q 2) = 3 sin(b) − b(cos(b)[ ]b−3

b ≡ qa"

b = tan(b)⇒ F(! q 2) = 0

F(!q2 ) ≡ 4π"Zeq

rρ(r)sin qr"

"

#$

%

&'dr

0

data  for  58Ni  and  48Ca    

Page 17: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  dσ/dσΩ=f(θ)  §  minima  due  to  spatial  distribution  of  

nucleus  §  In  practice, ρ(r)  not  a  hard  sphere  à  

modifications  of  the  “zeros”  §  Minimaà  information  about  size  of  

nucleus  

¡  Measure  at  fixed  E  and  various  θ  (hence  various  q2)  à  Form  factor  extracted  from  cross-­‐section  measurements  

23/03/14   F.  Ould-­‐Saada   17  

dσdΩ$

% &

'

( ) exp t

=dσdΩ$

% &

'

( )

Mott

F(! q 2)2

Page 18: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  Radial  charge  distributions  of  various  nuclei  §  a:  value  of  radius  where  ρ≥ρ0/2  

23/03/14   F.  Ould-­‐Saada   18  

ρch (r) =ρch

0

1+ e(r−a ) / b

a ≈1.07A1/ 3 fm;b ≈ 0.54 fmρch

0 in range 0.06 − 0.08

¡  Charge  density  ~constant  in  nuclear  interior  and  falls  rapidly  to  zero  at  nuclear  surface  

Page 19: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  Mean  square  charge  radius  §  Useful  quantity  stemming  from  

form  factor  

23/03/14   F.  Ould-­‐Saada   19  

r2 ≡1Ze

r2∫ f (!r )d3!r = 4πZe

r4∫ f (r)dr

F(!q2 ) ≡ 1Ze

ei!q⋅!r" f (!r )d3!r∫ ; Ze = f (!r )d3!r∫

Expansion : F(! q 2) =1Ze

f (! r ) 1n!n =0

∑ i ! q rcosθ"

%

& '

(

) *

n

d3! r ∫

Angular integrations : F(! q 2) =4πZe

f (r)r2dr0

∫ −4π! q 2

6Ze"2 f (r)r4dr + ...0

¡  Derivation  §  See  problem  2.3  

F(! q 2) =1−! q 2

6"2 r2 + ...

r2 = −6"2 dF(! q 2)d! q 2 !

q 2 =0

r2 = 0.94A1/ 3 fm constant from a fit range of data

R2 =53

r2 ⇒ R =1.21A1/ 3 fm

¡  For  medium  to  heavy  nuclei  §  Nucleus  often  

approximated  to  homogeneous  sphere  of  Radius  R  

Page 20: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  Electrons  not  suitable  for  getting  distribution  of  neutrons  in  nucleus  §  Presence  of  neutrons  taken  into  account  by  

multiplying ρ by  A/Z  …  §  à  Effective  nuclear  matter  radius  Rnuclear    (medium  

to  heavy  nuclei)  

23/03/14   F.  Ould-­‐Saada   20  

ρch (r)→ρch (r) * A /Zρnucl ≈ 0.17nucleons / fm

3

Rnuclear ≈1.2A1/ 3 fm

52  MeV  deuterons  on  54Fe  

§  Differential  cross  section  has  diffraction  pattern  with  peaks  and  valleys  ▪  qR~pr θ  for  small θ ▪  J1:  1st  order  Bessel  function  

dσdΩ

=J1(qR)qR

$

% &

'

( )

2

; qR ≈ pRθ;

J1(qR)[ ]2≈

2πqR-

. /

0

1 2 sin2 qR − π

4-

. /

0

1 2

→zeros at intervals :Δθ =πpR

¡  To  probe  nuclear  (matter)  density  of  nuclei  experimentally  §  Hadron  as  projectile  §  At  high  energies  -­‐    elastic  scattering  small  –  nucleus  behaves  

more  like  absorbing  sphere  ▪  λ=h/p  will  suffer  diffractive-­‐like  effects  as  in  optics    

§  Nucleus  as  black  disk  of  radius  R    

 

Page 21: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

23/03/14   F.  Ould-­‐Saada   21  

Elastic  scattering  of  30.3  MeV  protons:  data  vs  optical  model  calculations  using  2  potentials  

Matter  density ρ(r)  =  f(R)      

Page 22: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  Force  binding  nucleons  in  nuclei  contribute  to  atom  mass  M(Z,A)  §  Mass  deficit:  ΔM  §  Binding  energy:  B=  -­‐ΔM  c2  

23/03/14   F.  Ould-­‐Saada   22  

M(Z,A) < Z(Mp +me ) + N Mn

ΔM(Z,A) ≡ M(Z,A) − Z(Mp +me ) − N Mn

¡  Binding  energy  per  nucleon:  B/A  §  For  stable  or  long-­‐lived  

nuclei,  B/A  peaks  at  8.7  MeV  for  M~56  (iron)  

§  Excluding  very  light  nuclei,  B/A~7-­‐9  MeV    

Page 23: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  Nuclear  drop  model    §  a  collective  model  of  the  nucleus    §  describes  the  nuclear  binding  energy  with  a  few  parameters  

§  uses  analogies  with  a  liquid  droplet  §  based  on  the  following  assumptions:  ▪  interaction  energy  independent  on  the  nucleon  type  ▪  Interaction  attractive  at  a  short-­‐range  ▪  Interaction  repulsive  at  large  distances  ▪  binding  energy  of  the  nucleus  proportional  number  of  nucleons.  

23/03/14   F.  Ould-­‐Saada   23  

Page 24: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  Atomic  mass  §  6  terms  

§  f0  –  mass  of  constituent  nucleons  and  electrons  

23/03/14   F.  Ould-­‐Saada   24  

M(Z,A) = fi(Z,A)i=0

5

f0(Z,A) = Z(Mp +me ) + (A − Z)Mn

¡  SEMF  §  Few  parameters  from  fits  to  

experimental  data  §  Some  theoretical  basis  

¡  Properties  common  to  most  nuclei,  except  those  with  very  small  A  values  §  (1)  Interior  mass  densities  ~equal  §  (2)  Total  B  ~proportional  to  masses  

¡  Analogy  with  classical  model  of  liquid  drop  §  (1)  interior  densities  are  the  same  §  (2)  latent  heats  of  vaporization  

proportional  to  their  masses  

Page 25: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

f5(Z,A) =

− f (A) Z even, A − Z even0 Z even, A − Z odd (vice - versa)f (A) Z odd, A − Z odd

#

$ %

& %

f (A) = a5A−1/ 2 empirical

¡  f0  –  mass  of  constituent  nucleons  and  electrons  

23/03/14   F.  Ould-­‐Saada   25  

f3(Z,A) = a3Z(Z −1)A1/ 3

≈ a3Z 2

A1/ 3

M(Z,A) = fi(Z,A)i=0

5

f0(Z,A) = Z(Mp +me ) + (A − Z)Mn¡  f1  –  volume  term  §  Short-­‐range  attractive  force;  R~A1/3  à  V~A  

¡  f2  –  surface  term  §  Nucleons  at  surface  not  surrounded  à  correction  to  volume  

¡  f3  –  Coulomb  term  §  Protons  repel  each  other  

¡  f4  –  asymmetry  term  §  Tendency  for  nuclei  to  have  Z=N;  Pauli  principle  §  p  from  level  3  &  n  to  level    4  à  (N-­‐Z)/2àΔ

§  Transfer  of  (N-­‐Z)/2  nucleons  à  decrease  of  B  by      Δ(N-­‐Z)2/4    §  Δ  not  constant  but  propto  1/A    

¡  f5  –  pairing  term:  empirical  §  Tendency  of  like  nucleons  in  same  spatial  state  

to  couple  pair-­‐wise  to  configs  with  spin  =0  

f1(Z,A) = −a1A f2(Z,A) = a2A2 / 3

f4 (Z,A) = a4(Z − A /2)2

A

Page 26: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  VSCAP  

av = a1, as = a2, ac = a3, aa = a4 , ap = a5

15.56, 17.23, 0.697, 93.14, 12. MeV /c 2

23/03/14   F.  Ould-­‐Saada   26  

¡  Fit  to  binding  energy  data  (solid  circles)  for  A>20    §  Good  fit  for  a  simple  formula  (open  circles)  §  Some  enhancements  not  reproduced  ▪  Due  to  shell  structure  of  nucleons  within  the  

nucleus  à  see  section  7.3  

¡  SEMF  gives  correct  B  for  some  200  stable  and  many  more  unstable  nuclei  §  Used  to  analyse  stability  of  nuclei  wrt  β-­‐

decay  and  fission    

Page 27: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  Contribution  to  binding  energy  /nucleon  as  function  of  mass  number  for  odd-­‐A  

¡  Is  B/A  equivalent  to  energy  needed  to  remove  nucleon  from  nucleus?  

¡   Ep  and  En  are  only  equal  to  B/A  in  an  average  sense  §  In  practice,  measurements  show  that      Ep  and  En  

can  substantially  differ  from  average  and  from  each  other  at  certain  values  of  (Z,A)  ▪  One  reason  is  shell  structure  for  nucleons  within  nuclei  –  

ignored  in  liquid  drop  model  à  chapter  7  23/03/14   F.  Ould-­‐Saada   27  

§  To  remove  a  neutron  –  separation  energy  En    

§  To  remove  a  proton  –  Ep    

ZAY→ Z

A −1X + n

En = M(Z,A −1) + Mn −M(Z,A)[ ]c 2

= B(Z,A) − B(Z,A −1)

ZAY→Z −1

A −1X + p

Ep = M(Z −1,A −1) + Mp +me −M(Z,A)[ ]c 2

= B(Z,A) − B(Z −1,A −1) +mec2

From  Braibant  

Page 28: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  Distribution  of  stable  nuclei  –  Segré  plot  §  Close  to  N=Z  §  All  other  nuclei  are  unstable  and  decay  

spontaneously  in  various  ways  ▪  Isobars  with  large  surplus  of  n’s:  nàp  (β-­‐

decays);  β+: ”p”àn+e+νe  ▪  (atomic)  e-­‐  capture  (pàn)  

¡  Fe,  Ni  most  stable  nuclides  §  maximum  of    B/A  curve  §  Heavier  nuclei  –  B/A  larger  due  to  Coulomb  

repulsion  §  Still  heavier  nuclei  –  spontaneous    decay  to    

lighter  nuclei    à  Q-­‐value  ▪  2-­‐body:NàD1  +  α (α=  4He=2p2n)  ▪  Fission  (spontaneous  or  induced):  D1  and  D2    

~similar  mass.          Z>=110  

§  Photon  emission  –  EM  decays  23/03/14   F.  Ould-­‐Saada   28  

Distribution  of  stable  Nuclei.  Stable  and  long-­‐lived  occurring  in  nature  –  squares  

Qα = (Mp −MD −Mα )c2 = ED + Eα

http://www.nndc.bnl.gov/nudat2/    

Page 29: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡     

23/03/14   F.  Ould-­‐Saada   29  http://www.nndc.bnl.gov/nudat2/      

Page 30: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  Decay  law  §  Decay  constant  λ  vs  activity  Α  :  §  Mean  lifetime  τ  and  half-­‐life  t1/2    

Α = −dNdt

= λN 1Bq ≡1decay / s

Α(t) = λN0e−λt 1Ci ≡ 3.7×1010decay / s

x ≡xf (x)dx∫f (x)dx∫

τ ≡t dn(t)dt∫dn(t)dt∫

=te−λt

0

∫ dt

e−λt0

∫ dt=1λ

t1/2 =ln2λ

= τ ln2

23/03/14   F.  Ould-­‐Saada   30  

¡  Dating  ancient  specimen  §  Organic  specimen  –  radioactive  14C  ▪  14C:  produced  in  atmosphere  cosmic  rays  

on  Nitrogen    ▪  For  constant  cosmic  ray  activity,  14C:

12C~1:1012  in  leaving  organism  ▪  When  organism  dies,  ratio  slowly  

changes  with  t      14Cà  14N  –  β-­‐decay τ=8.27x103y  

Page 31: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

A→λAB→

λBC→

λC...

dNA (t)dt

= −λANA ⇒ NA (t) = NA (0)e−λA t

dNB (t)dt

= −λBNB + λANA

NB (t) =λA

λB − λANA (0) e

−λA t − e−λB t[ ]

NC (t) = λAλBNA (0)e−λA t

(λB − λA )(λC − λA )+

e−λB t

(λA − λB )(λC − λB )+

e−λC t

(λA − λC )(λB − λC )&

' (

)

* +

3879Sr→37

79Rb + e+ +ν e (2.25min) →36

79Kr + e+ +ν e (22.9min) →35

79Br + e+ +ν e (35.04hr)

¡  λA>λB>λC  –  D  stable  ¡  ΝA(t)+ΝB(t)+ΝC(t)+ΝD(t)=constant!  

¡  Chains  with  decay  constants  λi    

23/03/14   F.  Ould-­‐Saada   31  

Page 32: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  SEMF  (2)  §  Mass  parabola:  new  form  ▪  M(Z,A)  is  quadratic  in  Z  for  fixed  A  ▪  Minimum  for  Z=β/2γ

§  For  odd-­‐A  (δ=0),  SEMF  is  single  parabola  

¡     

23/03/14   F.  Ould-­‐Saada   32  

M(Z,A) = αA − βZ + γZ 2 +δA1/ 2

α = Mn − av +asA1/ 3

+aa4

β = aa + (Mn −Mp −me )

γ =aa4

+acA1/ 3

δ = ap

§  For  even  A,  even-­‐even  and  odd-­‐odd  nuclei  lie  on  2  distinct  vertically  shifted  parabolas  (pairing  term)  

§  Isobaric  spectrum  (same  A)  ▪  Smallest  mass  stable  (against  β  decay)  ▪  Other    nuclei  decay  if  Z  not  at  

minimum  

§  τ=f(Q-­‐value,  Spin,  …):  ms  à  106y  

Page 33: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  Mass  parabola  –  odd  A  §  Even-­‐N,  odd-­‐Z  or  even-­‐Z,  odd-­‐N    §  Experimental  mass-­‐excess  from  

data:  M(Z,A)-­‐A  ▪  1a.m.u.=M(12  6  C)/12  

§  Curve:  theoretical  SEMF  prediction  ▪  Minimum:    11148  Cd  

23/03/14   F.  Ould-­‐Saada   33  

45111Rh→ 46

111Pd + e− +νe (11sec)

46111Pd→ 47

111Ag+ e− +νe (22.3min)

47111Ag→ 48

111Cd + e− +νe (7.45d)

45111Rh, 46

111Pd, 47111Ag →β − decay

n→ p + e− +ν eM(Z,A) > M(Z +1,A)

Page 34: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  Mass  parabola  –  odd  A  

23/03/14   F.  Ould-­‐Saada   34  

51111Sb, 50

111Sn, 49111In →β+ − decay

" p"→n + e+ +ν e

M(Z,A) > M(Z −1,A) + 2me

e− + p→ n+νe (e− capture)M (Z,A)>M (Z −1,A)+εe− + 51

111Sb→ 50111Sn+νe (75sec)

e− + 50111Sn→ 49

111In+νe (35.3min)e− + 49

111In→ 48111Cd +νe (2.8d)

Excitation  energy  of  atomic  shell  of  daughter  nucleus  

Page 35: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

23/03/14   F.  Ould-­‐Saada   35  

¡  Mass  parabola  –  even  A  §  Even-­‐N,  even-­‐Z  or  odd-­‐Z,  odd-­‐N  §  Nearly  all  stable  even-­‐mass  nuclei  are  

of  even-­‐even  type    §  Experimental  mass-­‐excess  data:  

M(Z,A)-­‐A  ▪  Open  circles:  eve-­‐even,  closed:  odd-­‐odd  

§  Curve:  theoretical  SEMF  prediction  ▪  Lowest  isobar:    102  44Ru  ▪  Neighbour  isobar:    102  46Pd  

2β − decay (1019−20 yr)

3482Se→36

82Kr + 2e− + 2ν e40Ca, 76Ge,82Se,96Zr,100Mo,116Cd,128Te,130Te,150Nd, 238U

§  Small  number  of  even-­‐even  nuclei,  although  beta-­‐decay  energetically  forbidden,  (A,Z)à(A,Z+2)  occurs  

§  Double  beta  decay  :  2nd  order  weak  process  à  Observed  

2e − capture : (A,z) →(A,Z - 2)

46102Pd + 2e−→44

102Ru + 2νe§  2e-­‐capture  possible  but  not  observed    

Page 36: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡     

23/03/14   F.  Ould-­‐Saada   36  

From  Braibant  

Page 37: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  Binding  energy  curve  à  spontaneous  fission  energetically  possible  for  A>100  

 §  154  MeV  released  carried  by  fission  

products,  usually  some  way  from  stability  line,  and  decay  in  steps    

¡  Spontaneous  fission:  §  Parent  nucleus  breaks  into  2  daughter  nuclei  of  

~equal  masses.  Equal  masses  unlikely.    §  SEMF  predicts  max  release  energy  for  exactly  

equal  masses  ▪  Isotope  254Fm  -­‐  mass  distribution  of  fission  

fragments  ¡  Fission  can  also  be  induced  by  low-­‐energy  

neutrons  or  by  more  energetic  particles  

23/03/14   F.  Ould-­‐Saada   37  

92238U→57

145La+3590Br + 3n

92238U :P( fission) ~ 3 ×10−24 s−1 ≈ 6 ×10−7P(α)254Fm : BR( fission) ~ 0.06% ; BR(α) ~ 99.94%

mass  distribution  of  fission  fragments  

¡  Fission  very  rare  process    §  Only  dominant  in  very  heavy  

elements  A>270      

57145La→...→60

145Nd + 8.5MeV (e,ν)

n+ 92U→ 56Ba+ 36Kr

Page 38: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

ΔE = (Es + Ec ) − (Es + Ec )semf =ε 2

52asA

2 / 3 − acZ2A−1/ 3( )

ΔE < 0 ⇒ Z 2

A≥

2asac

≈ 49

OK for Z >116; A ≥ 270

§  Parameterize  deformation:  §  Change  in  total  energy  ΔE  §  ΔE<0  à  Fission  

23/03/14   F.  Ould-­‐Saada   38  

a = R(1+ε); b =R

1+ε

V =43πR3 =

43πab2

Es = asA2 / 3 1+

25ε 2 + ...

$

% &

'

( )

Ec = acZ2A−1/ 3 1− 1

5ε 2 + ...

$

% &

'

( )

¡  In  SEMF,  we  assumed  that  drop/nucleus  spherical  §  This  minimizes  surface  area  (as)  §  If  surface  perturbed,  spherical  à  

prolate  §  as  up,  ac  down,  av  constant  §  Relative  sizes  (as,  ac  )  determine  

whether  nucleus  is  stable  or  not  against  spontaneous  fission  

Page 39: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  Spontaneous  fission  =  potential  barrier  problem  (see  Appendix  A)  

¡   23592U  –  fission  by  thermal  neutrons  §  Even-­‐odd  (pairing  term  δ=0):  less  

tightly  bound  than  238  (higher  in  V)  

¡   23892U  –  fission  by  fast  neutrons  §  Even-­‐even  (δ<0)  

23/03/14   F.  Ould-­‐Saada   39  

Potential  energy  during  different  stages  of  a  fission  reaction    

§  Activation  energy  determines  probability  for  spontaneous  fission    ▪  ~6  MeV  for  heavy  nuclei  (provided  f.e.  by  neutrons  in  induced  fission)  

▪  No  activation  needed  for  very  heavy  nuclei  (dashed  line)  –  spontaneous  fission    

Page 40: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡     

23/03/14   F.  Ould-­‐Saada   40  

From  Braibant  

Page 41: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  In  α,  β  decays  and  fission,  daughter  often  left  in  excited  state  §  De-­‐excitation  by  photon  

emission    

▪  Energy  level  spacing  in  nuclei  ~some  MeV  (àγ-­‐rays)  

§  Lifetime  of  excited  state  ~10-­‐12  

s  (EM  process  ~10-­‐16  s  )  

ZAX*→ Z

AX +γΔE ≈ 0.1−10MeV

23/03/14   F.  Ould-­‐Saada   41  

§  Role  of  angular  momentum  is  crucial;  idem  for  parity  (conserved  in  EM)  §  Intrinsic  parities  §  Parity  from  angular  

momentum  §  à  more  in  chapter  7.8  

Parity  associated  with  angular          à  momentum  carried  by  the  photon  

! J γ =! S i −! S f

Si − S j ≤ J ≤ Si + S j

M = mi −m f

P(γ) = −1(−1)J

Page 42: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

§  Compound  nucleus  reactions:    ▪  projectile  loosely  bound  in  nucleus  ▪  reaction  time  much  longer  than  just  transit  

¡  More  detailed  classification  of  reactions  in  NP  §  Direct  reactions:  assumption  that  projectile  experiences  average  

potential  of  target  nucleus  –  reaction  time  10-­‐22s      

23/03/14   F.  Ould-­‐Saada   42  

▪  Elastic  scattering  ▪  Inelastic  scattering  ▪  Pickup  reaction  ▪  N  stripped  off  target,      carried  away  by  projectile  

▪  Stripping  reaction  ▪  N  stripped  off  projectile,      transferred  to  target  nucleus    

 Energy  level  diagram  of  excitation  of  compound  nucleus  and  subsequent  decay  €

(i) a + A→a + A(ii) a + A→a + A*

(iii) p+16O→d+15O

(iv) d+16O→ p+17O

a + A→C* →b + Ba + A→C* →C +γ

Page 43: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  Compound  nucleus  reactions:    §  reaction  time  much  

longer  than  transit  §  Cross  sections  can  

show  variations  on  a  much  smaller  energy  scale  

§  Density  of  levels  high  ▪  n-­‐12C  scattering  at  

En~few  MEV  à  resonance  formation  in  13C  with  width  ~tens  –  hundreds  keV.  

23/03/14   F.  Ould-­‐Saada   43  

Total  cross  section  

▪  Widths  of  excitations  decrease  both  with  incident  energy  and  rapidly  with  target  nuclear  mass  

▪  Neutrons  (neutral)  have  high  probability  of  being  captured  by  nuclei  ▪  Cross  sections  rich  in  compound  

nucleus  effects,  particularly  at  very  low  energies  

Page 44: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  Situations  where  particles  are  ejected  from  nucleus  before  full  statistical  equilibrium  reached  

¡  In  collisions  of  heavy  ions  §   probability  for  additional  mechanism:  deep  inelastic  scattering  (Section  5.8)  –  

intermediate  between  direct  and  compound  

23/03/14   F.  Ould-­‐Saada   44  

¡  Direct  and  compound  nucleus  reactions  in  nuclear  reactions  initiated  by  protons  ¡  Feed  same  final  states  

Page 45: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  Typical  spectrum  of  energies  of  the  nucleons  emitted  at  fixed  angle  in  inelastic  nucleon-­‐nucleus  reactions  

▪  Case  of  incident  neutron  on  medium  mass  nuclei  

§  N(E)  of  secondary  particles  in  neutron-­‐nucleus  

§  Direct  reactions:  cross  section  peaked  in  forward  direction  ▪  Falling  rapidly  with  angle  

and  with  oscillations  (see  slide  16  )  

§  At  lowest  energies,  contribution  from  compound  rather  symmetric  about  90o  

23/03/14   F.  Ould-­‐Saada   45  

Page 46: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  Many  medium  and  large-­‐A  nuclei  can  capture  very  low-­‐energy  (~10-­‐100  eV)  neutrons    §  Neutron  separation  energy  ~6MeV  for  final  nucleus  §  Capture  leads  to  excitation,  which  often  occurs  in  a  region  of  high  density  of  narrow  

states  that  show  up  as  rich  resonance  structure  in  neutron  total  cross-­‐section  

§  Value  of  σ at  resonance  peaks  (excited  states  of  239U)  orders  of  magnitude  greater  than  σ  based  on  size  of  nucleus  

23/03/14   F.  Ould-­‐Saada   46  

Page 47: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

23/03/14   F.  Ould-­‐Saada   47  

¡  Once  formed,  compound  nucleus  can  decay  to  final  states  consistent  with  relevant  conservation  laws  

¡  Neutron  emission  can  be  preferred  decay  §  For  thermal  neutrons  (0.02  eV)  photon  emission  often  preferred  

¡  Fact  that  radiative  decay  is  dominant  mode  of  compound  nuclei  formed  by  thermal  neutrons  is  important  in  the  use  of  nuclear  fission  to  produce  power  in  nuclear  reactors    

Page 48: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  Pages  67-­‐69  §  2.2  ,  2.4,  2.5,  2.7,    §  2.10,  2.11,  2.12,  2.14  §  2.15,  2.17,  2.18      

23/03/14   F.  Ould-­‐Saada   48